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Abstract. It is known since 1982, that dimX = dimY whenever the func-
tion spaces Cp(X) and Cp(Y ) are linearly homeomorphic. This statement
was later extended to uniform homeomorphisms of the spaces Cp(X) and
Cp(Y ). We obtain, in the case of separable function spaces, a generalization
of the first result to another direction.

We introduce, for eachX , some subspace E(X) ⊂ CpCp(X), which is sig-
nificantly wider, than the space Lp(X) of all linear continuous functionals on
Cp(X). Our generalization includes homeomorphisms h : Cp(X) → Cp(Y ),
such that the image of Y under the dual mapping h∗ of h is contained in
E(X) and the image of X under (h−1)∗ is contained in E(Y ).

0. Introduction. The problem of coincidence of dimensions dim X

and dim Y under homeomorphism of function spaces Cp (X), Cp (Y ) does not

leave the research agenda in Cp-theory for rather long time. V. G. Pestov [14],

generalizing previous particular results (see [1, 13]), proved that for arbitrary
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Tykhonoff spaces X and Y we have dimX = dimY , if Cp (X) and Cp (Y ) are

linearly homeomorphic. Later in [6] S. P. Gul’ko extended this result to the case

of uniformly homeomorphic function spaces. However up till now the answer for

an arbitrary homeomorphism h : Cp (X) → Cp (Y ) is still unknown. For this case

R. Cauty [3] proved only that metrisable compacts X and Y must have some

finite powers Xk and Y m, which are both strongly infinite dimensional.

In this paper we propose a new approach to the description of the prop-

erties of homeomorphisms of function spaces Cp (X) and Cp (Y ). We formulate

these properties as some requirements to the dual mappings. We show that a se-

ries of properties of such homeomorphisms as being an isomorphism of topological

rings, linearity, uniformity may be described uniformly inside our approach.

Furthermore, we have found another such property P, which is more

general than linearity and different from uniformity. We have proved that if

the Tykhonoff spaces X and Y have countable i-weight, and a homeomorphism

h : Cp (X) → Cp (Y ) has the property P, then dimX = dimY. Therefore, for

spaces of countable i-weight, this result generalizes the theorem of Pestov, and it

is different from the theorem of Gul’ko.

Both in [14] and [6] the main results are established first for second count-

able spaces X and Y. For this aim the approach used is basing on finite-valued

mappings from X onto Y , which are generated by a linear or uniform homeo-

morphism between function spaces. Then the statements are extended over the

Tykhonoff spaces of an arbitrary weight by application of technics of the inverse

sequences of the second countable spaces. In this paper we basically follow this

pattern as well.

1. Notation, terminology and preliminaries. We use standard

topological notations and terms, which may be found, for example, in [4]. All

topological spaces under consideration are assumed Tykhonoff, and named below

simply “spaces”. Given a space X we denote by Cp (X) the set of all continuous

functions ϕ : X → R, endowed with pointwise convergence topology. In Cp-

theory we follow the terminology of [2] or [15]. Here we recall those symbols and

facts, which are most important later on. The space Cp (X) is a dense subspace

in the space R
X of all functions ϕ : X → R. If A ⊂ R, then AX denotes the set

of all functions ϕ : X → A. If A = {0}, we write 0X instead of {0}X to denote

the zero-function on X.

If A ⊂ R
X , then the diagonal of A is the mapping ∆A : X → R

A, defined

by the rule ∆A(x)(ϕ) = ϕ(x) for all x ∈ X, and ϕ ∈ A. The mapping ∆A
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is continuous if and only if A ⊂ Cp (X). A subset A ⊂ Cp (X) is said to be

regular, if for each disjoined pair ({x} , F ), where x ∈ X, F = F̄ ⊂ X, there

exists a ϕ ∈ A, such that ϕ(x) /∈ ϕ(F ). In this case ∆A : X → Cp (A) is

a homeomorphism “into”. By this reason we identify X with ∆A (X). Thus

each point x ∈ X is, at the same time, the (continuous) mapping x : A → R.

Similarly, for each ϕ ∈ A we may consider the continuous mapping ϕ̂ : Cp(A) → R

defined by the rule ϕ̂(f) = f(ϕ). If A ⊂ B ⊂ R
X then the natural projection

pBA : ∆B(X) → ∆A(X) is well-defined by the formula pBA (f) = f |A. If we have

an increasing sequence γ = {An : n ∈ N} of subsets in R
X and if A = ∪γ, then

∆A (X) is the limit of the inverse sequence {∆An(X) : n ∈ N}.

If A ⊂ R
X , 0X ∈ A, then we denote by C0

p (A) the subspace in Cp (A)

consisting of all functions, that are equal to zero at the point 0X . The symbols

Lp (X) and Up (X) mean subspaces in CpCp (X), consisting, respectively, of the

linear and the uniformly continuous functions.

For the spaces A and B let h : A → B be a homeomorphism. We

denote by h∗ the dual mapping h∗ : Cp(B) → Cp(A), where h
∗(g) = g ◦ h for

each g ∈ Cp(B). It is clear, that without loss of generality we may assume

h
(
0X

)
= 0Y , if h : Cp (X) → Cp (Y ) is a homeomorphism.

2. Satisfactory homeomorphisms of function spaces. We start

from the consideration of the following general construction of families of homeo-

morphisms between subspaces in Cp (X) and Cp (Y ). Let us assume that for each

pair (X,A), where X is a space, and A is a regular subfamily in Cp (X), some

subspace EA(X) ⊂ Cp (A) is fixed. In this notation we formulate the following

definition.

Definition 2.1. Let X and Y be spaces and let A ⊂ Cp (X), B ⊂

Cp (Y ) be regular subfamilies. A homeomorphism h : A → B is said to be

(EA(X), EB(Y ))-satisfactory, if and only if h∗(Y ) ⊂ EA(X) and
(
h−1

)∗
(X) ⊂

EB(Y ). The (may be empty) set of all (EA(X), EB(Y ))-satisfactory homeomor-

phisms will be denoted by (EA(X), EB(Y )). In the particular case A = Cp (X),

B = Cp (Y ) we shall write (E(X), E(Y )).

Of course, if E1
A(X) ⊂ E2

A(X) and E1
B(Y ) ⊂ E2

B(Y ), then

(
E1

A(X), E1
B(Y )

)
⊂

(
E2

A(X), E2
B(Y )

)
.

Now we shall join a number of evident or known facts in the following

proposition.
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Proposition 2.2. Let A = Cp (X) and B = Cp (Y ). The following state-

ments are true:

1) (X,Y ) 6= ∅ if and only if the topological rings Cp (X) and Cp (Y ) are isomor-

phic;

2) (Lp(X), Lp(Y )) 6= ∅ if and only if Cp (X) and Cp (Y ) are linearly homeomor-

phic;

3) (Up(X), Up(Y )) 6= ∅ if and only if Cp (X) and Cp (Y ) are uniformly homeo-

morphic;

4)
(
C0
pCp(X), C0

pCp(Y )
)
6= ∅ if and only if Cp (X) and Cp (Y ) are homeomorphic.

P r o o f. The item 1) follows from Nagata theorem [11]. The item 2) is

well-known [2], the item 4) is obvious. To prove 3) it suffices to show, that each

(Up(X), Up(Y ))-satisfactory homeomorphism h : Cp (X) → Cp (Y ) is uniform.

Fix any basic neighborhood W = W
(
0Y ,K, ε

)
of the function 0Y ∈ Cp (Y ).

By (Up(X), Up(Y ))-satisfactoriness of h, and K ⊂ Y , we have h∗(K) ⊂ Up (X).

Since K is finite, then, by uniform continuity of each h∗(y), y ∈ K, we can find

δ > 0 and finite subsets My ⊂ X, such that if ϕ,ψ ∈ Cp (X), ϕ − ψ ∈ Vy =

V
(
0X ,My, δ

)
, then |h∗(y)(ϕ) − h∗(y)(ψ)| < ε. Let M = ∪{My : y ∈ K} and

V = V
(
0X ,M, δ

)
. Now it is easy to check that h(ϕ) − h(ψ) ∈ W whenever

ϕ − ψ ∈ V . It means that the mapping h (and, similarly, h−1) is uniformly

continuous. So, the homeomorphism h is uniform. ✷

3. Functionals with a finite support. In this section we define and

investigate some functions that may be considered as a natural generalization of

linear continuous functionals on Cp (X).

Definition 3.1. Let A ⊂ Cp (X) with 0X ∈ A. A function f ∈ C0
p (A) is

said to be functional with a finite support on A, or finitely supported functional

on A, or A-FSF, if there exists a finite subset K ⊂ X, such that the following

two statements hold:

(i) For each ε > 0 and each ϕ ∈ A there is some δ > 0 such that

|f(ϕ)− f(ψ)| < ε whenever ψ ∈W (ϕ,K, δ) ∩A.

(ii) There exists ε0 > 0 such that for each x′ ∈ K and its arbitrary

neighborhood U ⊂ X one can find a function ϕ ∈ A, which coincides with 0X on

X\U , although |f(ϕ)| > ε0.

The subspace in C0
p (A) consisting of all functionals with a finite support

will be denoted by X̂A. If f ∈ C0
p (A) and a finite subset K ⊂ X satisfies (i) and
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(ii), then K is said to be support of the functional f . If A = Cp (X), we write

L̂p (X) instead of X̂A.

The above definition immediately implies the following simple facts:

Proposition 3.2. Let f ∈ X̂A and let K ⊂ X be a support of f . Then

a) f ≡ 0 if and only if K = ∅.

b) If ϕ,ψ ∈ A and ϕ coincides with ψ on K, then f(ϕ) = f(ψ).

The important fact below follows from Proposition 3.2. It was proved in

[9] for the case A = Cp (X). The proof can be easily extended to the general

case.

Proposition 3.3. Every f ∈ X̂A has a unique support K = K(f).

This fact means, that the finite-valued mapping s : X̂A → X, s(f) = K(f)

is well-defined. It allows us “to stratify” any subspace Z ⊂ X̂A by such a way. Fix

Z≥n = {f ∈ Z : |s(f)| ≥ n}, Z≤n = Z\Z≥n and Z=n = Z≤n ∩ Z≥n. Obviously,

we have Z = ∪{Z=n : n ∈ N} = ∪
{
Z≤n : n ∈ N

}
.

Proposition 3.4. Let f ∈ X̂A, let G ⊂ X be an open subset and s(f) ∩

G 6= ∅. Then there exists a neighborhood V of the functional f in X̂A, such that

the intersection s(g) ∩ G has cardinality greater than or equal to the cardinality

of s(f) ∩G for any g ∈ V .

P r o o f. By Proposition 3.2 a) we have f 6≡ 0. Pick any point x ∈ s(f)∩G

and its neighborhood Ux such that Ux ⊂ G and Ux ∩ Uy = ∅, if y ∈ s(f), x 6= y.

It follows from (ii) that |f (ϕx)| > ε0 > 0 for a suitable function ϕx ∈ A. The

item b) of Proposition 3.2 implies that ϕx(x) 6= 0. Now it is easy to check that

the neighborhood V given by the formula V = X̂A ∩


 ⋂

x∈s(f)

(ϕ̂x)
−1 (R\{0})


,

satisfies the required property. ✷

One can easy deduce the next corollaries from Proposition 3.4.

Corollary 3.5. The mapping s : X̂A → X is lower semicontinuous.

Corollary 3.6. In the notation above, all Z≥n are open and, therefore,

all Z≤n are closed in Z.

Corollary 3.7. For each n ∈ N the mapping s : Z=n → Finn(X) is

continuous (with respect to Vietoris topology on Finn(X)).
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Let us now consider the case A = Cp (X). It is well known (see [2]),

that each linear continuous functional f on the space Cp (X) can be represented

(in a unique way) in the form f = α1x1 + · · · + αkxk, where {α1, . . . , αk} ⊂ R,

K = {x1, . . . , xk} ⊂ X. It is easy to check that the set K satisfies the conditions

(i) and (ii) in Definition 3.1. Therefore we may conclude that Lp (X) ⊂ L̂p (X).

Moreover, in [10] it was established the following statement:

Proposition 3.8. L̂p (X) is dense in C0
pCp (X).

Let us show that the space Up (X) does not contain L̂p (X).

Example 3.9. Pick any point x ∈ X and define the mapping x2 :

Cp(X) → R by the rule x2(ϕ) = (ϕ(x))2 for all ϕ ∈ Cp(X). Obviously, the

set K = {x} satisfies items (i) and (ii) of Definition 3.1. In the same time

one can easily check that the mapping x2 is not uniformly continuous. Thus

L̂p (X) \Up(X) 6= ∅.

Proposition 3.8 and Example 3.9 show that, generally speaking, for given

spaces X and Y the class
(
L̂p (X) , L̂p (Y )

)
is wider than (Lp (X) , Lp (Y )) and

does not coincide with (Up (X) , Up (Y )).

Given a
(
X̂A, ŶB

)
-satisfactory homeomorphism h : Cp(X) → Cp(Y ) we

can deduce, keeping the notation from Definition 3.1, the following corollary from

Definition 2.1 and Proposition 3.2 b):

Corollary 3.10. The restriction sY of the mapping s : X̂A → X from

Corollary 3.5 on the subspace h∗(Y ) ⊂ X̂A is surjective. More precisely,

x ∈ ∪
{
K (h∗(y)) : y ∈ K

((
h−1

)∗
(x)

)}
.

Of course, an analogous statement holds with respect to the support-

mapping s′ : ŶB → Y as well.

4. Preservation of domain’s dimension. First we shall establish

our result for spaces X, Y with countable base.

Definition 4.1. The subset A ⊂ Cp(X) is said to be 0-sufficient or,

briefly, ZSS if and only if it contains the zero-function 0X and for any real interval

(a; b), any point x ∈ X and an arbitrary neighborhood U ⊂ X of x there exists

ϕ ∈ A, such that ϕ(x) ∈ (a; b) and ϕ(x′) = 0 for all x′ ∈ X \ U .
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Obviously, if X is a second countable space, then Cp (X) has a countable

ZSS. Also it is clear that A = Cp (X) is ZSS. In what follows the 0-sufficient

subsets play the role similar with the role of QS-algebras in [6].

Theorem 4.2. Let X and Y be second countable spaces, and let A and B

be ZSS in Cp (X) and Cp (Y ), respectively. If there exists a
(
X̂A, ŶB

)
-satisfactory

homeomorphism h : A→ B, then dimX = dimY .

P r o o f. We shall identify the spaces X and Y with their images in ŶB
and X̂A under the homeomorphisms

(
h−1

)∗
and h∗, respectively. So, using the

notation introduced after Proposition 3.3, we can write Y = ∪{Y =n : n ∈ N}.

Since Y is a second countable space, then each Y =n is an Fσ-subset in Y , being

intersection of open Y ≥n and closed Y ≤n subsets. So, in its turn, we can write

Y =n = ∪{F (n, k) : k ∈ N}, where {F (n, k) : k ∈ N} is the family of closures in

Y of some elements of a countable base in Y =n. In the same way we obtain

the representation X=n = ∪{D(n, k) : k ∈ N}, where all D(n, k) are closures of

elements of some countable base in X=n.

Take any point y ∈ Y . Applying support mappings, we can find S(y) =

{x1, . . . , xn} ⊂ X, S′(xi) =
{
yi1, . . . , y

i
n(i)

}
⊂ Y , where i ∈ {1, . . . , n} ⊂ N. Fix

the disjoined family {F (n(i, j), k(i, j)) : 1 ≤ i ≤ n, 1 ≤ j ≤ n(i)} of closed (in Y )

neighborhoods of the points of the set ∪
{
S′(xi) : i = 1, . . . , n

}
. By Corollary 3.7

the mappings S′ : X=n(i) → Finn(i)(Y ) are continuous and one can find (closed

in X) disjoined neighborhoods D(n(i), k(i)) of the points xi, i ∈ {1, . . . , n},

such that the intersection S′ (ξ) ∩ F (n(i, j), k(i, j)) is a single point for all ξ ∈

D(n(i), k(i)) and j ∈ {1, . . . , n(i)}. Therefore we can correctly define the con-

tinuous single-valued mappings S′
ij : D(n(i), k(i)) → F (n(i, j), k(i, j)) by the rule

S′
ij (ξ) = S′ (ξ) ∩ F (n(i, j), k(i, j)). By the same reasons there exist continuous

single-valued mappings Si : F (n, k) → D(n(i), k(i)), i ∈ {1, . . . , n}, for a suitable

neighborhood F (n, k) of the point y ∈ Y =n. Fix such F (n, k).

Corollary 3.10 implies that for each η ∈ F (n, k) there exist some in-

dices i, j such that S′
ij (Si(η)) = η. It follows from this fact that F (n, k) =

∪{Φij : i ∈ {1, . . . , n}, j ∈ {1, . . . , n(i)}}, where each Φij is the (closed in Y ) set

of fixed points of the (continuous) mapping S′
ij ◦Si. It is clear that each subspace

Si (Φij) ⊂ X is homeomorphic to Φij.

So, we express the space Y as a countable union of its closed subsets, which

are homeomorphic to some subspaces of X. Now our statement follows from the

theorem of monotonicity and the theorem for the sum for the dimensions dim
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(see [5], Theorem 3.1.4 and Proposition 3.1.7, respectively). ✷

Now we need some additional facts to extend Theorem 4.2 over spaces of

countable i-weight.

Lemma 4.3 ([14]). dimX ≤ m if and only if for each continuous sur-

jection ϕ : X → X0, with second countable X0, there exist continuous surjections

θ : X → X1, p : X1 → X0, with second countable X1, such that ϕ = p ◦ θ and

dimX1 ≤ m.

Definition 4.4. The subset A ⊂ Cp(X) is said to be projectively 0-

sufficient or, briefly, PZS if the family PA = {pa : ∆A(X) → R, pa ∆A(x) =

a(x) : a ∈ A} is a 0-sufficient subset in Cp(∆A(X)).

Lemma 4.5. For any countable subset A ⊂ Cp(X) there exists a count-

able PZS subset B ⊂ Cp (X) with A ⊂ B.

P r o o f. Since the space ∆A(X) is second countable, we can choose some

countable 0-sufficient subset A′ ⊂ Cp (∆A(X)). Put B′ =
{
b = a ◦∆A : a ∈ A′

}

and B = A ∪ B′. It is clear that A ⊂ B ⊂ Cp (X) and B is countable. Let us

show that B is PZS.

Take any real interval (s; t), ε > 0, and a neighborhood W of an arbi-

trary point y = ∆B(x) ∈ ∆B(X). We have ∆B : X → ∆B(X) ⊂ R
B , there-

fore we may assume that W in the form W = W (y, a1, . . . , al, bl+1, . . . , bm, ε) ∩

∆B(X), where {a1, . . . , al} ⊂ A, {bl+1, . . . , bm} ⊂ B′\A. Notice that each bk
is of the form bk = a′k ◦ ∆A for some a′k ∈ A′. Choose the standard neigh-

borhood V = V (∆A(x), u1, . . . , un, δ) of the point ∆A(x) in ∆A(X) such as∣∣a′j(v)− a′j (∆A(x))
∣∣ < ε for all j > l, whenever v ∈ V . Of course, we may

assume, that {a1, . . . , al} ⊂ {u1, . . . , un}and δ < ε.

Since the set A′ is 0-sufficient in Cp (∆A(X)), there is a function a′ ∈ A′

such that as a′ (∆A(x)) ∈ (s; t) and a′(v′) = 0 for all v′ ∈ ∆A(X)\V . Now take

y′ = ∆B(x′) /∈W . Two cases are possible.

Case 1.
∣∣∆B(x′)(aj)−∆B(x)(aj)

∣∣ ≥ ε for some j, 1 ≤ j ≤ l. Then∣∣∆A(x′)(aj)−∆A(x)(aj)
∣∣ ≥ ε > δ, because ∆B(x)(a) = ∆A(x)(a) = a(x) for

each a ∈ A ⊂ B and each x ∈ X. The inclusion aj ∈ {u1, . . . , un} implies

∆A(x′) /∈ V . Therefore a′
(
∆A(x′)

)
= 0.

Case 2. For some j, l+1 ≤ j ≤ m, it holds
∣∣∆B(x′)(bj)−∆B(x)(bj)

∣∣ ≥ ε.

We can rewrite the latter inequality in the form

∣∣∆B(x′)(a′j ◦∆A)−∆B(x)(a′j ◦∆A)
∣∣ ≥ ε, or

∣∣a′j
(
∆A(x′)

)
− a′j (∆A(x))

∣∣ ≥ ε.
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By the definition of V we conclude that ∆A(x′) /∈ V . We obtain a′
(
∆A(x′)

)
= 0

again.

It remains to observe that the function b′ = a′ ◦∆A belongs to B′ ⊂ B,

and p′b (∆B(z)) = b′(z) = a′ (∆A(z)) for all z ∈ X. ✷

Lemma 4.6 ([6]). If dimY ≤ m and the subset B ⊂ Cp (Y ) is countable,

then there exists a countable subset B′ ⊂ Cp (Y ) with dim
(
∆

(
B ∪B′

)
(Y )

)
≤ m.

Lemma 4.7 ([12]). If the space Y is a limit of the inverse sequence

(Yn)n∈N, where dimYn ≤ m for all n ∈ N, then dimY ≤ m.

The previous three lemmas allow us to establish the next statement:

Lemma 4.8. Let dimY ≤ m. Then for each countable subset

B0 ⊂ Cp (Y ) there exists countable PZS subset B ⊂ Cp (Y ) with B0 ⊂ B and

dim (∆B(Y )) ≤ m.

P r o o f. Starting from B0, we can apply Lemma 4.5 at odd steps, and

Lemma 4.6 at even steps each time to the previous subset in Cp (Y ). In such

a manner we can construct some increasing sequence of countable PZS subsets

B2i−1 ⊂ Cp (Y ) and some increasing sequence of countable subsets B2i ⊂ Cp (Y ),

such that dim (∆B2i(Y )) ≤ m for all i ∈ N. In addition we have B2i−1 ⊂ B2i ⊂

B2i+1 for all i ∈ N.

Let B = ∪{Bk : k ∈ N}. It is clear that B is countable. Moreover,

dim (∆B(Y )) ≤ m because the space ∆B(Y ) is the limit of the inverse sequence

of the spaces ∆B2i(Y ) (by Lemma 4.7).

It remains to show that B is PZS. In other words, we have to show that the

family QB = {qb : ∆B(Y ) → R, qb (∆B(y)) = b(y) : b ∈ B} is 0-sufficient. To

this end fix a real interval (s; t), ε > 0, an arbitrary finite family {d1, . . . , dn} ⊂ B

and a neighborhood W = W (z, d1, . . . , dn, ε) ∩ ∆B(Y ) of an arbitrary point

z = ∆B(y) ∈ ∆B(Y ). Of course, {d1, . . . , dn} ⊂ B2i−1 for suitable i ∈ N. Let

Yi = ∆B2i−1(Y ), zi = ∆B2i−1(y) ∈ Yi, V =W (zi, d1, . . . , dn, ε)∩Yi. Since B2i−1

is PZS, one can find d0 ∈ B2i−1 ⊂ B, such that qd0 (zi) = d0 (y) ∈ (s; t) and

qd0
(
z′
)
= d0(y

′) = 0 whenever z′ = ∆B2i−1(y
′) ∈ Yi\V . So we already have

qd0 (z) = d0 (y) ∈ (s; t). Now take any z′ = ∆B(y′) ∈ ∆B(Y )\W . It means, by

the definition of W , that
∣∣∆B(y′) (dj)−∆B(y) (dj)

∣∣ =
∣∣dj(y′)− dj(y)

∣∣ ≥ ε for

some j, 1 ≤ j ≤ n. This implies, that ∆B2i−1(y
′) ∈ Yi\V , because dj ∈ B2i−1.

Now we may conclude, that qd0
(
z′
)
= d0(y

′) = 0. So, the projection qd0 satisfies

qd0 ∈ QB , as required and the lemma is proved. ✷



88 Vadim Lazarev

Theorem 4.9. Let X and Y be spaces and iw(X) = iw(Y ) = ℵ0. Let

also a homeomorphism h : Cp(X) → Cp(Y ) be
(
L̂p (X) , L̂p (Y )

)
-satisfactory.

Then dimX = dimY .

P r o o f. Standard arguments show that it is sufficient to deduce the

inequality dimX ≤ m from the condition dimY ≤ m.

So, let dimY ≤ m and let ξ : X → X0 be an arbitrary continuous

mapping onto the second countable space X0. Take any countable 0-sufficient

family F ⊂ Cp (X0) and define A0 = {f ◦ ξ : f ∈ F}. Note that, by the regularity

of F , the spaces X0 = ξ (X) and ∆A0(X) = ∆F (ξ (X)) are homeomorphic. By

Lemma 4.5, we can choose a countable PZS subset A1 ⊂ Cp (X) with A0 ⊂ A1.

Using Lemma 4.8, we can enlarge the set h (A1) to some PZS subset B1 ⊂ Cp (Y ),

such that h (A1) ⊂ B1 and dim (∆B1(Y )) ≤ m. By Lemma 4.5 again, we can

enlarge the set h−1 (B1) to some countable PZS A2 ⊂ Cp (X).

Let us suppose, that the countable PZS subsets An ⊂ Cp (X) and Bn ⊂

Cp (Y ) with dim (∆Bn(Y )) ≤ m are already chosen. Then by Lemma 4.5 again,

we can enlarge the set h−1 (Bn) to some countable PZS An+1 ⊂ Cp (X). After this

we apply Lemma 4.8 to h (An+1), in order to obtain a PZS subset Bn+1 ⊂ Cp (Y )

with h (An+1) ⊂ Bn+1 and dim (∆Bn+1(Y )) ≤ m.

So, we constructed by induction the increasing sequence {An : n ∈ N} of

countable PZS subsets in Cp (X), and the increasing sequence {Bn : n ∈ N} of

countable PZS subsets in Cp (Y ), such that dim (∆Bn(Y )) ≤ m for all n ∈ N.

Now let A = ∪{An : n ∈ N} and B = ∪{Bn : n ∈ N}. It is clear that

h (A) = B, so A and B are countable homeomorphic subsets in Cp (X) and

Cp (Y ), respectively.

Repeating our arguments from the proof of Lemma 4.8, we can prove that

A and B are PZS. Let us consider the corresponding families PA ⊂ Cp (∆A(X))

and PB ⊂ Cp (∆B(X)) from Definition 4.4. Let us define the mapping h̃ : PA →

PB by the rule
(
h̃ (pa)

)
(∆B(y)) = (h(a)) (y) = ph(a) (∆B(y)) for all a ∈ A,

y ∈ Y . We can define the inverse mapping
(
h̃
)−1

: PB → PA similarly, by using

the mapping h−1. The continuity of h̃ and
(
h̃
)−1

can be easily deduced from the

equalities a(x) = pa (∆A(x)) and b(y) = pb (∆B(y)) and from the fact, that h is

a homeomorphism.

In order to apply Theorem 4.2 to the 0-sufficient subsets PA and PB it

remains to establish two inclusions: h̃∗ (∆B(y)) ∈ ∆̂A(X)PA
for all y ∈ Y and
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h̃−1
∗

(∆A(x)) ∈ ∆̂B(Y )PB
for all x ∈ X. It is easy to see by the symmetry

of the situation, that we may establish just first of them. For this aim fix any

y ∈ Y , positive ε and pu ∈ PA. By the condition of this theorem h∗(y) ∈ L̂p(X).

Therefore there exist a finite setK ⊂ X and a positive δ, such that the inequalities

|u(x)− v(x)| < δ for all x ∈ K imply that |h∗(y)(u) − h∗(y)(v)| < ε.

Consider the set K ′ = ∆A(K) ⊂ ∆A(X) and take any pv ∈ PA, such

that
∣∣pv(x′)− pu(x

′)
∣∣ < δ for each x′ ∈ K ′. Then for each x ∈ K we have

|pv (∆A(x))− pu (∆A(x))| = |v(x)− u(x)| < δ. It follows that

∣∣∣h̃∗ (∆B(y)) (pu)− h̃∗ (∆B(y)) (pv)
∣∣∣

=
∣∣∣h̃ (pu) (∆B(y))− h̃ (pv) (∆B(y))

∣∣∣ =
∣∣ph(u) (∆B(y))− ph(v) (∆B(y))

∣∣

= |h(u)(y) − h(v)(y)| = |h∗(y)(u) − h∗(y)(v)| < ε.

So, the condition (i) of Definition 3.1 is verified.

Let us verify its condition (ii). To this end we shall use the condition

iw(X) = iw(Y ) = ℵ0. It permits us to assume, that the mappings ∆A and ∆B

are one-to-one. Pick any point x′0 = ∆A (x0) ∈ K ′ and choose a neighborhood

V of the point x0 ∈ X, such that V ∩ (K\ {x0}) = ∅. Again by the fact h∗(y) ∈

L̂p(X), one may find a positive ε0 and a function ϕ′ ∈ Cp (X) such as ϕ′
(
x′
)
= 0

for all x′ ∈ X\V , but
∣∣h∗(y)

(
ϕ′
)∣∣ =

∣∣h
(
ϕ′
)
(y)

∣∣ ≥ 2ε0.

Let ε′ =
∣∣h

(
ϕ′
)
(y)

∣∣ − ε0. Since h∗(y) ∈ L̂p(X), there exists a positive

σ, which has the property, that if
∣∣ψ(z)− ϕ′(z)

∣∣ < σ for each z ∈ K, then∣∣h∗(y)(ψ) − h∗(y)
(
ϕ′
)∣∣ < ε′. By the 0-sufficiency of PA, one can choose some u ∈

A, such that pu(z
′) = 0 for all z′ ∈ K ′\

{
x′0

}
and pu(x

′
0) ∈

(
ϕ′(x0)− σ; ϕ′(x0) + σ

)
.

It follows that
∣∣(pu ◦∆A) (z) − ϕ′(z)

∣∣ =
∣∣u(z) − ϕ′(z)

∣∣ < σ for each z ∈ K.

Therefore,
∣∣h∗(y)(u) − h∗(y)

(
ϕ′
)∣∣ < ε′ =

∣∣h∗(y)
(
ϕ′
)∣∣−ε0. It implies |h∗(y)(u)| =

|h(u)(y)| =
∣∣ph(u) (∆B(y))

∣∣ =
∣∣∣h̃∗ (∆B(y)) (pu)

∣∣∣ > ε0. So, the condition (ii) is

verified.

Now we may apply Theorem 4.2 to the homeomorphic 0-sufficient subsets

PA and PB in the spaces Cp (∆A(X)) and Cp (∆B(Y )), respectively. We have

dim (∆B(Y )) ≤ m, because the space ∆B(Y ) is the limit of the inverse sequence

{∆Bn(Y ) : n ∈ N}, where dim (∆Bn(Y )) ≤ m for all n ∈ N. We may now con-

clude, that dim (∆A(X)) ≤ m. Furthermore, we have ξ =
(
(∆F )−1 ◦ πF

)
◦∆A,

where πF is the restriction on ∆A(X) of the natural projection of RA onto R
A0 .

Applying Lemma 4.3 to ϕ = ξ, θ = ∆A and p = (∆F )−1 ◦ πF , we obtain

dimX ≤ m. ✷
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Remark. Observe that it is possible to omit the restriction iw(X) =

iw(Y ) = ℵ0 in the formulation of Theorem 4.9, if we modify Definition 3.1 by a

convenient way. Namely, replace item (ii) by the following condition:

(ii′) There exists ε0 > 0 such that for each finiteM ⊂ K and an arbitrary

open U ⊂ X with M ⊂ U one can find a function ϕ ∈ A, which is constant on

M , coincides with 0X on X\U and |f(ϕ)| > ε0.

The requirements (i) and (ii′) form another space of FSF, say E(X),

and we may formulate the counterpart for Theorem 4.9. But this case is not so

interesting, because this E(X) does not contain the space Lp (X). Indeed, let

us consider, for example, the functional x1 + x2 − x3 = f ∈ Lp (X). It is clear

that K = {x1, x2, x3} is a support of f in the sense of Definition 3.1. Consider

M = {x2, x3}. Evidently, for each function ϕ ∈ A, which is constant on M , we

have f(ϕ) = 0 in a contradiction with (ii′).

5. Open questions. Let us fix for each space X two subspaces E1(X)

and E2(X) in CpCp (X). Let S1 and S2 be the collections of all (E1(X), E1(Y ))-

satisfactory and (E2(X), E2(Y ))-satisfactory homeomorphisms, respectively, with

arbitrary spaces X and Y.

Definition 5.1. We say, that S2 is irreducible to S1, if there exist

two spaces X and Y such that the family (E2(X), E2(Y )) is nonempty, while

(E1(X), E1(Y )) is empty. Otherwise S2 is said to be reducible to S1.

Question 5.2. What conditions on E1(X) and E2(X) must hold for the

mutual irreducibility (or, conversely, reducibility) of S2 and S1?

Question 5.3. Is S2 irreducible with respect to S1 provided that E1(X) =

Lp(X), E2(X) = L̂p(X) for each space X? What happens if E1(X) = Up(X) and

E2(X) = L̂p(X)? In other words, is it true that the spaces Cp (X), Cp (Y ) are lin-

early (or uniformly) homeomorphic whenever there exists an
(
L̂p (X) , L̂p (Y )

)
-

satisfactory homeomorphism h : Cp (X) → Cp (Y )?

Remark. If E1(X) = Lp(X), E2(X) = Up(X) for each space X,

it is known [7] that S2 is irreducible with respect to S1. If E1(X) = Up(X),

E2(X) = C0
pCp(X) for each space X, then [8] S2 is also irreducible with respect

to S1.
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