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Abstract. A Euclidean submanifold is called a rectifying submanifold if
its position vector field x always lies in its rectifying subspace [7]. It was
proved in [7] that a Euclidean submanifold M is rectifying if and only if the
tangential component xT of its position vector field is a concurrent vector
field.

Since concircular vector fields are natural extension of concurrent vector
fields, it is natural and fundamental to study a Euclidean submanifold M
such that the tangential component xT of the position vector field x of M
is a concircular vector field. We simply call such a submanifold a concir-

cular submanifold. The main purpose of this paper is to study concircular
submanifolds in a Euclidean space. Our main result completely classifies
concircular submanifolds in an arbitrary Euclidean space.

1. Introduction. Let E3 denote the Euclidean 3-space with inner prod-
uct 〈 , 〉. Consider a unit speed space curve x : I → E

3, where I = (α, β) is an
open interval. Let x denote the position vector field of x and its derivative x′

be denoted by t. Denote by {t,n,b, κ, τ} the Frenet-Serret apparatus of x with
curvature κ, torsion τ , unit tangent vector field t, the principal normal vector
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field n and the binormal vector field b. Then the famous Frenet-Serret equations
are given by











t′ = κn,

n′ = −κt + τb,

b′ = −τn.

(1.1)

At each point of the curve, the planes spanned by {t,n}, {t,b}, and {n,b} are
well-known as the osculating plane, the rectifying plane, and the normal plane of
the curve, respectively.

The fundamental theorem of curves states that for two given smooth
functions κ(s) > 0 and τ(s), s ∈ I, there exists a curve x : I → E

3 such that s is
the arc length, κ(s) is the curvature function, and τ(s) is the torsion function of
x; moreover, any other curve satisfying the same conditions differs from x by a
rigid motion.

From elementary differential geometry, it is well known that a curve in
E
3 lies in a plane if its position vector lies in its osculating plane at each point,

and it lies on a sphere if its position vector always lies in its normal plane. In
view of these basic facts, the first author called a space curve a rectifying curve

in [3] if its position vector field always lies in its rectifying plane.
The first author extended the notion of rectifying plane to the notion

of rectifying subspace in [7]. Furthermore, he introduced the notion of rectifying
submanifolds, by defining a Euclidean submanifold to be a rectifying submanifold
if its position vector field always lies in its rectifying subspace. The first author
also investigated and classified rectifying submanifolds in [7, 9]. In particular, he
showed that a Euclidean submanifold is rectifying if and only if the tangential
component xT of its position vector field x is a concurrent vector field.

Since concircular vector fields are natural extension of concurrent vector
fields, it is natural and fundamental to study a Euclidean submanifold M such
that the tangential component xT of the position vector field x of M is a concir-
cular vector field. We simply call such a submanifold a concircular submanifold.

In this paper, we study some fundamental properties of concircular sub-
manifolds. Our main result completely classifies concircular submanifolds of Eu-
clidean spaces.

2. Preliminaries. Let x : M → E
m be an isometric immersion of a

Riemannian manifold M into a Euclidean m-space E
m. For each point p ∈ M ,

we denote by TpM and T⊥
p M the tangent and the normal spaces of M at p,

respectively.
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Let ∇ and ∇̃ denote the Levi-Civita connections of M and E
m, respec-

tively. Then the formulas of Gauss and Weingarten are then given respectively
by (cf. [5, 10])

∇̃XY = ∇XY + h(X,Y ),(2.1)

∇̃Xξ = −AξX +DXξ,(2.2)

for vector fields X, Y tangent to M and ξ normal to M , where h is the second
fundamental form, D the normal connection, and A the shape operator of M .

At a given point p ∈ M , the first normal space of M in E
m, denoted by

Imhp, is the subspace given by

Imhp = Span{h(X,Y ) : X,Y ∈ TpM}.(2.3)

For each normal vector ξ at p, the shape operator Aξ is a self-adjoint
endomorphism of TpM . The second fundamental form h and the shape operator
A are related by

(2.4) 〈AξX,Y 〉 = 〈h(X,Y ), ξ〉 ,
where 〈 , 〉 is the inner product on M as well as on the ambient Euclidean space.

The equation of Gauss of M in E
m is given by

R(X,Y ;Z,W ) = 〈h(X,W ), h(Y,Z)〉 − 〈h(X,Z), h(Y,W )〉(2.5)

for X,Y,Z,W tangent to M , where R is the Riemann curvature tensor of M
defined by

R(X,Y ;Z,W ) = 〈∇X∇Y Z,W 〉 − 〈∇Y ∇XZ,W 〉 −
〈

∇[X,Y ]Z,W
〉

.

The mean curvature vector H of a submanifold M is defined by

H =

(

1

n

)

trace h, n = dimM.(2.6)

A Riemannian manifold is called a flat space if its curvature tensor R
vanishes identically. Further, a submanifold M is called totally umbilical (re-
spectively, totally geodesic) if its second fundamental form h satisfies h(X,Y ) =
〈X,Y 〉H identically (respectively, h = 0 identically).

Let B and Q be two Riemannian manifolds with metric tensors gB and
gQ, respectively, and f be a positive smooth function on B. Then the warped

product B ×f Q is the product manifold B ×Q equipped with the metric tensor

g = gB + f2gQ,

where f is called the warping function (cf. [1, 10, 13]).
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3. Basic results on x, xT and xN. It follows from the definition of
a rectifying curve x : I → E

3 that the position vector field x of a rectifying curve
satisfies

(3.1) x(s) = λ(s)t(s) + η(s)b(s)

for some functions λ and η.

For a curve x : I → E
3 with κ(s0) 6= 0 at s0 ∈ I, the first normal space at

s0 is the line spanned by the principal normal vector n(s0). Thus the rectifying
plane at s0 is nothing but the plane orthogonal to the first normal space. For
an arbitrary submanifold M of Em, we simply call the orthogonal complement
subspace to the first normal space Imhp at p ∈ M the rectifying space of M at p
(cf. [7]).

Analogous to rectifying curves in [3], the first author introduced the notion
of rectifying submanifolds in [7] defined as follows.

Definition 3.1. A submanifold M of a Euclidean m-space E
m is called

a rectifying submanifold if its position vector field x always lies in its rectifying

space. In other words, M is called a rectifying submanifold if and only if

(3.2) 〈x(p), Im hp〉 = 0

holds at every point p ∈ M .

Definition 3.2. A non-trivial vector field V on a Riemannian manifold

M is called a concurrent vector field if it satisfies (cf. e.g. [10, 16])

∇XV = X(3.3)

for any X ∈ Γ(TM), where ∇ is the Levi-Civita connection of M and Γ(TM) is
the space of smooth cross sections in the tangent bundle TM of M.

Definition 3.3. A non-trivial vector field Z on a Riemannian manifold

M is called a concircular vector field if it satisfies (cf. e.g. [6, 10, 15])

∇XZ = ϕX, X ∈ TM,(3.4)

where ϕ is a smooth function on M , called the concircular function.

By a cone in E
m with vertex at the origin o we mean a ruled submanifold

generated by a family of half lines through o. Obviously, a linear subspace of Em

containing the origin o is a special case of cone in this sense. A submanifold of
E
m is called a conic submanifold with vertex at o if it is an open part of a cone

with vertex at o.

For a Euclidean submanifold M , there exists a natural orthogonal decom-
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position of the position vector field x of M ; namely,

(3.5) x = xT + xN ,

where xT and xN are the tangential and normal components of x, respectively.
Let |xT | and |xN | denote the length of xT and xN , respectively.

The following results can be found in [7].

Lemma 3.1. Let x : M → E
m be an isometric immersion of a Rieman-

nian n-manifold into a Euclidean m-space E
m. Then x = xT holds identically if

and only if M is a conic submanifold with the vertex at the origin.

Lemma 3.2. Let x : M → E
m be an isometric immersion of a Rieman-

nian n-manifold into E
m. Then x = xN holds identically if and only if M lies in

a hypersphere centered at the origin.

In view of Lemma 3.1 and Lemma 3.2, we make the following.

Definition 3.4. A submanifold M of Em is called proper if its position

vector field x satisfies x 6= xT and x 6= xN everywhere on M except a measure

zero subset.

We have the following characterization of rectifying submanifolds from [7].

Theorem 3.1. Let M be a proper submanifold of a Euclidean m-space

E
m. Then M is a rectifying submanifold if and only if xT is a concurrent vector

field on M .

Further basic results on xT and xN can be found in [2, 4, 8, 9] among
others.

Obviously, concircular vector fields are natural extension of concurrent
vector fields. Hence, in view of Theorem 3.1, we ask the following basic question.

Question 3.1. Which submanifolds of a Euclidean m-space E
m have con-

circular vector field xT ?

For simplicity, we make the following.

Definition 3.5. A proper submanifold M of a Euclidean space with

dimM ≥ 2 is called a concircular submanifold if the tangential component xT of

its position vector field x is a concircular vector field on M .

The concircular function of a concircular submanifold M is defined to be
the concircular function ϕ of the concircular vector field xT on M given in (3.4).
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4. Some lemmas. Now, we provide five lemmas for the proof of our
main result.

Lemma 4.1. Let M a submanifold of a Euclidean m-space E
m. Then

the Levi-Civita connection ∇ and the normal connection D of M satisfy

∇Zx
T = Z +AxNZ,(4.1)

DZx
N = −h(xT , Z),(4.2)

for any Z ∈ Γ(TM).

P r o o f. Let M be a submanifold of Em. Then, by using the fact that the
position vector field is a concurrent vector, we find from Gauss’ and Weingarten’s
formulas that

Z = ∇̃Zx = ∇Zx
T + h(xT , Z)−A

xNZ +DZx
N

for any Z ∈ Γ(TM), where ∇̃ is the Levi-Civita connection of En+1. Hence, by
comparing the tangential and normal components of the last equation, we obtain
formulas (4.1) and (4.2). ✷

Lemma 4.2. A proper hypersurface M of En+1 (n ≥ 2) is a concircular

hypersurface if and only if either

(1) M is an open portion of a hyperplane Ln of E
n+1 such that o /∈ Ln, where

o is the origin of En+1, or

(2) M is an open portion of a hypersphere Sn such that the origin o of En+1 is

not the center of Sn.

Further, M has constant concircular function ϕ = 1 in case (1); and M
has non-constant concircular function ϕ = 1 + 〈H,x〉 in case (2).

P r o o f. Let M be a concircular hypersurface of En+1. Then we have
∇Zx

T = ϕZ with a concircular function ϕ. Combining this with (4.1) gives

AxNZ = (ϕ− 1)Z, Z ∈ Γ(TM),(4.3)

which shows that M is totally umbilical in E
n+1.

Consequently, M is either an open portion of a hyperplane Ln or an open
portion of a hypersphere Sn depending on M is totally geodesic or not totally
geodesic.

From (2.4) and (4.3) we have

∇Zx
T = (1 +

〈

H,xN
〉

)Z, Z ∈ Γ(TM),(4.4)
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where H is the mean curvature vector of M .
Suppose that M is an open portion of a hyperplane Ln. Then o /∈ Ln

since we have x 6= xT according to Definition 3.5. Also, in this case it follows
from (4.4) that ∇Zx

T = Z. Thus M has constant concircular function ϕ = 1.
If M is an open portion of a hypersphere Sn. Then we know that the

center of Sn−1 is not the origin of En+1 due to x 6= xN . Thus, in this case, it is
easy to show that the concircular function ϕ = 1 + 〈H,x〉 of M is non-constant.

Conversely, if M is a hypersurface given either by case (1) or case (2),
then it follows easily from (4.4) that M is a concircular hypersurface. ✷

Lemma 4.3. Let M be a concircular submanifold of a Euclidean m-

space E
m with codimension ≥ 2. Then there exists a local coordinate system

{s, u2, . . . , un} of M such that

(a) e1 =
∂

∂s
and

〈

∂

∂s
,

∂

∂uj

〉

= 0 for j = 2, . . . , n;

(b)
∂

∂uj

〈

xN ,xN
〉

= 0 for j = 2, . . . , n;

(c) µ = µ(s) and
∂

∂s

〈

xN ,xN
〉

= 2µ(s)(1− µ′(s));

(d) AxN = (µ′(s)− 1)I, where I denotes the identity map.

P r o o f. Assume that M is a concircular submanifold of Em with codi-
mension ≥ 2. Let us define the unit vector field e1 and the function µ on M
by

xT = µe1, µ = |xT |.(4.5)

We may extend e1 to a local orthonormal frame e1, . . . , en on M . Since xT is a
concircular vector field on M , we derive from (3.4) and (4.5) that

ϕZ = ∇Zx
T = (Zµ)e1 + µ∇Ze1, Z ∈ Γ(TM),(4.6)

where ϕ is the concircular function of xT . From (4.6) we find

e1µ = ϕ, ∇e1e1 = 0,(4.7)

ejµ = 0, ∇eje1 =
ϕ

µ
ej , j = 2, . . . , n.(4.8)

If we define the connection forms ωi
k, i, k = 1, . . . , n, by

∇Zek =

n
∑

i=1

ωi
k(Z)ei, k = 1, . . . , n,(4.9)
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then (4.8) and (4.9) yield

ωi
1(ej) =

ϕ

µ
δjk, j, k = 2, . . . , n,(4.10)

where δjk denote the Kronecker deltas.

Let us put

D = Span{e1}, D⊥ = Span{e2, . . . , en}.
Then it follows from (4.10) that D⊥ is an integrable distribution. Moreover, we
know from the second equation in (4.7) that D is an integrable distribution whose
integral curves are geodesics of M and hence D is a totally geodesic distribution.
Therefore there exists a local coordinate system {s, u2, . . . , un} on M such that

e1 =
∂

∂s
and D⊥ = Span

{

∂

∂u2
, . . . ,

∂

∂un

}

.(4.11)

Hence we have statement (a) of the lemma.

From (4.7) and (4.8) we find

µ = µ(s), ϕ = µ′(s), µ = 〈x, e1〉 .(4.12)

Thus, by applying (4.3) and (4.12), we get

A
xNZ = (µ′(s)− 1)Z,(4.13)

which gives statement (d).

After applying (2.4) and (4.13), we find
〈

h(Z,xT ),xN
〉

=
〈

A
xNZ,xT

〉

= (µ′(s)− 1)
〈

Z,xT
〉

.(4.14)

On the other hand, it follows from (4.2) and (4.14) that

(4.15) Z
〈

xN ,xN
〉

= 2
〈

DZx
N ,xN

〉

= −2
〈

h(xT , Z),xN
〉

= 2(1− µ′(s))
〈

Z,xT
〉

,

which implies statement (b).

Finally, we see from (4.15) that
〈

xN ,xN
〉

is a function depending only

on s. This if we choose Z =
∂

∂s
, then we obtain statement (c) from (4.12) and

(4.15). ✷

Lemma 4.4. If M is a concircular submanifold of a Euclidean m-space

with codimension ≥ 2, then M is locally a warped product I×µ(s)Q with warping

function µ, where Q is a Riemannian manifold, µ = |xT | and xT = µ
∂

∂s
.
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P r o o f. If M is a concircular submanifold of a Euclidean space, then it
follows from [6, Theorem 3.1] that M is locally a warped product I ×f(s) N with

warping function f(s) for some Riemannian manifold N such that
∂

∂s
is parallel

to xT .
Since the metric tensor of I ×f(s) N is

g = ds2 + f2(s)gN ,(4.16)

the Levi-Civita connection ∇ of M satisfies

∇V
∂

∂s
=

d(ln f)

ds
V(4.17)

for any tangent vector V of N (see, e.g., [10, 13]).
On the other hand, (4.6) and (4.12) imply that the Levi-Civita connection

of M also satisfies

∇V
∂

∂s
=

d(ln µ)

ds
V.(4.18)

Hence, after comparing (4.17) and (4.18), we obtain (ln f)′ = (lnµ)′, which
implies f(s) = λµ(s) for some nonzero constant λ. Consequently, M is lo-
cally a warped product I ×µ(s) Q such that the metric tensor of Q is given by

gQ = λ2gN . ✷

The next lemma is an easy consequence of Nash’s embedding theorem
[12].

Lemma 4.5. For sufficiently large integer m, every Riemannian manifold

M can be isometrically immersed in the unit hypersphere Sm−1
o (1) of E

m centered

at the origin o ∈ E
m.

P r o o f. Nash’s embedding theorem states that every Riemannian man-
ifold can be isometrically embedding in a Euclidean k-space E

k for some large k.
Clearly, Ek can be isometrically mapped into a flat k-torus T k in S2k−1

o (1) ⊂ E
2k.

Therefore, for sufficiently large m, every Riemannian manifold can be isometri-
cally immersed into the unit hypersphere Sm−1

o (1) of Em centered at the origin. ✷

5. Main results. The following main result completely classifies con-
circular submanifolds.

Theorem 5.1. Let M be a proper submanifold of a Euclidean m-space

E
m with origin o. If n = dimM ≥ 2, then M is a concircular submanifold if and

only if one of the following three cases occurs:

(i) M is an open portion of a linear n-subspace Ln of Em such that o /∈ L.
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(ii) M is an open portion of a hypersphere Sn of a linear (n+1)-subspace Ln+1

of Em such that the origin of Em is not the center of Sn.

(iii) m ≥ n+2. Moreover, with respect to some suitable local coordinate systems

{s, u2, . . . , un} on M the immersion x of M in E
m takes the following form:

(5.1) x(s, u2, . . . , un) =
√

2ρ Y (s, u2, . . . , un), 〈Y, Y 〉 = 1,

where Y : M → Sm−1
o (1) ⊂ E

m is an immersion of M into the unit hyper-

sphere Sm−1
o (1) such that the induced metric gY via Y is given by

gY =
2ρ− ρ′2

4ρ2
ds2 +

ρ′2

2ρ

n
∑

i,j=2

gij(u2, . . . , un)duiduj.(5.2)

where ρ = ρ(s) satisfies 2ρ > ρ′2 > 0 on an open interval I.

P r o o f. Assume that M is a concircular submanifold of Em with n =
dimM ≥ 2. If M lies in a totally geodesic E

n+1 of Em, then we obtain (i) or (ii)
according to Lemma 4.2. Hence from now on we may assume that m ≥ n+ 2.

SinceM is a concircular submanifold, Lemma 4.4 implies thatM is locally

a warped product I ×µ(s) Q such that
∂

∂s
is parallel to xT , where µ = |xT | and

Q is a Riemannian (n− 1)-manifold. Thus the metric tensor of M is

g = ds2 + µ2(s)gQ,(5.3)

where

gQ =
n
∑

i,j=2

gij(u2, . . . , un)duiduj(5.4)

is the metric tensor of Q. Moreover, we also know that

xT = µ(s)
∂

∂s
.(5.5)

It follows from (4.5) or (5.5) and Lemma 4.3(3) that

|x|2 = |xT |2 + |xN |2 = µ2 + 2

∫ s

s0

µ(t)(1 − µ′(t))dt.

Hence we have

|x|2 = 2ρ ≥ 0,(5.6)

where ρ(s) is an anti-derivative of µ(s), i.e., µ(s) = ρ′(s). If we put

F (s) =
√

2ρ,(5.7)
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then, according to (5.6), the position vector field of M takes the form:

x(s, u2, . . . , un) = F (s)Y (s, u2, . . . , un),(5.8)

where Y : M → Sm−1
o (1) ⊂ E

m is a map of M into the unit hypersphere Sm−1
o (1)

centered at the origin o. Clearly, from (5.7) and (5.8) we have

(5.9)
∂x

∂s
=

ρ′√
2ρ

Y +
√

2ρYs,
∂x

∂uj
=

√

2ρYuj
, j = 2, . . . , n.

Also, we find from (5.3), (5.9), 〈Y, Y 〉 = 1 and ρ′ = µ that

(5.10)
〈Ys, Ys〉 =

2ρ− ρ′2

4ρ2
,

〈

Ys, Yuj

〉

= 0,

〈

Yui
, Yuj

〉

=
1

2ρ

〈

xui
,xuj

〉

, i, j = 2, . . . , n.

So, we conclude from (5.3) and (5.10) that the induced metric tensor gY of the
spherical submanifold defined by Y is given by

gY =
2ρ− ρ′2

4ρ2
ds2 +

ρ′2

2ρ

n
∑

i,j=2

gij(u2, . . . , un)duiduj .(5.11)

Clearly, in order that gY to be well-defined, it requires that 2ρ > ρ′2 > 0.

Conversely, we know from Lemma 4.2 that submanifolds given by (i) and
(ii) are concircular submanifolds.

Next, we would like to prove that a submanifold defined by (5.1) and (5.2)
in (iii) gives rise to a concircular submanifold. In order to do so, let us assume
that ρ = ρ(s) is a function satisfying 2ρ > ρ′2 > 0 on an open interval I. We also
assume that Q is a Riemannian (n− 1)-manifold with metric tensor gQ.

Let us consider the warped product P = I ×Q with the warped product
metric:

gP =
2ρ− ρ′2

4ρ2
ds2 +

ρ′2

2ρ
gQ.(5.12)

According to Lemma 4.5, for a sufficient large integer m, the warped product
(P, gP ) admits an isometric immersion:

Y : (P, gP ) → Sm−1
o (1) ⊂ E

m(5.13)

into the unit hypersphere Sm−1
o (1) of Em centered at the origin o.

Let us define the map x : I ×Q → E
m by

x(s, u2, . . . , un) =
√

2ρ(s)Y (s, u2, . . . , un),(5.14)
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where {u2, . . . , un} is a local coordinate system of Q. It is easy to verify from
(5.12) and (5.14) that the induced metric tensor on I ×Q via x is given by

g = ds2 + ρ′(s)2gQ.(5.15)

A direct computation shows that the Levi-Civita connection of (I×Q, g) satisfies

(5.16) ∇ ∂
∂s

∂

∂s
= 0, ∇ ∂

∂uj

∂

∂s
=

ρ′′(s)

ρ′(s)

∂

∂uj
, j = 2, . . . , n.

Also, it follows from (5.14) that the position vector field x of x satisfies

(5.17)
∂x

∂s
=

ρ′√
2ρ

Y +
√

2ρYs,
∂x

∂uj
=

√

2ρYuj
, j = 2, . . . , n.

Therefore we obtain

xT = ρ′(s)
∂

∂s
.(5.18)

By using (5.16), (5.17) and (5.18), it is easy to verify that ∇Zx
T = ρ′′(s)Z

holds for every Z ∈ Γ(TM). Hence the immersion of I × Q into E
m via (5.14)

is a concircular immersion whose concircular function is given by ϕ = ρ′′(s).
Consequently, (5.1) together with (5.2) gives rise to a concircular submanifold in
E
m. ✷

6. An explicit example of concircular surfaces in E
4. Theo-

rem 5.1 shows that there exist ample examples of concircular submanifolds in
Euclidean spaces.

The following provides one explicit example of concircular surface in E
4.

Example 6.1. If we choose n = 2 and ρ(s) =
3

8
s2, then the function

defined by (5.7) becomes F =

√
3

2
s. Thus (5.11) reduces to

gY =
1

3s2
ds2 +

3

4
du2.(6.1)

Let us define Y : I1 × I2 → S3
o(1) ⊂ E

4 to be the map of I1 × I2 into S3
o (1) given

by

(6.2) Y (s, u) =
1√
2

(

cos
(√

2√
3
ln s

)

, sin
(√

2√
3
ln s

)

, cos
(√

6
2 u

)

, sin
(√

6
2 u

))

.

Then the induced metric tensor of I1 × I2 via the map Y is given by (6.1).
Therefore P 2 = (I1 × I2, gY ) with the induced metric tensor gY is a flat surface.
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Consider x(s, u) : I1 × I2 → E
4 given by x(s, u) = F (s)Y (s, u), i.e.,

x(s, u) =

√
3s

2
√
2

(

cos
(√

2√
3
ln s

)

, sin
(√

2√
3
ln s

)

, cos
(√

6
2 u

)

, sin
(√

6
2 u

))

.(6.3)

Then it is easy to verify that the induced metric via x is

(6.4) g = ds2 +
9

16
s2du2.

Hence the Levi-Civita connection of M = (I1 × I2, g) satisfies

(6.5) ∇ ∂
∂s

∂

∂s
= 0, ∇ ∂

∂u

∂

∂s
=

1

s

∂

∂u
.

Using (6.3) and (6.4), it is easy to verify that the tangential component

xT =
3

4
s
∂

∂s
of the position vector field x is a concircular vector field satisfy-

ing ∇Zx
T =

3

4
Z for Z ∈ TM . Consequently, M is a concircular surface in E

4.
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