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Abstract. We present semi-local convergence results for Newton’s method
to solve generalized equations. Using a combination of Lipschitz and center-
Lipschitz conditions on the operators involved instead of just Lipschitz condi-
tions we show that our Newton–Kantorovich criteria are weaker than earlier
sufficient conditions for the convergence of Newton’s method. In particular,
we provide finer error bounds and a better information on the location of
the solution. Our results apply to solve generalized equations involving sin-
gle as well as multivalued operators, which include variational inequalities,
nonlinear complementarity problems and non smooth convex minimization
problems. Numerical examples validate the theoretical results by showing
that equations that could not be solved before can be solved using our new
approach.

2010 Mathematics Subject Classification: 65B05, 65G99, 65N35, 47H17, 49M15.
Key words: Hilbert space, generalized equation, Newton’s method, Lipschitz conditions,

Newton–Kantorovich hypothesis, local-semilocal convergence theorems, coercivity, multivalued
maximal monotone operator, radius of convergence.



66 Ioannis K. Argyros, Santhosh George

1. Introduction. In this study we are concerned with the problem of
approximating a locally unique solution x∗ of the generalized equation

(1.1) F (x) +G(x) ∋ 0,

where, F : D0 ⊆ D ⊆ H → H is a continuous operator which is Fréchet-
differentiable at each point of the interior D0 of a closed convex subset D of

a Hilbert space H with values in H, and G is a multivalued maximal monotone
operator from H into H (to be precised later) [3, 11,14,15].

The generalized Newton iteration

(1.2) F ′(xn)(xn+1) +G(xn+1) ∋ F ′(xn)(xn)− F (xn) (n ≥ 0)

has already been used to generate a sequence approximating x∗. In particular

Uko [14,15] has provided local and semi-local convergence results for method (1.2)
as well as a procedure for the computation of the inner-iterative procedures for

the computation of the generalized iterates xn (n ≥ 0). This way he extended the
classical Newton–Kantorovich results to hold for non smooth generalized equa-

tions. His results extend earlier works on non smooth equations [4–13]. As in
the classical cases Uko used Lipschitz differentiability conditions on F ′ and the

maximality properties of G.

Here using a combination of center-Lipschitz and Lipschitz conditions
we provide local and semilocal convergence results for method (1.2) with the

following advantages over earlier works and in particular [15]:

(a) our results hold whenever the corresponding ones in [15] hold but not vice
versa;

(b) our Newton–Kantorovich hypotheses sufficient for the convergence of (1.2)
is weaker than the corresponding one in [15]; and

(c) our error bounds on the distances ‖xn+1 −xn‖, ‖xn −x∗‖ are finer and the
information on the location of the solution x∗ more precise.

Problems that are special cases of equation (1.1) have been in the litera-

ture for a long time. For example if H = Rj and G(x1, . . . , xj) = G1(x1)× · · · ×
Gj(xj), where Gi, i = 1, 2, . . . , j then (1.1) is called separable [11]. Moreover set

F (x1, x2, . . . , xj) =
(

F1(x1, . . . , xj), . . . , Fj(x1, . . . , xj)
)

,
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in which case (1.1) reduces to

Fi(x1, . . . , xj) +Gi(xi) ∋ 0, i = 1, . . . , j.

Moreover as in [15] let

Gi = {0} × (−∞, 0] ∪ (0,∞) × {0} (i ≥ 0)

to obtain the complementarity problem

Fi(x1, . . . , xj) ≥ 0, xi ≥ 0, i = 1, . . . , j,

j
∑

i=1

xiFi(x1, . . . , xj) = 0.

These type of special cases of (1.1) have been studied extensively [9,12,14]. Fur-
thermore if φ : H → (−∞,∞) is a proper lower semicontinuous convex operator

and

G(x) = ∂ϕ(x) = {y ∈ H : ϕ(v) − ϕ(w) ≤ 〈y, v − w〉, for all w ∈ H}

becomes the variational inequality

F (x) + ∂ϕ(x) ∋ 0.

Other examples of special cases of (1.1) can be found in [1–3, 12, 14–18] and the
references there.

2. Semi-local analysis. Throughout this section, we suppose

‖F ′(x)− F ′(y)‖ ≤ q‖x− y‖(2.1)

‖F ′(x)− F ′(x0)‖ ≤ q0‖x− x0‖(2.2)

for all x, y ∈ D0 and some fixed x0 ∈ D0. G is a nonempty subset of H ×H so

that there exists a ≥ 0 such that

(2.3) [x, y] ∈ G and [v,w] ∈ G ⇒ 〈w − y, v − x〉 ≥ a‖x− v‖2,

and which is not contained in any larger subset of H ×H.

We will use Lemma 2.2. from [15, p. 256]:
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Lemma 2.1. Let G be a maximal monotone operator satisfying (2.3),
and let M be a bounded linear operator from H into H. If there exists c ∈ R

such that c > −a, and

(2.4) 〈M(x), x〉 ≥ c‖x‖2 for all x ∈ H,

then there exists a unique z ∈ H for any b ∈ H such that

(2.5) M(z) +G(z) ∋ b.

We need the following auxiliary result on majorizing sequences:

Lemma 2.2 ( [2]). Let L > 0, L0 > 0 and n ≥ 0 be parameters. Define

parameter γ by

(2.6) γ =
2L

L+
√
L2 + 8L0L

.

Suppose that

(2.7) h1 = L1η ≤ 1,

where

(2.8) L1 =
1

4
(4L0 +

√

L0L+ 8L2
0 +

√

L0L).

Then, scalar sequence {tn} defined for each n = 0, 1, 2, . . . by

(2.9) t0 = 0, t1 = η, t2 = η +
L0η

2

2(1− L0η)
, tn+2 = tn+1 +

L(tn+1 − tn)
2

2(1− L0tn+1)

is well defined, non-decreasing, bounded above by

(2.10) t∗∗ = η +
Lη2

2(1− γ)(1 − L0η)

and converges quadratically to its unique least upper bound t∗, which satisfies

(2.11) η ≤ t∗ ≤ t∗∗.

Next, we present the main semilocal convergence theorem for method
(1.2) using Lipschitz (2.1) and center-Lipschitz conditions (2.2).
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Theorem 2.3. Let F and G satisfy (2.1), (2.2), (2.3) and (2.4), respec-
tively, for M = F ′(x0). Let x0 ∈ D0. Suppose: there exists y0 ∈ H such that

G(x0) ∋ y0 and ‖F (x0) + y0‖ ≤ b0 for b0 > 0. Moreover suppose (2.7) holds for

(2.12) L0 =
q0

c0 + a
, c0 = c, L =

q

c0 + a
,

and

(2.13) B(x0, t
∗) ⊆ D.

Then generalized Newton’s iteration {xn} (n ≥ 0) generated by (1.2) is well

defined, remains in B(x0, t
∗) for all n ≥ 0, and converges to a unique solution x∗

of equation F (x) = 0 in B(x0, t
∗). Moreover the following error bounds hold for

all n ≥ 0

(2.14) ‖xn+1 − xn‖ ≤ tn+1 − tn

and

(2.15) ‖xn − x∗‖ ≤ t∗ − tn,

where {tn} is given in (2.9).

P r o o f. We use induction on k = 0, 1, 2, . . . to show:

xk ∈ B(x0, t
∗),(2.16)

‖xk+1 − xk‖ ≤ tk+1 − tk,(2.17)

B(xk+1, t
∗ − tk+1) ⊆ B(xk, t

∗ − tk),(2.18)

∃yk ∈ H such that yk ∈ G(xk),(2.19)

∃bk > 0 such that ‖F (xk) + yk‖ ≤ bk,(2.20)

∃ck > −a such that 〈F ′(xk)(x), x〉 ≥ ck‖x‖2 for all x ∈ H.(2.21)

The induction is true if k = 0 for (2.16), (2.19)–(2.21) by the hypotheses of the
theorem. It then follows from (2.21) and Lemma 2.1 that there exists a unique

x1 ∈ H satisfying (1.2). By (2.3), (2.4) and (1.2) we obtain in turn

a‖x1 − x0‖2 + 〈y0 + F (x0)− F ′(x0)(x0 − x1), x1 − x0〉 ≤ 0,
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or

(2.22) a‖x1 − x0‖2 + 〈F ′(x0)(x1 − x0), x1 − x0〉 ≤ 〈−F (x0)− y0, x1 − x0〉

or

(2.23) ‖x1 − x0‖ ≤ a0 =
b0

c0 + a
= t1 − t0.

For every z ∈ B(x1, t
∗ − t1),

(2.24) ‖z − x0‖ ≤ ‖z − x1‖+ ‖x1 − x0‖ ≤ t∗ − t1 + t1 = t∗ − t0,

implies z ∈ B(x0, t
∗− t0). It follows from (2.23) and (2.24) that (2.17) and (2.18)

hold for k = 0. Given they hold for n = 0, . . . , k and again using (2.21) and
Lemma 2.1 we conclude that there exists a unique xk+1 ∈ H satisfying (1.2),

‖xk+1 − x0‖ ≤
k+1
∑

i=1

‖xi − xi−1‖ ≤
k+1
∑

i=1

(ti − ti−1)

= tk+1 − t0 = tk+1 ≤ t∗,(2.25)

‖xk + θ(xk+1 − xk)− x0‖ ≤ tk + θ(tk+1 − tk) < t∗ θ ∈ [0, 1].(2.26)

Hence (2.16) holds if k is replaced by k + 1. As in (2.22) we obtain in turn

a‖xk+1 − xk‖2 + 〈yk + F (xk)− F ′(xk)(xk − xk+1), xk+1 − xk〉 ≤ 0

or

(2.27) a‖xk+1−xk‖2+〈F ′(xk)(xk+1−xk), xk+1−xk〉 ≤ 〈−F ′(xk)−yk, xk+1−xk〉

or

(2.28) ‖xk+1 − xk‖ ≤ tk+1 − tk.

That is (2.17) and (2.18) hold for k replaced by k + 1.

By (2.2) and (2.25) we get

(2.29) ‖F ′(xk+1)− F ′(x0)‖ ≤ q0‖xk+1 − x0‖ ≤ q0tk+1.

Set

(2.30) ck+1 = c0 − q0tk.
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Then by hypothesis (2.7) we get

(2.31) ck+1 > −a.

Therefore

(2.32) 〈F ′(x0)(x)− F ′(xk+1)(x), x〉 ≤ ‖F ′(x0)− F ′(xk+1)‖ ‖x‖2 ≤ q0tk‖x‖2,

for all x ∈ H. Hence (2.21) holds for k replaced by k + 1.

Define

(2.33) yk+1 = −F (xk)− F ′(xk)(xk+1 − xk).

Then (2.19) holds by (2.5) and

‖F (xk+1) + yk+1‖ ≤ ‖F (xk+1)− F (xk)− F ′(xk)(xk+1 − xk)‖

=

∥

∥

∥

∥

∫ 1

0

[F ′(xk + θ(xk+1 − xk))− F ′(xk)](xk+1 − xk)dt

∥

∥

∥

∥

≤ q̄

2
‖xk+1 − xk‖2 = bk+1,(2.34)

where

(2.35) q̄ =

{

q0, k = 0
q, k = 1, 2, . . .

and ak =
bk

ck + a
(k ≥ 0). Thus for every z ∈ B(xk+1, t

∗ − tk+1), we have

(2.36) ‖z − xk‖ ≤ ‖z − xk+1‖+ ‖xk+1 − xk‖ ≤ t∗ − tk+1 + tk+1 − tk = t∗ − tk.

That is

(2.37) z ∈ B(xk, t
∗ − tk).

The induction for (2.16)–(2.21) is now completed.

Lemma 2.2 implies that {tn} (n ≥ 0) is a complete sequence. By (2.9)
and (2.28) it follows that it is a complete sequence too, and as such it converges

to some x∗ ∈ B(x0, t
∗) (since B(x0, t

∗) is a closed set). By letting m → ∞ in

(2.38) ‖xk+m − xk‖ ≤
k+m−1
∑

i=k

‖xi+1 − xi‖ ≤
k+m−1
∑

i=k

(ti+1 − ti) = tk+m − tk
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we obtain (2.15). Moreover, since lim
k→∞

xk+1 = x∗,

lim
k→∞

[F ′(xk)(xk − xk+1)− F (xk)] = −F (x∗),

and

G(xk+1) ∋ F ′(xk)(xk+1 − xk)− F (xk)

it follows that G(x∗) ∋ −F (x∗). Hence x∗ is a solution of equation F (x) = 0.

Finally, to show uniqueness in B(x0, t
∗), let us assume there exists a

solution y∗ ∈ B(x0, t
∗). Then, we obtain in turn

a‖xk+1 − y∗‖2 + 〈F ′(xk)(xk+1 − y∗), xk+1 − y∗〉

≤ 〈F (y∗)− F (xk)− F ′(xk)(y
∗ − xk), xk+1 − y∗〉

or (as in (2.27))

(2.39) ‖xk+1 − y∗‖ ≤ q

2(ck + a)
‖xk − y∗‖2 < ‖xk − y∗‖

(since
q

2(ck + a)
‖xk − y∗‖ < 1 by (2.7)). Hence we get x∗ = lim

k→∞

xk = y∗. ✷

Remark 2.4. Note that t∗ can be replaced by t∗∗ given in closed form

by (2.10) in condition (2.13).

Remark 2.5. In order for us to compare our Theorem 2.3 with earlier

ones, and in particular to Theorem 2.11 in [15] we define the scalar function p by

(2.40) p(s) =
L

2
s2 − s+ a0,

where L is given by (2.12). Uko’s Newton–Kantorovich hypothesis (see [15])

becomes

(2.41) h = 2La0 ≤ 1.

But

(2.42) q0 ≤ q, so L0 ≤ L1
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holds in general and
q

q0
can be arbitrarily large. Hence (2.41) always implies

(2.7) but not vice versa. If strict inequality holds in (2.42) then (2.7) may hold

but not (2.41). Moreover,

(2.43)
h1

h
−→ 0 as

L0

L
−→ 0.

Hence, the applicability of Newton’s method can be extended infinitely many

times over old approach.

In example that follows we show that
L

L0
may be arbitrarily large. More-

over define sequence {un} by

(2.44) un+1 = un +
L
2
s2n − un + a0

1− Lun
, s0 = 0 (n ≥ 0),

and

(2.45) u∗ = lim
n→∞

un.

Then it is known [3,10] that

u∗ =
1−

√
1− 2L0a0

L
,(2.46)

un+1 − un = − p(un)

p′(un)
=

L
2
(un − un−1)

2

1− Lun
(n ≥ 1),(2.47)

and

(2.48) u∗ − un+1 =
L
2
(u∗ − un)

2

1− Lun
≤ 1

L2n+1
h2

n+1

(n ≥ 0).

Uko used the error bounds (2.14) and (2.15) with sequence {un}, and point u∗

replacing {tn}, and point t∗ respectively. That is for all n ≥ 0:

(2.14)′ ‖xn+1 − xn‖ ≤ un+1 − un

and

(2.15)′ ‖xn − x∗‖ ≤ u∗ − un.

We show that our error bounds are finer and the location of the solution
x∗ more precise:
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Proposition 2.6. Under hypotheses of Theorem 2.3 (for L0 < L) and

(2.41) the following error bounds hold:

tn+1 < sn+1 (n ≥ 1),(2.49)

tn+1 − tn < un+1 − un (n ≥ 1),(2.50)

t∗ − tn ≤ u∗ − un (n ≥ 0),(2.51)

t∗ ≤ u∗,(2.52)

0 ≤ tn+1 − tn ≤ α2n−1

(un+1 − un) (n ≥ 1),

α =
1− Lη

1− L0η
∈ [0, 1)(2.53)

and

(2.54) 0 ≤ t∗ − tn ≤ α2n−1

(u∗ − un) (n ≥ 1).

Moreover we have: tn = un (n ≥ 0) if L = L0.

P r o o f. We use induction on the integer k to show (2.49) and (2.50)
first. For n = 0 in (2.9) we obtain

t2 − η =
Lη2

2(1 − L0η)
≤ Lη2

2(1− Lη)
= u2 − u1

and

t2 < u2.

Assume:

tk+1 < uk+1, tk+1 − tk < uk+1 − uk (k ≤ n+ 1).

Using (2.9), and (2.44) we get

tk+2 − tk+1 =
L
2
(tk+1 − tk)

2

1− L0tk+1

<
L
2
(uk+1 − uk)

2

1− Luk+1

= uk+2 − uk+1

and

tk+2 − tk+1 < uk+2 − uk+1.
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Let m ≥ 0, we can obtain

tk+m − tk < (tk+m − tk+m−1) + (tk+m−1 − tk+m−2) + · · ·+ (tk+1 − tk)

< (uk+m − uk+m−1) + (uk+m−1 − uk+m−2) + · · ·+ (uk+1 − uk)

< uk+m − uk.(2.55)

By letting m → ∞ in (2.55) we obtain (2.51). For n = 1 in (2.51) we get (2.52).

Finally, (2.53) and (2.54) follow easily from (2.9) and (2.44). Note also
that (2.53) holds as a strict inequality if n ≥ 2. ✷

3. Numerical examples. We complete this study with numerical ex-

amples when, G = 0 on D. In the first one we show that hypothesis (2.41) fails
whereas (2.7) holds. In the second example we compare estimates (2.14), (2.15)

and (2.14)′, (2.15)′, respectively.

Example 3.1. Let H = R, D = [
√
2 − 1,

√
2 + 1], x0 =

√
2 and define

function f on D by

(3.1) f(x) =
1

6
x3 −

(

23/2

6
+ .23

)

.

Using (2.1), (2.2), (2.3) and (2.4), we obtain

a = 0, c = 2, a0 = .23, L = 2.4142136(3.2)

L0 = 1.914213562, L = 3.9080, h = 2La0 = 1.1105383 > 1,(3.3)

and by (2.7)

(3.4) L1a0 = 0.8988 < 1.

That is, there is no guarantee that Newton’s method {xn} (n ≥ 0) starting at

x0 converges to a solution x∗ of equation F (x) = 0, since (2.41) is not satisfied.
However since (3.5) holds, Theorem 2.3 guarantees the convergence of Newton’s

method to x∗ = 1.614507018.

Example 3.2. Let H = R, x0 = 1.3, D = [x0 − 2η, x0 + 2η] and define
function f on D by

(3.5) f(x) =
1

3
(x3 − 1).
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As in Example 3.1, we obtain

a0 = .236094674, η = 0.2463784, L = 2.097265501

L0 = 1.817863519, L1 = 3.6810, h = 2Lη = .990306428 < 1

h1 = L1η = 0.9069188 < 1, (for δ = 1)

t∗ = .369677842 and u∗ = .429866445.

That is, we provide a better information on the location of the solution x∗ since

(3.6) U(x0, t
∗) ⊂ U(x0, u

∗).

Moreover using (2.14), (2.15) and (2.14)′ and (2.15)′ we can tabulate the following,

which shows the superiority of our results:

Comparison table

xn Estimates (2.14) Estimates (2.15) Estimates Estimates

(2.14)′ (2.15)′

x1 = 1.0639053254 0.0999320677420 0.13084952171864 .236094674 .193771771

x2 = 1.0037617275 0.0245022382979 0.00264927072600 .115780708 .0779910691

x3 = 1.0000140800 0.0016743296484 0.000023014227062 .053649732 .024342893

x4 = 1.0000000002 0.0000078919862 0.00000000176714 .020186667 .004156226

n = 5 0.00000000176714 0.0000000001753 .0000000000000039 .00016902

n = 6 0 0 .000000000000003 .000002259

Example 3.3. Let H = R, x0 = 0 and define function f on R by

f(x) = c0x+ c1 + c2 sin e
b3x,

where ci, i = 0, 1, 2, 3 are given parameters. It can easily be seen that for c3

large and c2 sufficiently small,
q0

q
may be arbitrarily small. That is (2.7) may be

satisfied but not (2.41).
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