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Abstract. In this paper, a class of third-order neutral delay differential
equations with continuously distributed delay is studied. Also, we estab-
lish new oscillation results for the third-order equation by using the integral
averaging technique due to Philos. Our results essentially improve and com-
plement some earlier publications. Examples are provided to illustrate new
results.

1. Introduction. We are concerned with the oscillation and the asymp-
totic behavior of solutions of the third-order nonlinear neutral differential equa-
tions with delayed argument

(1.1) (r(l)[z′′(l)]α)′ +

∫ d

c

q(l, ξ)xα(g(l, ξ))dξ = 0, l ≥ l0,
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where z(l) = x(l) +

∫ b

a

p(l, η)x(τ(l, η))dη. In the sequel we will assume that the

following conditions are satisfied:

(C) r ∈ C([l0,∞), (0,∞)), p ∈ C([l0,∞)× [a, b],R+), τ ∈ C([l0,∞)× [a, b],R);

q, g ∈ C([l0,∞)× [c, d],R), 0 ≤

∫ b

a

p(l, η)dη ≤ p < 1, τ(l, η) ≤ l, g(l, ξ) ≤ l,

lim
l→∞

τ(l, η) = lim
l→∞

g(l, ξ) = ∞, q(l, ξ) > 0, g(l, ξ) is nondecreasing with

respect to l, ξ,

∫ ∞

l0

r−
1

α (s)ds = ∞ and α is a quotient of odd positive

integers.

By a solution of Eq. (1.1), we mean a function x (l) ∈ C ([lx,∞)) , lx ≥
l0, which has the property r (l)

(

z′′ (l)
)α

∈ C1 ([lx,∞)) and satisfies Eq. (1.1)
on [lx,∞). We consider only those solutions x (l) of Eq. (1.1) which satisfy
sup {|x (l)| : l ≥ l} > 0 for any l ≥ lx . A solution of Eq. (1.1) is called oscillatory
if it has arbitrary large zeros, otherwise it is called nonoscillatory.

In the last few years, there has been increasing interest in obtaining suffi-
cient conditions for the oscillation and nonoscillation of solutions of second/third-
order delay differential equations, see for example [1]-[17] and the references
quoted therein. Special cases of equation (1.1) include the delay equation

(1.2)
(

r (l)
(

(x (l) + p (l) x (τ (l)))′′
)α)′

+ q (l)xα (g (l)) = 0.

The oscillatory behavior of solutions of (1.2) have been discussed in number of
studies and we refer the reader, for example, to the monographs by Baculikova
[3], Dzurina [7] and Thandapani [19].

Actually, we have greatly less results for third-order differential equations
than for the first or second order equations. So, the main objective of this paper
is to shed light on the class of third-order equation, through study the asymptotic
behavior of this equation and comparison of results. Our results in this paper not
only generalize some the previous results, but also improve the earlier ones (as
described in the examples and remarks). First, we establish some new oscillation
criteria for the equation (1.1), which in the special case (equation (1.2)) generalize
and improve the results established by Baculikova [3] and are different from the
results of [3] in the sense that our results not require r′ (l) > 0. Also, we set a
new criteria for oscillation of solutions of the equation

(

l
[

(x (l) + (1/3) x (l/2))′′
]3
)′

+
(

λ/l6
)

x3 (l/2) = 0,
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studied by [3] and [7]. Finally, we will apply the Riccati technique to estab-
lish some new oscillation results of Kamenev-type and our results in this paper
improve the results established by Qin [16] and Tian [20].

2. Main results. For the sake of brevity, we define:

Ru (l) =

∫ l

u

ds

r
1

α (s)
, R̄u (l) =

∫ l

u

Ru (s) ds.

First, we state and prove some useful lemmas.

Lemma 2.1. Let x (l) be a positive solution of Eq. (1.1). Then z (l) has
only one of the following two properties eventually

(i) z (l) > 0, z′ (l) > 0 and z′′ (l) > 0;

(ii) z (l) > 0, z′ (l) < 0 and z′′ (l) > 0.

P r o o f. Let x (l) be a positive solution of Eq. (1.1). From (C), there
exists a l1 ≥ l0 such that x (l) > 0, x (τ (l, η)) > 0 and x (g (l, ξ)) > 0, then
z (l) > 0, and Eq. (1.1) implies that

(

r (l)
[

z′′ (l)
]α)′

= −

∫ d

c

q (l, ξ)xα (g (l, ξ)) dξ ≤ 0.

Hence
(

r (l)
[

z′′ (l)
]α)

is a non-increasing function and of one sign. We claim that
(

r (l)
[

z′′ (l)
]α)

> 0 for l ≥ l1. Suppose that
(

r (l)
[

z′′ (l)
]α)

< 0 for l ≥ l2 ≥ l1,
then there exists a l3 ≥ l2 and constant K1 > 0 such that

(

r (l)
[

z′′ (l)
]α)

≤ −K1, for l ≥ l3.

By integrating the last inequality from l3 to l, we get

z′ (l) ≤ z′ (l3)−K
1

α

1

∫ l

l3

r−
1

α (s) ds.

Letting l → ∞, we have lim
l→∞

z′ (l) = −∞. Then there exists a l4 ≥ l3 and

constant K2 > 0 such that

z′ (l) < −K2, for l ≥ l4.

By integrating this inequality from l4 to∞ and using (C), we get lim
l→∞

z (l) = −∞,

which contradicts z (l) > 0. Now we have
(

r (l)
[

z′′ (l)
]α)

> 0 for l ≥ l0. Therefore
z′ (l) is increasing function. Thus (i) or (ii) holds for z (l) eventually. ✷
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Lemma 2.2. Assume that x (l) be a positive solution of Eq. (1.1) and
z (l) has the property (ii). If

(2.1)

∫ ∞

l0

∫ ∞

v

[

1

r (u)

∫ ∞

u

∫ d

c

q (s, ξ) dξds

]

1

α

dudv = ∞,

then the solution x (l) of Eq. (1.1) is converges to zero as l → ∞.

P r o o f. Assume that x (l) be a positive solution of Eq. (1.1). Since z (l)
satisfies (ii), we obtain

lim
l→∞

z (l) = γ ≥ 0.

Next, we claim that γ = 0. Let γ > 0, then we get γ < z (l) < γ + ε for all ε > 0

and l enough large. Choosing ε <
1− p

p
γ, we obtain

x (l) = z (l)−

∫ b

a

p (l, η) x (τ (l, η)) dη

> γ −

∫ b

a

p (l, η) z (τ (l, η)) dη

> γ − z (τ (l, a))

∫ b

a

p (l, η) dη

> γ − p (γ + ε) > Lz (l) ,

where L =
γ − p (γ + ε)

γ + ε
> 0. Hence from Eq. (1.1) and (C) we have

(

r (l)
[

z′′ (l)
]α)′

= −

∫ d

c

q (l, ξ) xα (g (l, ξ)) dξ

≤ −Lα

∫ d

c

q (l, ξ) zα (g (l, ξ)) dξ

≤ −Lαγα
∫ d

c

q (l, ξ) dξ.

Integrating this inequality from l to ∞, we get

r (l)
[

z′′ (l)
]α

≥ Lαγα
∫ ∞

l

∫ d

c

q (s, ξ) dξds,

this inequality implies that

z′′ (l) ≥ Lγ

[

1

r (l)

∫ ∞

l

∫ d

c

q (s, ξ) dξds

]

1

α

.
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Integrating last inequality from l to ∞, we obtain

−z′ (l) ≥ Lγ

∫ ∞

l

[

1

r (u)

∫ ∞

u

∫ d

c

q (s, ξ) dξds

]

1

α

du.

Integrating again from l1 to ∞, we have

z (l1) ≥ Lγ

∫ ∞

l1

∫ ∞

v

[

1

r (u)

∫ ∞

u

∫ d

c

q (s, ξ) dξds

]

1

α

dudv.

This contradicts to the condition (2.1), hence lim
l→∞

z (l) = 0, which implies that

lim
l→∞

x (l) = 0. ✷

Lemma 2.3. Let x (l) be a positive solution of Eq. (1.1) and z (l) has the
property (i). Then

(2.2)
(

r (l)
[

z′′ (l)
]α)′

≤ − (1− p)α zα (g (l, c))

∫ d

c

q (l, ξ) dξ.

(2.3) z′ (g (l, ξ)) ≥
(

r (l)
[

z′′ (l)
]α) 1

α Rl0 (g (l, ξ)) .

(2.4) R̄α
l0
(g (l, ξ))

(r (l) [z′′ (l)]α)

zα (g (l, ξ))
≤ 1.

P r o o f. Let x (l) be a positive solution of Eq. (1.1) from (C) there exists
a l1 ≥ l0 such that x (l) > 0, x (τ (l, η)) > 0 and x (g (l, ξ)) > 0 for l ≥ l1. Since
z (l) satisfies the property (i) then we get

x (l) = z (l)−

∫ b

a

p (l, η) x (τ (l, η)) dη

≥ z (l)− z (l)

∫ b

a

p (l, η) dη

≥

(

1−

∫ b

a

p (l, η) dη

)

z (l)

≥ (1− p) z (l) .

Thus, by Eq. (1.1) and (C) we have

(

r (l)
[

z′′ (l)
]α)′

= −

∫ d

c

q (l, ξ) xα (g (l, ξ)) dξ
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≤ − (1− p)α
∫ d

c

q (l, ξ) zα (g (l, ξ)) dξ

≤ − (1− p)α zα (g (l, c))

∫ d

c

q (l, ξ) dξ.

Now, from property (i), there exists a l ≥ l0 such that

z′ (l) = z′ (l) +

∫ l

l

(r (s) [z′′ (s)]α)
1

α

r
1

α (s)
ds.

Since
(

r (l)
[

z′′ (l)
]α)′

< 0, we obtain

z′ (l) ≥
(

r (l)
[

z′′ (l)
]α) 1

α

∫ l

l

1

r
1

α (s)
ds.

This implies that

(2.5) z′ (l) ≥
(

r (l)
[

z′′ (l)
]α) 1

α Rl (l) .

Since g (l, ξ) ≤ l, we have

z′ (g (l, ξ)) ≥
(

r (l)
[

z′′ (l)
]α) 1

α Rl (g (l, ξ)) .

Next, integrating the inequality (2.5) from l to l and using
(

r (l)
[

z′′ (l)
]α)′

< 0,
we get

z (l) ≥ z (l) +
(

r (l)
[

z′′ (l)
]α) 1

α

∫ l

l

Rl (s) ds

≥
(

r (l)
[

z′′ (l)
]α) 1

α R̄l (l) .

Thus, we get

z (g (l, ξ)) ≥
(

r (l)
[

z′′ (l)
]α) 1

α R̄l (g (l, ξ)) .

This inequality implies that

R̄α
l (g (l, ξ))

(r (l) [z′′ (l)]α)

zα (g (l, ξ))
≤ 1.

This completes the proof. ✷
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Now, for simplicity, we introduce the following notation:

P = lim inf
l→∞

R̄α
l0
(g (l, c))

∫ ∞

l

θ (s) ds

and

Q = lim sup
l→∞

1

R̄l0 (g (l, c))

∫ l

l0

R̄α+1
l0

(g (s, c)) θ (s) ds,

where

θ (l) = (1− p)α
∫ d

c

q (l, ξ) dξ.

Moreover for z (l) satisfying property (i), we define

(2.6) ω (l) = r (l)

(

z′′ (l)

z (g (l, c))

)α

and

(2.7) ς = lim inf
l→∞

R̄α
l0
(g (l, c))ω (l) , U = lim sup

l→∞

R̄α
l0
(g (l, c))ω (l) .

Lemma 2.4. Let x (l) be a positive solution of Eq. (1.1).

(I) Let P <∞, Q <∞ and z (l) satisfies property (i) . If

(2.8) lim
l→∞

R̄l0 (l) = ∞,

then

(2.9) P ≤ ς − ς
1+α

α and P +Q ≤ 1.

(II) If P = ∞ or Q = ∞, then z (l) does not have property (i) .

P r o o f. Part (I). Let x (l) be a positive solution of Eq. (1.1) and z (l)
satisfies property (i) . By Lemma 2.3, we have (2.2), (2.3) and (2.4) hold. From
definition of ω (l), we see that ω (l) is positive and satisfies

ω′ (l) =
(r (l) [z′′ (l)]α)

′

zα (g (l, c))
− α

(r (l) [z′′ (l)]α)

zα+1 (g (l, c))
z′ (g (l, c)) g′ (l, c) .

Thus from (2.2) and (2.3) there exists a l ≥ l0 such that

ω′ (l) ≤ − (1− p)α
∫ d

c

q (l, ξ) dξ − α
(r (l) [z′′ (l)]α)

1+α

α

z1+α (g (l, c))
Rl (g (l, c)) g

′ (l, c) ,
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for l ≥ l. This implies that

(2.10) ω′ (l) ≤ −θ (l)− αRl (g (l, c)) g
′ (l, c)ω

1+α

α (l) .

From (2.4), we get
R̄α

l (g (l, c))ω (l) ≤ 1,

which with (2.8) gives

(2.11) lim
l→∞

ω (l) = 0.

On the other hand, from the definition of ω (l), ς and U , we see that

(2.12) 0 ≤ ς ≤ U ≤ 1.

Now, we prove that the first inequality in (2.9) holds. Let ε > 0, then from the
definition of P and ς we can choose l2 ≥ l sufficiently large that

R̄α
l (g (l, c))

∫ ∞

l

θ (s) ds ≥ P − ε

and
R̄α

l (g (l, c))ω (l) ≥ ς − ε,

for l ≥ l2. By integrating (2.10) from l to ∞ and using (2.11), we have

(2.13) ω (l) ≥

∫ ∞

l

θ (s) ds+ α

∫ ∞

l

Rl (g (s, c)) g
′ (s, c)ω

1+α

α (s) ds.

Multiplying the above inequality by R̄α
l (g (l, c)), we obtain

R̄α
l (g (l, c))ω (l)≥αR̄α

l (g (l, c))

∫ ∞

l

Rl (g (s, c)) g
′ (s, c)

R̄α+1
l (g (s, c))

(

R̄α
l (g (s, c))ω (s)

)
1+α

α ds

+R̄α
l (g (l, c))

∫ ∞

l

θ (s) ds

≥ (P − ε) + (ς − ε)
1+α

α R̄α
l (g (l, c))

∫ ∞

l

αRl (g (s, c)) g
′ (s, c)

R̄α+1
l (g (s, c))

ds

≥ (P − ε) + (ς − ε)
1+α

α .

Taking the limit inferior on both sides as l → ∞, we get

ς ≥ (P − ε) + (ς − ε)
1+α

α .
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Since ε > 0 is arbitrary, we obtain the desired result

P ≤ ς − ς
1+α

α .

Next, we prove the second inequality in part (I). Multiplying (2.10) by
R̄α+1

l (g(l, c)) and integrating it from l2 to l, we obtain

∫ l

l2

R̄α+1
l (g (s, c))ω′ (s) ds≤−α

∫ l

l2

Rl (g (s, c)) g
′ (s, c)

(

R̄α
l (g (s, c))ω (s)

)
1+α

α ds

−

∫ l

l2

R̄α+1
l (g (s, c)) θ (s) ds.

Integrating by parts, we have

R̄α+1
l (g (l, c))ω (l) ≤ R̄α+1

l (g (l2, c))ω (l2)−

∫ l

l2

R̄α+1
l (g (s, c)) θ (s) ds

+

∫ l

l2

Rl (g (s, c)) g
′ (s, c)

(

(α+ 1)X − αX
α+1

α

)

ds,

where X = R̄α
l (g (s, c))ω (s). Using the inequality

(2.14) Bu−Au
α+1

α ≤
αα

(α+ 1)α+1

Bα+1

Aα
,

for B ≥ 0, A ≥ 0 and u ≥ 0, with u = X, B = (α+ 1) and A = α. Thus, we get

R̄α+1
l (g (l, c))ω (l) ≤ R̄α+1

l (g (l2, c))ω (l2)−

∫ l

l2

R̄α+1
l (g (s, c)) θ (s) ds

+R̄l (g (l, c))− R̄l (g (l2, c)) .

It follows that

R̄α
l (g (l, c))ω (l) ≤ 1 +

R̄α+1
l (g (l2, c))ω (l2)

R̄l (g (l, c))
−
R̄l (g (l2, c))

R̄l (g (l, c))

−
1

R̄l (g (l, c))

∫ l

l2

R̄α+1
l (g (s, c)) θ (s) ds.

Taking the limit superior on both sides as l → ∞ and using (2.8) we get

U ≤ 1−Q.
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Thus from (2.12), we have

(2.15) P ≤ ς − ς
α+1

α ≤ ς ≤ U ≤ 1−Q,

which completes the proof of part (I).

Part (II). Let x (l) is a positive solution of Eq. (1.1). We shall proof that
z (l) does not have property (i). On the other contrary, we assume that P = ∞.
Then from (2.13) we get

R̄α
l (g (l, c))ω (l) ≥ R̄α

l (g (l, c))

∫ ∞

l

θ (s) ds.

Taking the lim inf of both sides as l → ∞ we get in view of (2.12) that

1 ≥ ς ≥ P ≥ ∞.

This is a contradiction. Now we admit that Q = ∞. Then by (2.15), U = −∞,
which contradicts. The proof is complete ✷

Now we are ready to present the following oscillation criterion

Theorem 2.1. Assume that (2.1) and (2.8) hold. If

(2.16) P = lim
l→∞

inf R̄α
l0
(g (l, c))

∫ ∞

l

θ (s) ds >
αα

(α+ 1)α+1
.

Then every solution of Eq. (1.1) is either oscillatory or tends to zero as l → ∞

P r o o f. Let x (l) be a nonoscillatory solution of Eq. (1.1). Without
loss of generality we may assume that x (l) > 0. If P = ∞, then by Lemma 2.4
z (l) does not have property (i). That is, z (l) satisfies property (ii). Therefore,
from Lemma 2.2, we have lim

l→∞
x (l) = 0. Now, let P < ∞. By Lemma 2.1, we

have that z (l) has the property (i) or the property (ii). If z (l) has the property
(ii), from Lemm 2.2, we obtain lim

l→∞
x (l) = 0. Next, we assume that for z (l)

property (i) holds. Let ω (l) and ς be defined by (2.6) and (2.7), respectively.

Then from Lemma 2.4, we have P ≤ ς − ς
1+α

α . Using inequality (2.14) with u = ς
and B = A = 1,we get

P ≤
αα

(α+ 1)α+1
,

which contradicts (2.16). The proof is complete. ✷
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Corollary 2.1. Assume that (2.1) and (2.8) hold. If

(2.17) lim
l→∞

inf R̄α
l0
(g (l, c))

∫ ∞

l

∫ d

c

q (s, ξ) dξds ≥
αα

(α+ 1)α+1 (1− p)α
.

Then every solution of Eq. (1.1) is either oscillatory or tends to zero as l → ∞.

P r o o f. We shall show that (2.17) implies (2.16). First note that

θ (l) = (1− p)α
∫ d

c

q (l, ξ) dξ,

this inequality implies that
(2.18)

lim
l→∞

inf R̄α
l0
(g (l, c))

∫ ∞

l

θ (s)

(1− p)α
ds = lim

l→∞
inf R̄α

l0
(g (l, c))

∫ ∞

l

∫ d

c

q (s, ξ) dξds.

On the other hand, (2.17) implies that

(2.19) lim
l→∞

inf R̄α
l0
(g (l, c))

∫ ∞

l

∫ d

c

q (s, ξ) dξds ≥
αα

(α+ 1)α+1 (1− p)α
.

Combining (2.18) with (2.19), we get (2.16). ✷

Theorem 2.2. Assume that (2.1) and (2.8) hold. If

(2.20) P +Q > 1,

then all solution x (l) of Eq. (1.1) is oscillatory or lim
l→∞

x (l) = 0.

P r o o f. Let Eq. (1.1) has one nonoscillatory solution x (l). Then we
may assume, without loss of generality that x (l) > 0. If P = ∞ or Q = ∞,
then by Lemma 2.4 z (l) does not have property (i). That is mean, z (l) must
has property (ii). Then from Lemma 2.2, we get that lim

l→∞
x (l) = 0. Next, let

P < ∞ and Q < ∞. From Lemma 2.1, we have that z (l) either has case (i) or
case (ii) . If z (l) has case (ii), then exactly as above we are led by Lemma 2.2
to lim

l→∞
x (l) = 0. Now, we assume that z (l) has the case (i) . Then from Lemma

2.4, we obtain P +Q ≤ 1 is contradicts (2.20). The Theorem is hold. ✷

Corollary 2.2. Assume that (2.1) and (2.8) hold.If

(2.21) Q = lim
l→∞

sup
1

R̄l0 (g (l, c))

∫ l

l0

R̄α+1
l0

(g (s, c)) θ (s) ds > 1,

then every solution of Eq. (1.1) is either oscillatory or tends to zero as l → ∞.
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Example 2.1. Consider the equation

(2.22)
(

l
[

z′′ (l)
]3
)′

+
λ

l6
x3

(

l

2

)

= 0, λ > 0,

where z (l) = x (l) +
1

3
x

(

l

2

)

, p =
1

3
and l ≥ 1. According to Corollary 1 in [3],

every nonoscillatory solution of Eq. (2.22) converges to zero provided that

λ >
93

2
= 364.5.

Also, by Theorem 2.4 in [5], every nonoscillatory solution of Eq. (2.22) converges
to zero provided that

λ >

(

10

3

)3 4

e ln 2
≃ 78.628.

If we choose a = 0, b = 1, c = 1 and d = 2.Then (2.1) and (2.8) are satisfied and
(2.16) hold for

λ >
54

8
= 78.125.

Hence, by Theorem 2.1 every solution of Eq. (2.22) is either oscillatory or tends
to zero if λ > 78.125. Then, our results supplement and improve the results
obtained in [3] and [5].

Example 2.2. Consider the equation

(2.23)

(

1

l

[

z′′ (l)
]

)′

+
υ

l4
x

(

l

2

)

= 0, υ > 0,

where z (l) = x (l) +
1

3
x

(

l

2

)

, p =
1

2
and l ≥ 1. Furthermore, we choose a = 1,

b = 2, c = 2 and d = 3. We note that α = 1,

R̄l0 (l) =
1

2

(

1

3
l3 − l +

2

3
l0

)

and θ (l) =
υ

2

1

l4
.

Hence, it easy to see that (2.1) and (2.8) hold and

lim
l→∞

inf R̄α
l0
(g (l, c))

∫ ∞

l

θ (s) ds =
υ

288
.

Thus, by Theorem 2.1, if υ >
35

8
, we have that every solution of Eq. (2.23) is

either oscillatory or tends to zero.
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Remark 2.1. In Example 2.2, we note that, r (l) = 1/l and hence r′ (l) <
0. So, the results of [3] cannot be applied in Eq. (2.23).

Example 2.3. Consider the equation

(2.24)

(

1

l

[

z′′ (l)
]3

)′

+

∫ 1

0

54ml−8ξx3 (l − ξ) dξ = 0, m > 0,

where z (l) = x (l) +

∫ 0

−1

1

2l
e

1

2l
ηx (lη) dη, p =

2

3
and l ≥ 1. We note that α = 3,

r (l) =
1

l
, p (l, η) =

1

2l
e

1

2l
η, τ (l, η) = lη, q (l, ξ) = 54ml−8ξ, g (l, ξ) = l−ξ, a = −1,

b = 0, c = 0, d = 1 and

R̄l0 (l) =
3

4

(

3

7
l
7

3 − l +
4

7
l0

)

and θ (l) = ml−8.

Hence, it easy to see that (2.1), (2.8) hold and

lim
l→∞

inf R̄α
l0
(g (l, c))

∫ ∞

l

θ (s) ds =
729m

153664
.

Thus, by Theorem 2.1, if m >
2401

108
, we have that every solution of Eq. (2.24) is

either oscillatory or tends to zero.

In the next Theorems, we establish new oscillation results for Eq. (1.1) by
using the integral averaging technique due to [15]. Following [15], let us introduce
now the class of functions X which will be used in these Theorems. Let

D =
{

(l, s) ∈ R
2 : l ≥ s ≥ l0

}

and D0 =
{

(l, s) ∈ R
2 : l > s ≥ l0

}

.

The functionH (l, s) ∈ C (D,R) said to belong to the classX (denoted byH ∈ X)
if it satisfies

1. H (l, l) = 0, l ≥ l0, H (l, s) > 0, (l, s) ∈ D0;

2. ∂H (l, s) /∂s ≤ 0, there exist ρ, δ ∈ C1 ([l0,∞) , [0,∞)) , ρ (l) 6= 0 and
h (l, s) ∈ C (D0,R) satisfying

−
∂H (l, s)

∂s
= H (l, s)

[

ρ′ (s)

ρ (s)
+ (α+ 1) δ

1

α (s)

]

+ h (l, s) .
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Theorem 2.3. Assume that conditions (C) and (2.1) are satisfied. If
there exists a function H ∈ X such that
(2.25)

lim
l→∞

sup
1

H (l, l0)

∫ l

l0

[

H (l, s)ψ (s)−
1

(α+ 1)α+1

ρ (s) r (s) |h (l, s)|α+1

Hα (l, s)

]

ds = ∞

and

ψ (l) = ρ (l) θ (l) + ρ (l)Rl0 (g (l, c)) g
′ (l, c) (r (l) δ (l))1+

1

α

−ρ (l) (r (l) δ (l))′ ,(2.26)

then every solution x (l) of Eq. (1.1) is either oscillatory or satisfies lim
l→∞

x (l) = 0.

P r o o f. Assume that Eq. (1.1) has a nonoscillatory solution x (l).
Without loss of generality, we may assume that x (l) is an eventually positive
solution of Eq. (1.1). By Lemma 2.1, we observe that z (l) satisfies either (i) or
(ii) for l ≥ l1. We consider each of two cases separately. Suppose first that z (l)
has the property (i) . From Lemma 2.3, we see that (2.2) and (2.3) hold. Now,
we define a generalized Riccati transformation ω (l) by

(2.27) ω (l) = ρ (l)

[

r (l) [z′′ (l)]α

zα (g (l, c))
+ r (l) δ (l)

]

, l ≥ l1.

Then we have ω (l) > 0 and

ω′ (l) = ρ′ (l)

[

r (l) [z′′ (l)]α

zα (g (l, c))
+ r (l) δ (l)

]

+ρ (l)

[

r (l) [z′′ (l)]α

zα (g (l, c))
+ r (l) δ (l)

]′

,

this implies that

ω′ (l) =
ρ′ (l)

ρ (l)
ω (l) + ρ (l) (r (l) δ (l))′ + ρ (l)

(r (l) [z′′ (l)])′

zα (g (l, c))

−αρ (l) r (l)
[z′′ (l)]α

zα+1 (g (l, c))
z′ (g (l, c)) g′ (l, c) .

By using (2.2) and (2.3) from Lemma 2.3, we get

ω′ (l) ≤
ρ′ (l)

ρ (l)
ω (l) + ρ (l) (r (l) δ (l))′ − ρ (l) (1− p)α

∫ d

c

q (l, ξ) dξ
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−αρ (l)Rl1 (g (l, c)) g
′ (l, c) r

1+α

α (l)

(

z′′ (l)

z (g (l, c))

)α+1

.

By virtue of (2.27), we conclude that

(2.28)
z′′ (l)

z (g (l, c))
=

1

r
1

α (l)

(

ω (l)

ρ (l)
− r (l) δ (l)

)
1

α

.

Which implies that

ω′ (l) ≤ −αρ (l)Rl1 (g (l, c)) g
′ (l, c)

(

ω (l)

ρ (l)
− r (l) δ (l)

)1+ 1

α

+
ρ′ (l)

ρ (l)
ω (l) + ρ (l) (r (l) δ (l))′ − ρ (l) θ (l) .(2.29)

Define

A∗ =
ω (l)

ρ (l)
and B∗ = r (l) δ (l) .

Using the inequality (see [15])

(A∗)1+
1

α − (A∗ −B∗)1+
1

α ≤ (B∗)
1

α

[(

1 +
1

α

)

A∗ −
1

α
B∗

]

,

A∗B∗ ≥ 0, α =
odd

odd
≥ 1, we have

(

ω (l)

ρ (l)
− r (l) δ (l)

)1+ 1

α

≥
ω1+ 1

α (l)

ρ1+
1

α (l)
+

1

α
(r (l) δ (l))1+

1

α

−

(

1 +
1

α

)

(r (l) δ (l))
1

α

ρ (l)
ω (l) .(2.30)

Using inequality (2.29) and (2.30) for l ≥ l, we have

ω′ (l) ≤ ρ (l) (r (l) δ (l))′ − ρ (l) θ (l)− ρ (l)Rl1 (g (l, c)) g
′ (l, c) (r (l) δ (l))1+

1

α

+

[

ρ′ (l)

ρ (l)
+ (α+ 1)Rl1 (g (l, c)) g

′ (l, c) (r (l) δ (l))
1

α

]

ω (l)

−
αRl1 (g (l, c)) g

′ (l, c)

ρ
1

α (l)
ω1+ 1

α (l) ,



142 O. Moaaz, E. M. Elabbasy, E. Shaaban

this implies that

(2.31) ω′ (l) ≤ −ψ (l) +A (l)ω (l)−G (l)ω1+ 1

α (l) ,

where ψ (l) is defined as in (2.26),

A (l) =

(

ρ′ (l)

ρ (l)

)

+ (α+ 1)Rl1 (g (l, c)) g
′ (l, c) (r (l) δ (l))

1

α

and
G (l) =

α

ρ
1

α (l)
Rl1 (g (l, c)) g

′ (l, c) .

Multiplying inequality (2.31) by H (l, s) and integrating the resulting inequality
from l to l, we have

∫ l

l

H (l, s)ψ (s) ds ≤

∫ l

l

H (l, s)
(

−ω′ (s) +A (s)ω (s)−G (s)ω1+ 1

α (s)
)

ds

= H (l, l)ω (l) +

∫ l

l

(

∂H (l, s)

∂s
+H (l, s)A (s)

)

ω (s) ds

−

∫ l

l

H (l, s)G (s)ω1+ 1

α (s) ds

= H (l, l)ω (l)−

∫ l

l

h (l, s)ω (s) ds

−

∫ l

l

H (l, s)G (s)ω1+ 1

α (s) ds,

this implies that

∫ l

l

H (l, s)ψ (s) ds ≤ H (l, l)ω (l) +

∫ l

l

[|h (l, s)|ω (s)

−H (l, s)G (s)ω1+ 1

α (s)
]

ds.(2.32)

Letting B = |h (l, s)| , A = H (l, s)G (s) , u = ω (s) and using the inequality (2.14)

Bu−Au1+
1

α ≤
αα

(α+ 1)α+1

Bα+1

Aα
,

we obtain
∫ l

l

H (l, s)ψ (s) ds ≤ H (l, l)ω (l) +

∫ l

l

1

(α+ 1)α+1

ρ (s) r (s) |h (l, s)|α+1

Hα (l, s)
ds.
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Hence

(2.33)
1

H (l, l)

∫ l

l

[

H (l, s)ψ (s)−
1

(α+ 1)α+1

ρ (s) r (s) |h (l, s)|α+1

Hα (l, s)

]

ds ≤ ω (l) ,

for all sufficiently large l, which contradicts (2.25). Now assume that z (l) has the
property (ii) . By Lemma 2.2 we have lim

l→∞
x (l) = 0. The proof is complete. ✷

It may happen that assume (2.25) in Theorem 2.3 fails to hold. Conse-
quently, Theorem 2.3 can not be applied. The following Theorem provides a new
oscillation criterion for Eq. (1.1).

Theorem 2.4. Let conditions (C) and (2.1) be satisfied. Assume that
there exists a function H ∈ X such that

(2.34) 0 < inf
s≥l0

{

lim
l→∞

inf
H (l, s)

H (l, l0)

}

≤ ∞

and

(2.35) lim
l→∞

sup
1

H (l, l0)

∫ l

l0

ρ (s) r (s) |h (l, s)|α+1

Hα (l, s)
ds <∞

hold. If there exists a function Γ (l) ∈ C ([l0,∞) ,R) such that, for all l ≥ l0,

(2.36) lim
l→∞

sup

∫ l

l0

ρ−
1

α (s) r−
1

α (s) [Γ+ (s)]
α+1

α ds = ∞

and

(2.37) lim
l→∞

sup
1

H (l, l)

∫ l

l

[

H (l, s)ψ (s)−
1

(α+ 1)α+1

ρ (s) r (s) |h (l, s)|α+1

Hα (l, s)

]

ds

≥ Γ (l) ,

where ψ (l) is defined by (2.26) and Γ+ (l) = max {Γ (l) , 0} , then the conclusion
of Theorem 2.3 remain intact.

P r o o f. The proof of this Theorem is similar to that of Theorem 3.2 in
[20]. So it can be omitted. ✷

Example 2.4. For l ≥ 1, consider the equation

(2.38)

(

1

l

[

z′′ (l)
]

)′

+

∫ 1

0

4q0ξ

l3
x

(

l + ξ

2

)

dξ = 0, q0 > 0,
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where z (l) = x (l) +

∫ 1

1

2

4η

3l2
x

(

l + η

3

)

dη. We note that: α = 1, r (l) =
1

l
,

p (l, η) =
4η

3l2
, τ (l, η) =

(

l + η

3

)

, q (l, ξ) =
4q0ξ

l3
, g (l, ξ) =

(

l + ξ

2

)

, a =
1

2
,

b = 1, c = 0, d = 1.Then

∫ b

a

p (l, η) dη =

∫ 1

1

2

4η

3l2
dη =

1

2l2
≤

1

2
and g (l, c) = g (l, 0) =

l

2
.

It is not difficult to verify

∫ ∞

1

s
1

3 ds = ∞ and

∫ ∞

1

∫ ∞

v

[

u

∫ ∞

u

∫ 1

0

4q0ξ

s3
dξds

]

dudv = ∞.

Therefore, the condition (C) and (2.1) are satisfied. Furthermore, we choose p =
1

2
, ρ (l) = l2, δ (l) = 0 and H (l, s) = (l − s)2 . Then h (l, s) = 2 (l − s)

(

2− ls−1
)

,

ψ (l) =

(

1−
1

2

)1
(

l2
)

∫ 1

0

4q0
l3
ξdξ =

q0
l

and

lim
l→∞

sup
1

H (l, l0)

∫ l

l0

[

H (l, s)ψ (s)−
1

(α+ 1)α+1

ρ (s) r (s) |h (l, s)|α+1

Hα (l, s)

]

ds

= lim
l→∞

sup
1

(l − 1)2

∫ l

1

[

q0 (l − s)2
1

s
−

1

22
s2 1

s
22 (l − s)2

(

2− ls−1
)2

(l − s)2

]

ds

= lim
l→∞

sup
1

(l − 1)2

∫ l

1

[

(q0 − 1) l2s−1 + (4− 2q0) l + (q0 − 4) s
]

ds = ∞,

if q0 > 1. Hence, by Theorem 2.3 every solution x (l) of Eq. (2.38) is either
oscillatory or converges to zero as l → ∞.

Remark 2.2. In Example (2.4), we note that, r (l) = 1/l and hence
r′ (l) < 0. So, the results in [16] and [20] cannot be applied in Eq. (2.38).
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