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Abstract. We prove the existence of travelling-wave solutions for a system
of coupled nonlinear Schrödinger equations arising in nonlinear optics. Such
a system describes second-harmonic generation in optical materials with
χ(2) nonlinearity. To prove the existence of travelling waves, we employ the
method of concentration compactness to prove the relative compactness of
minimizing sequences of the associated variational problem.

1. Introduction. The coupled nonlinear Schrödinger system we are
studying in this paper has applications in nonlinear optics. Telecommunications
and computer technology are prime examples where modern nonlinear optics
plays a major role. The system we are considering has χ(2) nonlinearity, which
arises in an optical process where a phenomenon of frequency doubling is exhib-
ited due to interactions between certain nonlinear materials. We refer the reader
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to [12] for a detailed description of χ(2) nonlinearity, which, in fact, has gained
the focus of many mathematicians and physicists in recent years, in an attempt
to increase the speed and efficiency of optical fibres for data transmission. The
reader may consult [8, 12, 14] and the references therein for more information
about the physics and the engineering applications of the system studied in this
paper.

In this paper, we consider a system of two-coupled nonlinear Schrödi-nger
equations in the form

(1.1)





i
∂W

∂t
+
∂2W

∂x2
− αW +WV = 0,

iµ
∂V

∂t
+
∂2V

∂x2
− βV +

1

2
W 2 = 0,

where W and V are complex-valued functions, α and β are real numbers, and
µ > 0. System (1.1) is obtained from the basic χ(2) second-harmonic genera-
tion equations (SHG) of type I (see [12]). Physically, the complex functions W
and V represent packets of amplitudes of the first and second harmonics of an
optical wave respectively. The constant µ measures the ratios of the disper-
sions/diffractions.

In this paper, we are interested in the existence problem of travelling
solitary wave solutions of (1.1). The travelling waves we are interested in are of
the form

(1.2) (W (x, t), V (x, t)) = (eiσtΦ(x), e2iσtΨ(x)),

where Φ,Ψ : R → R. We specify the boundary conditions Φ,Ψ → 0 as x → ±∞
and call these solutions pulses. We show that there exists a nontrivial smooth
solution with exponential decay at infinity for the system

(1.3)





Φ′′ − α0Φ+ ΦΨ = 0,

Ψ′′ − β0Ψ+
1

2
Φ2 = 0,

with α0 = α + σ > 0 and β0 = β + 2µσ > 0. It is well-known that when
α0 = ±1 = β0 and Φ = ±

√
2Ψ, system (1.3) has the explicit solutions of the form

Φ(x) = ± 3√
2
sech2(x/2), Ψ(x) = ±3

2
sech2(x/2).

From the mathematical point of view, the existence of at least one solution ho-
moclinic to the origin (corresponding physically to a pulse) for (1.3) was proved
in [14] for all β0 > 0 and α0 = 1. Their method is of variational nature and
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uses the mountain pass theorem, along with some convergence arguments. Lo-
calized solutions were characterized as critical points which are local minima of
an energy functional. In [2], using the concentration compactness technique, the
existence of pulses was established for a more general version of system (1.3).
Their method uses variational characterizations of pulses subject to two indepen-
dent constraints. Solutions were characterized as critical points which are global
minima of an energy functional, with α0, β0 appearing as Lagranges multipliers
associated with the constraints. To establish the compactness result for every
minimizing sequence, they showed the subadditivity condition through a new
idea based on rearrangement inequalities. In [15], a description of the profile of
solutions for (1.3) was given by using the framework of homoclinic bifurcation
theory. In [3], the existence of periodic pulses of (1.3) as well as the stability and
instability of such solutions were studied. See also [5] where the author obtained
positive solutions (Φ,Ψ) of (1.3) satisfying the additional condition ‖Φ‖22 = a
and ‖Ψ‖22 = b for any a > 0 and b > 0.

In the present paper, we study a different variational problem than those
considered in [2, 14] and establish the existence of travelling pulse solutions to
(1.3) for all α0 > 0 and β0 > 0. Our method exhibits a new one-parameter family
of travelling solitary-wave solutions than those obtained in [2, 14]. The key tool
in our analysis is the concentration compactness lemma of [11]. To rule out the
dichotomy case while applying the concentration compactness lemma, we use an
argument developed in [10]. Similar techniques have been used previously in [7]
to prove the existence of travelling-wave solutions to Boussinesq systems and in
[4] to study solitary waves for an equation of short and long dispersive waves
arising in two-layer fluids.

We now state our main results. Our existence result is proved by using
a variational approach. Precisely, let the functional I : H1(R) ×H1(R) → R be
defined by

(1.4) I(f, g) =

∫

R

(
(f ′)2 + (g′)2 + α0f

2 + β0g
2
)
dx,

where H1(R) denotes the L2−based Sobolev space of first order. For any λ > 0,
we consider the minimization problem

(1.5) Mλ = inf

{
I(f, g) : (f, g) ∈ H1(R)×H1(R),

∫

R

f2g dx = λ

}
.

The following is our existence result.
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Theorem 1.1. For any λ > 0, define

(1.6) Sλ =

{
(f, g) ∈ H1(R)×H1(R) : I(f, g) =Mλ,

∫

R

f2g dx = λ

}
.

Then the following statements hold.

(i) The infimum Mλ defined in (1.5) satisfies 0 < Mλ <∞.

(ii) For every sequence {(fn, gn)} in H1(R)×H1(R) such that

(1.7) lim
n→∞

∫

R

f2ngn = λ and lim
n→∞

I(fn, gn) =Mλ,

there exists a sequence of real numbers {yk} such that {(fnk
(·+ yk), gnk

(·+ yk)}
converges strongly in H1(R)×H1(R) to some (φ,ψ) in Sλ. In particular, the set

Sλ is non-empty.

(iii) Each function (φ,ψ) in Sλ, after multiplying by a constant, is a solution

of (1.3), and hence, when substituted into (1.2), gives a one-parameter family of

travelling-wave solutions to the system (1.1).

(iv) If (φ,ψ) ∈ Sλ, then φ,ψ ∈ H∞(R) and φ,ψ decay exponentially at infinity.

We now provide some notations that will be used throughout the paper.

Notation. For 1 ≤ p ≤ ∞, we denote by Lp = Lp(R) the space of all
measurable functions f on R for which the norm |f |p is finite, where

|f |p =
(∫ ∞

−∞
|f(x)|p dx

)1/p

for 1 ≤ p <∞

and |f |∞ is the essential supremum of |f | on R. For s ≥ 0, we denote by Hs
C(R)

the Sobolev space of all complex-valued functions f in L2 for which the norm

‖f‖s =
(∫ ∞

−∞

(
1 + |ξ|2

)s ∣∣∣f̂(ξ)
∣∣∣
2
dξ

)1/2

<∞.

We will always view Hs
C(R) as a vector space over the reals, with inner product

given by

〈f1, f2〉 = Re

∫ ∞

−∞

(
1 + |ξ|2

)s
f̂1(ξ)f̂2(ξ) dξ.

The space of all real-valued functions f in Hs
C(R) will be denoted by Hs(R). In

particular, we use ‖f‖ to denote the L2 or H0(R) norm of a function f.We define
the space X to be H1(R) ×H1(R) provided with the product norm. The letter
C will frequently be used to denote various constants whose actual value is not
important for our purposes.
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2. Proof of the existence result. In this section we provide the
proof of our existence result. Our strategy here is to employ the concentration
compactness method to solve the variational problem (1.5). In this approach one
obtains travelling solitary waves as global minimizers of the problem. When the
method works, it shows not only that global minimizers exist, but also that every
minimizing sequence is relatively compact up to translation. In the last couple
of decades, this method was applied by many authors to prove the existence of
solutions for a variety of dispersive evolution equations (see, for example [1, 2, 5,
7, 9, 10, 13]).

As usual in this method, we take any minimizing sequence {(fn, gn)}
for Mλ and consider a sequence of nondecreasing functions Pn : [0,∞) → [0, λ]
defined by

Pn(ω) = sup
y∈R

∫ y+ω

y−ω
ρn(x) dx.

where ρn(x) = (f ′n(x))
2 + (g′n(x))

2 + f2n(x) + g2n(x). As Pn(ω) is a uniformly
bounded sequence of nondecreasing functions in ω, one can show that it has a
subsequence, which we will again denote by Pn, that converges pointwise to a
nondecreasing limit function P (ω) : [0,∞) → [0, λ]. Define

(2.1) γ = lim
ω→∞

P (ω).

Then γ satisfies 0 ≤ γ ≤ λ. From Concentration-Compactness Lemma of P. L. Li-
ons, there are three possibilities for the value of γ :

(a) Case 1 : (Vanishing) γ = 0. Since P (ω) is non-negative and nondecreasing,
this case is equivalent to saying

P (ω) = lim
n→∞

Pn(ω) = lim
n→∞

sup
y∈R

∫ y+ω

y−ω
ρn(x) dx = 0,

for all ω <∞, or

(b) Case 2 : (Dichotomy) γ ∈ (0, λ), or

(c) Case 3 : (Compactness) γ = λ, that is, there exists a sequence {yn} of real
numbers such that ρn(. + yn) is tight, namely, for all ε > 0, there exists
ω <∞ such that for all n ∈ N,

∫ yn+ω

yn−ω
ρn(x)dx ≥ λ− ε.
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The goal here is to show that the only possibility is the case of compactness, so
that the minimizing sequence {(fn, gn)} for Mλ has a subsequence which, up to
translations in the underlying spatial domain, converges strongly in X. We first
rule out the vanishing case.

I. The vanishing case does not occur. We begin with some prelimi-
nary lemmas.

Lemma 2.1. If g ∈ C1(R), i ∈ Z and Ui = [i− 1/2, i + 1/2], then

sup
r∈Ui

|g(r)| ≤
∫

Ui

[g′(s) + g(s)] ds.

P r o o f. Given any r ∈ Ui and s ∈ Ui, we have

g(r) = g(s) +

∫ r

s
g′(x) dx.

This implies, for all i ∈ Z, that

|g(r)| ≤ |g(s)| +
∫

Ui

|g′(x)| dx = |g(s)| +
∫

Ui

|g′(s)| ds.

Integrating both sides with respect to s ∈ Ui yields

|g(r)| |Ui| ≤
∫

Ui

|g(s)| +
∫

Ui

|g′(s)| ds|Ui|.

Now, using |Ui| = i+ 1/2− (i− 1/2) = 1 and taking supremum over r ∈ Ui, the
result follows. ✷

Lemma 2.2. There exists a γ0 ∈ (0, γ] such that

lim
n→∞

Pn(1/2) = lim
n→∞

sup
y∈R

∫ y+1/2

y−1/2
ρn(x) dx ≥ γ0.

P r o o f. Suppose that we have

lim
n→∞

Pn(1/2) = lim
n→∞

sup
y∈R

∫ y+1/2

y−1/2
ρn(x) dx = 0.

Letting Ui = [i− 1/2, i+1/2], i ∈ Z and using Lemma 2.1 with g replaced by g2n,
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we have

( sup
x∈Ui

|gn(x)|)2 ≤
∫

Ui

[2|gn(s)||g′n(s)|+ (gn(s))
2] ds

≤
∫

Ui

[
2

(
1

2

(
|gn(s)|2 + |g′n(s)|2

))
+ (gn(s))

2

]
ds

≤
∫ i+1/2

i−1/2
[(g′n(s))

2 + 2(gn(s))
2] ds

≤ C sup
y∈R

∫ y+1/2

y−1/2
ρn(x) dx.

Hence, we obtain

0 < λ =

∣∣∣∣
∫

R

f2n(x)gn(x) dx

∣∣∣∣ =
∣∣∣∣∣

∞∑

i=−∞

∫

Ui

f2n(x)gn(x) dx

∣∣∣∣∣

≤
∞∑

i=−∞

sup
x∈Ui

|gn|
∫

Ui

f2n(x) dx

≤
(
C sup

y∈R

∫ y+1/2

y−1/2
ρn(x) dx

)1/2 ∫

R

f2n(x) dx

≤ ‖fn‖2
(
C sup

y∈R

∫ y+1/2

y−1/2
ρn(x) dx

)1/2

→ 0,

as n→ ∞, which is a contradiction. Finally,

γ = lim
ω→∞

P (ω) ≥ P (1/2) = lim
n→∞

Pn(1/2) ≥ γ0 > 0. ✷

We now rule out the case of vanishing.

II. The dichotomy case does not occur. As in the case of vanishing,
we first prove some technical lemmas.

Proposition 2.3. For any σ ∈ R, 0 < Mσ < ∞. Moreover, for any

σ1, σ2 > 0,Mσ1
=

(
σ1
σ2

)2/3

Mσ2
.

P r o o f. Clearly, 0 ≤ I(f, g) < ∞ for (f, g) ∈ X. Now, I(f, g) > 0 if
either f 6= 0 or g 6= 0. So, the proposition will hold true after we have shown
that given any minimizing sequence (fn, gn) for Mσ, the sequences {fn} and {gn}
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cannot vanish. That is, there exist constants γg, γf > 0 such that

lim
n→∞

‖fn‖ ≥ γf and lim
n→∞

‖gn‖ ≥ γg.

In order to prove this statment, we suppose lim
n→∞

‖fn‖ = 0, let Ui = [i− 1/2, i +

1/2], i ∈ Z, and use the same argument as in Lemma 2.2 to get a contradiction.
In the proof of Lemma 2.2, we obtained

0 < λ ≤ ‖fn‖2
(
C sup

y∈R

∫ y+1/2

y−1/2
ρn(x) dx

)1/2

→ 0,

as n → ∞, which is a contradiction. Next, we suppose lim
n→∞

‖gn‖ = 0 and argue

similarly. Using the Cauchy-Schwarz inequality, we obtain

0 < λ =

∣∣∣∣
∫

R

f2n(x)gn(x) dx

∣∣∣∣ =
∣∣∣∣∣

∞∑

i=−∞

∫

Ui

f2n(x)gn(x) dx

∣∣∣∣∣

≤
∣∣∣∣∣

∞∑

i=−∞

(∫

Ui

(fn(x))
4 dx

)1/2(∫

Ui

(gn(x))
2 dx

)1/2
∣∣∣∣∣

≤
∞∑

i=−∞

(
sup
x∈Ui

|fn(x)|
)2(∫

Ui

(gn(x))
2 dx

)1/2

≤
(
C sup

y∈R

∫ y+1/2

y−1/2
ρn(x) dx

)(∫

R

(gn(x))
2 dx

)1/2

≤ ‖gn‖
(
C sup

y∈R

∫ y+1/2

y−1/2
ρn(x) dx

)
→ 0,

as n → ∞, which is a contradiction. Thus, we have Mσ > 0 for any σ ∈ R.

Finally, let σ1, σ2 > 0 and set ξ =

(
σ1
σ2

)1/3

. Clearly, by homegeneity of the

functionals, Mσ2
=

1

ξ2
Mξ3σ2

, which completes the proof. ✷

In order to state our next lemma, we will define some new functions. For
any ǫ > 0, we will first choose a large ω ∈ R and then a large n ∈ N, and construct
the functions η(i)n,ω, u

(i)
n,ω, i = 1, 2 as follows:

Given any ǫ > 0, we first find ω = ω(ǫ) ∈ R large enough such that
1

ω
≤ ǫ

and

γ − ǫ/2 < P (ω) ≤ P (2ω) ≤ γ.
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Next, we choose N ∈ N large enough such that, for all n ≥ N , we have

γ − (2ǫ/3) < Pn(ω) ≤ Pn(2ω) ≤ γ + (2ǫ/3).

For each n ≥ N , we can find yn such that
∫ yn+ω

yn−ω
ρn(x) dx > γ − ǫ and

∫ yn+ω

yn−ω
ρn(x) dx < γ + ǫ.

Let φ ∈ C∞
0 [−2, 2] and ψ ∈ C∞(R) be such that φ ≡ 1 on [−1, 1] and φ2+ψ2 = 1

on R. Set

φω(x) = φ
(x
ω

)
, ψω(x) = ψ

(x
ω

)
,

and

φ̃n,ω(x) = φω(x− yn), ψ̃n,ω(x) = ψω(x− yn).

Finally, we define

η(1)n,ω(x) = φ̃n,ω(x)gn(x), η(2)n,ω(x) = ψ̃n,ω(x)gn(x),

u(1)n,ω(x) = φ̃n,ω(x)fn(x), u(2)n,ω(x) = ψ̃n,ω(x)fn(x),

and

ρ(i)n (x) =
(
u(i)

′

n,ω(x)
)2

+
(
η(i)

′

n,ω(x)
)2

+
(
u(i)n,ω(x)

)2
+
(
η(i)n,ω(x)

)2
, i = 1, 2.

Lemma 2.4. For every ǫ > 0, there exist a large Ω ∈ R and a large

N ∈ N such that, for all n ≥ N,ω ≥ Ω, we have

(i) I(fn, gn) = I
(
u(1)n,ω, η

(1)
n,ω

)
+ I

(
u(2)n,ω, η

(2)
n,ω

)
+O(ǫ),

(ii)

∫

R

f2ngn =

∫

R

(
u(1)n,ω

)2
η(1)n,ω +

∫

R

(
u(2)n,ω

)2
η(2)n,ω +O(ǫ).

P r o o f. Spelling out and using the Cauchy-Schwarz inequality, we get

I
(
u(1)n,ω, η

(1)
n,ω

)

=

∫

R

[(
u(1)

′

n,ω

)2
+
(
η(1)

′

n,ω

)2
+ α0

(
u(1)n,ω

)2
+ β0

(
η(1)n,ω

)2]

=

∫

R

[
φ̃2n,ω(g

′
n)

2 + (φ̃′n,ω)
2g2n + 2φ̃n,ωg

′
nφ̃

′
n,ωgn + φ̃2n,ω(f

′
n)

2 + (φ̃′n,ω)
2f2n

+ 2φ̃n,ωf
′
nφ̃

′
n,ωfn + α0φ̃

2
n,ωg

2
n + β0φ̃

2
n,ωf

2
n

]

≤ ‖φ̃n,ωg′n‖2 + ‖φ̃′n,ωgn‖2 + 2‖φ̃n,ωg′n‖‖φ̃′n,ωgn‖+ ‖φ̃n,ωf ′n‖2

+ ‖φ̃′n,ωfn‖2 + 2‖φ̃n,ωf ′n‖‖φ̃′n,ωfn‖+ α0‖φ̃n,ωgn‖2 + β0‖φ̃n,ωfn‖2.
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Similarly, spelling out I
(
u(2)n,ω, η

(2)
n,ω

)
and using φ̃2n,ω + ψ̃2

n,ω ≡ 1, we get

I
(
u(1)n,ω, η

(1)
n,ω

)
+ I

(
u(2)n,ω, η

(2)
n,ω

)

≤ I(fn, gn) + ‖φ̃′n,ωgn‖2 + 2‖φ̃n,ωg′n‖‖φ̃′n,ωgn‖+ ‖φ̃′n,ωfn‖2

+ 2‖φ̃n,ωf ′n‖‖φ̃′n,ωfn‖+ ‖ψ̃′
n,ωgn‖2 + 2‖ψ̃n,ωg

′
n‖‖ψ̃′

n,ωgn‖
+ ‖ψ̃′

n,ωfn‖2 + 2‖ψ̃n,ωf
′
n‖‖ψ̃′

n,ωfn‖.

Next, using

|φ̃′n,ω|∞, |ψ̃′
n,ω|∞ ∼ O(1/ω) = O(ǫ),

and, since (fn, gn) ∈ X, that

‖fn‖, ‖f ′n‖, ‖gn‖, ‖g′n‖ ≤ C,

for some C independent of n, part (i) follows. For part (ii), we compute
∫

R

(
u(1)n,ω

)2
η(1)n,ω +

∫

R

(
u(2)n,ω

)2
η(2)n,ω =

∫

R

[
f2ngn +

(
φ̃3n,ω + ψ̃3

n,ω − 1
)
f2ngn

]
.

Upon using φ̃n,ω ≡ 1, ψ̃n,ω ≡ 0 for |x − yn| ≤ ω and φ̃n,ω ≡ 0, ψ̃n,ω ≡ 1 for
|x− yn| ≥ 2ω, along with the fact that |φ̃3n,ω + ψ̃3

n,ω − 1| ≤ 2, we get

∣∣∣∣
∫

R

(
φ̃3n,ω + ψ̃3

n,ω − 1
)
f2ngn

∣∣∣∣ =
∣∣∣∣∣

∫

ω≤|x−yn|≤2ω

(
φ̃3n,ω + ψ̃3

n,ω − 1
)
f2ngn

∣∣∣∣∣

≤ 2|gn|∞
(∫

ω≤|x−yn|≤2ω
ρn

)
≤ Cǫ,

for some C independent of ω and n, and part (ii) is established. ✷

Proposition 2.5. The case γ ∈ (0, λ) cannot occur.

P r o o f. Suppose the case γ ∈ (0, λ) does occur. Consider a minimizing
sequence (fn, gn) forMλ. Then, by Lemma 2.4, given ǫ > 0, there exist sequences(
u(i)n,ω, η

(i)
n,ω

)
, i = 1, 2 such that

I(fn, gn) = I
(
u(1)n,ω, η

(1)
n,ω

)
+ I

(
u(2)n,ω, η

(2)
n,ω

)
+O(ǫ).

∫

R

f2ngn =

∫

R

(
u(1)n,ω

)2
η(1)n,ω +

∫

R

(
u(2)n,ω

)2
η(2)n,ω +O(ǫ).
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Then, since {(fn, gn)} is bounded uniformly in X, so are
(
u(i)n,ω, η

(i)
n,ω

)
, i = 1, 2.

Hence, by passing to subsequences but retaining the same notation, the following
limits are well-defined:

σ1(ǫ, ω) = lim
n→∞

∫

R

(
u(1)n,ω

)2
η(1)n,ω and σ2(ǫ, ω) = lim

n→∞

∫

R

(
u(2)n,ω

)2
η(2)n,ω.

Next, choose a sequence ǫj → 0, and then a sequence {ωj} depending only on
{ǫj} so that ωj → ∞ , and finally, define

lim
j→∞

σ1(ǫj , ωj) = σ1 and lim
j→∞

σ2(ǫj , ωj) = σ2.

Since, lim
n→∞

∫

R

f2ngn = λ, we must have σ1 + σ2 = λ. Without loss of generality,

suppose σ2 ≥ σ1 as it is only a matter of interchanging σ1 and σ2. The following
three cases arise:

Case 1: σ1, σ2 ∈ (0, λ).
Taking the limit n→ ∞, and using Proposition 2.3,

I(fn, gn) = I
(
u(1)n,ω, η

(1)
n,ω

)
+ I

(
u(2)n,ω, η

(2)
n,ω

)
+O(ǫj)

yields

Mλ =Mσ1(ǫj ,ωj) +Mσ2(ǫj ,ωj) +O(ǫj)

=

[(
σ1(ǫj , ωj)

λ

)2/3

+

(
σ2(ǫj , ωj)

λ

)2/3
]
Mλ +O(ǫj).

Next, taking the limit j → ∞, we have

Mλ =

[(σ1
λ

)2/3
+
(σ2
λ

)2/3]
Mλ > Mλ,

which is a contradiction.

Case 2: σ1 = 0 and σ2 = λ.
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I
(
u(1)n,ω, η

(1)
n,ω

)

=

∫

R

[(
u(1)

′

n,ω

)2
+
(
η(1)

′

n,ω

)2
+ α0

(
u(1)n,ω

)2
+ β0

(
η(1)n,ω

)2]

≥ min{1, α0, β0}
∫

R

[(
u(1)

′

n,ω

)2
+
(
η(1)

′

n,ω

)2
+
(
u(1)n,ω

)2
+
(
η(1)n,ω

)2]

= C

∫

|x−yn|≤2ω

[
(f ′n(x))

2 + (g′n(x))
2 + f2n(x) + g2n(x)

]
dx+O(ǫj)

≥ Cγ +O(ǫj).

Taking the limit n→ ∞,

I(fn, gn) = I
(
u(1)n,ω, η

(1)
n,ω

)
+ I

(
u(2)n,ω, η

(2)
n,ω

)
+O(ǫj)

≥ Cγ + I
(
u(2)n,ω, η

(2)
n,ω

)
+O(ǫj)

yields

Mλ ≥ Cγ +Mσ2(ǫj ,ωj) +O(ǫj).

Upon taking the limit j → ∞,

Mλ ≥ Cγ +Mλ > Mλ,

which is a contradiction.

Case 3: σ1 < 0 and σ2 = λ− σ1 > λ.
Taking the limit n→ ∞, and using Proposition 2.3,

I(fn, gn) = I
(
u(1)n,ω, η

(1)
n,ω

)
+ I

(
u(2)n,ω, η

(2)
n,ω

)
+O(ǫj)

≥ I
(
u(2)n,ω, η

(2)
n,ω

)
+O(ǫj)

yields

Mλ ≥Mσ2(ǫj ,ωj) +O(ǫj)

=

(
σ2(ǫj , ωj)

λ

)2/3

Mλ +O(ǫj).

Finally, taking the limit j → ∞,

Mλ ≥
(σ2
λ

)2/3
Mλ > Mλ,

which is a contradiction. ✷
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III. Proof of Theorem 1.1. As we ruled out both vanishing and di-
chotomy, Lions’ concentration compactness lemma guarantees that the sequence
{ρn} is tight up to translation. Thus, there exists a sequence of real numbers

{yn} such that given any ε > 0, we can find ω = ω(ε) ≥ 1

ε
such that for all n ∈ N,

∫

|x−yn|≤ω
ρn(x)dx ≥ γ − ε,

∫

|x−yn|≥ω
ρn(x) dx ≤ ε,

and

(2.2)

∣∣∣∣∣

∫

|x−yn|≥ω
f2n(x)gn(x) dx

∣∣∣∣∣ ≤ C‖(fn, gn)‖X
∫

|x−yn|≥ω
ρn(x)dx

= O(ε).

Denote f̃n = fn(·+ yn) and g̃n = gn(·+ yn). Then, by (2.2),

∣∣∣∣
∫ ω

−ω
f̃n

2
g̃n − λ

∣∣∣∣ =
∣∣∣∣∣

∫

|x−yn|≥ω
f2n(x)gn(x) dx−

∫

R

f2n(x)gn(x) dx

∣∣∣∣∣

=

∣∣∣∣∣

∫

|x−yn|≤ω
f2n(x)gn(x) dx

∣∣∣∣∣ = O(ε).

Thus,

(2.3) λ−O(ε) ≤
∫ ω

−ω
f̃n

2
g̃n ≤ λ+O(ε).

Since {(f̃n, g̃n)} is uniformly bounded in X, by Banach-Alaoglu’s theorem, there
exists a subsequence, again labeled {(f̃n, g̃n)} for notational convenience, that
converges weakly in X, say, to (φ,ψ). Using the Cauchy-Schwarz inequality and
the compact embedding of H1([−ω, ω]) in L2([−ω, ω]), we have

∫ ω

−ω
|f̃n

2
g̃n − φ2ψ| =

∫ ω

−ω
|(f̃n + φ)g̃n(f̃n − φ) + φ2(g̃n − ψ)|

≤ |f̃n + φ|∞ · ‖g̃n‖ · |f̃n − φ|L2(−ω,ω) + ‖φ‖2 · |g̃n − ψ|L2(−ω,ω)

≤ C
(
|f̃n − φ|L2(−ω,ω) + |g̃n − ψ|L2(−ω,ω)

)
→ 0,

as n → ∞. Hence, there exists a large enough N such that for all n ≥ N , (2.3)
yields

λ−O(ε) ≤
∫ ω

−ω
φ2ψ ≤ λ+O(ε).
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Now, choosing εj =
1

j
, j ∈ N and determining ωj = ωj(εj) ≥

1

εj
= j and letting

j → ∞, we obtain
∫

R

φ2ψ = λ.

Moreover, since I is weak lower semi-continuous and invariant under translation,

Mλ = lim
n→∞

I(f̃n, g̃n) ≥ I(φ,ψ) ≥Mλ.

This means (φ,ψ) ∈ Sλ. Since (φ,ψ) is a solution of the variational problem

of minimizing I(f, g) subject to the constraint

∫

R

f2g = λ, it must satisfy the

corresponding Euler-Lagrange equation. That is, there exists some Lagrange
multiplier κ ∈ R such that

(2.4)





− φ′′ + α0φ = κφψ,

− ψ′′ + β0ψ =
κ

2
φ2.

Multiplying the first and second equations by φ and ψ respectively and integrating
over R yields





∫

R

(φ′)2 + α0φ
2 = κ

∫

R

φ2ψ,

∫

R

(ψ′)2 + β0ψ
2 =

κ

2

∫

R

φ2ψ.

Adding the two equations together and using the fact that (φ,ψ) ∈ Sλ, we get

κ =
2Mλ

3λ
> 0.

Clearly, (κφ, κψ) solves the system (1.3), or, equivalently,

W (x, t) = κeiσtφ(x), V (x, t) = κe2iσtψ(x)

are solitary wave solutions to the system (1.1). Finally, we establish the smooth-
ness of φ and ψ using a standard bootstrap argument. The system (1.3) can be
rewritten as

(2.5)




φ = Kα0

⋆ φψ

ψ =
1

2
Kβ0

⋆ φ2,

where given any s > 0, the kernel Ks is defined via its Fourier transform as

q(ζ) = K̂s(ζ) =
1

s+ ζ2
.
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Since Hs(Rn) is an algebra if s > n/2, we have φψ, φ2 ∈ H1(R). Since the
convolution operation takes Hs to Hs+2 for any s ≥ 0, (2.5) implies that φ,ψ ∈
H3. Again, using the fact that φψ, φ2 ∈ H3, we obtain φ,ψ ∈ H5. Continuation
of this induction argument leads to φ,ψ ∈ H∞. Exponetial decay of φ and ψ
at infinity follows from another standard technique. Using Theorem 8.1.1 in [6],
there exits a δ > 0 such that eδ|·|φ, eδ|·|ψ ∈ L∞. Thus,

|φ(x)| ≤
∣∣∣eδ|·|φ

∣∣∣
∞
e−δ|x| → 0, |ψ(x)| ≤

∣∣∣eδ|·|ψ
∣∣∣
∞
e−δ|x| → 0,

as |x| → ∞. ✷

In the course of the proof of Theorem 1.1 above, we have also managed
to establish the following result:

Proposition 2.6. If λ > 0, the Lagrange multiplier κ ∈ R associated to

the variational problem of minimizing I(f, g) subject to the constraint

∫

R

f2g = λ

is positive.
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