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Abstract. The main purpose of this paper is to study the convergence of
numerical solutions to a class of neutral stochastic delay differential equa-
tions (NSDDEs) in Itô sense. The basic idea is to reformulate the original
problem eliminating the dependence on the differentiation of the solution in
the past values, which leads to a stochastic differential algebraic system. It
is shown that the Semi-implicit Euler (SIE) method with two parameters

θ and λ is mean-square convergent with order p =
1

2
for Lipschitz contin-

uous coefficients of underlying NSDDEs. A nonlinear numerical example
illustrates the theoretical results.

1. Introduction. Stochastic functional differential equations (SFDEs),
as an important mathematical model, appear in science and engineering appli-
cations, especially for systems whose evolution in time is influenced by random
forces as well as its history information. Both the theory and numerical methods
for SFDEs have been well developed in the recent decades. If the time delay
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in SFDEs reduces to a constant, it is usually called stochastic delay differential
equations (SDDEs) (see [1] and [11]). Motivated by chemical engineering sys-
tems and the theory of aeroelasticity, Kolmanovskii et al. [8] introduced a class
of neutral stochastic functional differential equations (NSFDEs), which can be
identified as SFDEs. For the theory of NSFDEs we refer to [7] and [12]. The
scalar neutral stochastic differential equations with fixed time delay (NSDDE)
has the following general form

{
d[x(t)−N(x(t− τ))] = f

(
t, x(t), x(t− τ)

)
dt+ g

(
t, x(t), x(t− τ)

)
dW (t), t > 0

x(t) = ψ(t) ∈ C([−τ, 0];Rn),

where τ > 0 is a fixed constant.

In practice, many system models are described by NSDDEs. The models
involve not only time delays in the state but also has time delay included in the
state derivatives (see [3] and [6]). Since most of these equations cannot be solved
explicitly, numerical approximations became to be an important tool in studying
stochastic systems of neutral type (see [2] and [15]).

Mean-square convergence analysis of numerical solution for system of
stochastic differential equations (SDEs) is one of the key problems in stochas-
tic analysis (see [4]). However, the study on convergence of numerical method for
neutral stochastic differential systems is relatively scarce due to their technical
difficulties, which is the main topic of the present paper. Also for the convergence
analysis of numerical solution on SDEs, there exist mostly concerned papers. For
example, Li et al. [10, 9] discussed the convergence of the numerical solutions for
SDDE with jumps and SDDE with Poisson jump and Markovian switching. Zhou
and Wu [17] studied the convergence of numerical solutions to neutral stochas-
tic delay differential equations with Markovian switching. Zhang and Gan [16]
considered the mean square convergence of one-step methods for NSDDEs. Also
Milošević [13] studied the convergence and almost sure exponential stability of
implicit numerical methods for a class of highly nonlinear NSDDEs. Tan and
Wang [14] studied the convergence and stability of the split-step backward Euler
method for linear stochastic delay integro-differential equations. Gan et al. [5]
investigated the mean square convergence of stochastic θ-methods for nonlinear
neutral stochastic differential delay equations.

Based on these papers, to the best of our knowledge, convergence analysis
of semi-implicit Euler method for NSDDEs has never been considered so far. In
this paper, we derive a sufficient condition of the mean-square convergence of
the SIE method for NSDDEs and develop the method to two parameters θ and
λ which is novel and its property is such a way can accelerate the mean-square
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convergence as show in the proof. Also in the numerical section we see that the
parameters θ and λ can enhance the accuracy of the convergence for SIE method.

The rest of the paper is organized as follows: Section 2 begins with nota-
tions and preliminaries, then introduces the SIE method with two parameters θ
and λ for NSDDEs. Section 3 proves that the SIE method is mean-square con-

vergent to the exact solution with the strong convergence order p =
1

2
. Section 5

gives a nonlinear numerical example to confirm the theoretical results.

2. Preliminaries and notations. Throughout this paper, unless oth-
erwise specified, we use the following notations. Let |·| denotes both the Euclidean
norm in R

n and the trace (or Frobenius) norm in R
n×d. If A is a vector or ma-

trix, its transpose is denoted by AT . If A is a matrix, its trace norm is denoted

by |A| =
√

trace(ATA). a ∨ b represents max{a, b} and a ∧ b denotes min{a, b}.

Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0, which is
right continuous and satisfies that each F0 contains all P-null sets, and W (t) be
a d-dimensional standard Wiener process defined on this probability space.
Let N : Rn → R

n, f : [t0, T ]× R
n × R

n 7→ R
n and g : [t0, T ]× R

n × R
n 7→ R

n×d

be Borel measurable real-valued functions satisfy the global lipschitz condition.
Consider the n-dimensional NSDDE in Itô-sense

(1)
d[x(t)−N(x(t−τ))] = f

(
t, x(t), x(t−τ)

)
dt+g

(
t, x(t), x(t−τ)

)
dW (t), t ∈ [t0, T ],

with initial data x(t) = ψ(t) ∈ C([t0 − τ, t0];R
n), satisfying

E
(

sup
t0−τ≤t≤t0

|ψ(t)|2
)
< +∞,

where τ > 0 is delay time.

Assumption 2.1 (Contractive Mapping). Assume that for all x, y ∈
R
n, there exists a positive constant κ ∈ (0, 1) such that

(2) |N(x)−N(y)| ≤ κ|x− y|.

Now we introduce the semi-implicit Euler (SIE) approximation {yk}k≥0

as follows:
(3)
yk+1 = yk+N(yk+1−Nτ

)−N(yk−Nτ
)+θf(yk+1, yk+1−Nτ

)∆+λg(yk, yk−Nτ
)∆Wk,

where stepsize ∆ =
τ

Nτ

for a integer Nτ , xk = yk = ψ(k∆) for k = −Nτ ,−Nτ +1,

. . . , −1, y0 = ψ(0), θ and λ are fixed parameters in interval (0, 1]. The Wiener
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increments is defined as ∆Wk :=W ((k + 1)∆)−W (k∆), where W (k∆) denotes
the Wiener process at time k∆.

3. Mean-square convergence analysis. In this section we examine
the mean-square convergence of SIE method for θ, λ ∈ (0, 1]. To this aim for
every 0 ≤ t0 ≤ t < T <∞, equation (1) has the following integral form

x(t)−N(x(t− τ)) = x(t0)−N(x(t0 − τ)) +

∫ t

t0

f(t, x(s), x(s− τ))ds(4)

+

∫ t

t0

g(t, x(s), x(s − τ))dW (s).

Assumption 3.1. Let f and g satisfy the following conditions: there
exist positive constants K1, K2 and K3 such that, for all x1, x2, y1, y2 ∈ R

n, and
t ∈ [t0, T ] we have

(5) |f(t, x2, y2)− f(t, x1, y1)|
2 ∨ |g(t, x2, y2)− g(t, x1, y1)|

2

≤ K1(|x2 − x1|
2 + |y2 − y1|

2),

(6) |f(t, x, y)|2 ∨ |g(t, x, y)|2 ≤ K2(1 + |x|2 + |y|2),

and

(7) |f(t, x, y)− f(s, x, y)|2 ∨ |g(t, x, y) − g(s, x, y)|2 ≤ K3(1 + |x|2 + |y|2)|t− s|,

for all x, y ∈ R
n and t, s ∈ [t0, T ].

Proposition 3.2. If the contractive condition (2) and the linear growth
condition (6) are fulfilled, then for p ≥ 2, we have

(8) E
(

sup
t0−τ≤s≤t

|x(t)|p
)
≤ CL

(
1 + E

(
sup

t0−τ≤t≤t0

|ψ(t)|p
))
,

where CL depends on κ, K2 and T (see [12]).

Lemma 3.3. Let conditions (2), (5) and (6) hold. Assume that the initial
function ψ(t) is Hölder continuous, that is there is a positive constant L1 such
that

(9) E|ψ(t2)− ψ(t1)|
2 ≤ L1|t2 − t1|, if t0 − τ ≤ t1 < t2 ≤ t0,
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then there exist constant L2 depending on L1, T and initial function ψ(t), such
that

(10) E|x(t)− x(s)|2 ≤ L2|t− s|, for all t0 ≤ s < t ≤ T,

with t−mτ ∈ [−τ, 0] and s−mτ ∈ [−τ, 0], for any positive integer m (see [5]).

By defining the function z(t) = x(t)−N(x(t− τ)), equation (1) can be
rewritten as follows:

(11) dz(t) = f̂
(
t, z(t), x(t− τ)

)
dt+ ĝ

(
t, z(t), x(t − τ)

)
dW (t), t0 ≤ t ≤ T,

with the initial condition:

(12) z(t0) = x(t0)−N(x(t0 − τ)),

where

(13) f̂(t, z, u) = f(t, z +N(u), u), ĝ(t, z, u) = g(t, z +N(u), u).

For convenience we can assumeNτ ≥ 2, therefore SIE method for problem
(11)–(12) can be rewritten as follows:

(14)





zk+1 = zk + θf̂(tk+1, zk+1, xk+1−Nτ
)∆ + λĝ(tk, zk, xk−Nτ

)∆Wk

k = 0, 1, . . . , N − 1,
zk = xk −N(xk−Nτ

), k = 0, 1, . . . , N,

where zk is approximate solution to z(tk), and the initial values are given by
z0 = z(t0), xk−Nτ

= ψ(t0 + tk − τ) for k − Nτ ≤ 0. We define the local error of
SIE method (14) as follows:

δ∆(tk) = z(tk+1)− z(tk)− θf̂
(
tk+1, z(tk+1), x(tk+1 − τ)

)
∆(15)

− λĝ
(
tk, z(tk), x(tk − τ)

)
∆Wk.

Theorem 3.4. Assume that all the conditions Assumption 3.1 hold and
by the Proposition 3.2 for any θ, λ ∈ (0, 1], the algorithm defined in (14) is mean-

square convergent with order p =
1

2
, when

(16) max
0≤k≤N

(
E(|z(tk)− zk|

2)
) 1

2 ≤ C∆
1

2 as ∆ =
τ

Nτ

→ 0,

where the constant C dose not depend on stepsize ∆, but may depend on T and
the initial data.
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P r o o f. With the estimate of local error, we can make an estimate of
global error

e(tk) := z(tk)− zk.

Note that the global error e(tk) is {Ftk}tk≥0-measurable, since both z(tk) and
zk are {Ftk}tk≥0-measurable random variables. By using the local error (15), we
have

(17) e(tk+1)− e(tk) = R(tk) + δ∆(tk),

where

R(tk) = θ
(
f̂(tk+1, z(tk+1), x(tk+1 − τ))− f̂(tk+1, zk+1, xk+1−Nτ

)
)
∆

+ λ
(
ĝ(tk, z(tk), x(tk − τ))− ĝ(tk, zk, xk−Nτ

)
)
∆Wk.(18)

By using (17) and the elementary inequality 2aT b ≤ |a|2 + |b|2, a, b ∈ R
n, we can

obtain

E|e(tk+1)|
2 ≤ E|e(tk)|

2 + 2E|R(tk)|
2 + 2E|δ∆(tk)|

2(19)

+ 2|E〈e(tk), δ∆(tk)〉|+ 2|E〈e(tk), R(tk)〉|.

Recall the important inequality for any p ≥ 1 and x1, x2, . . . , xn ≥ 0, and n is a
positive integer, then

(20)

( n∑

i=1

xi

)p

≤ np−1
n∑

i=1

xpi .

Therefore from the relation (18), we have

2E|R(tk)|
2 ≤ 4θ2∆2

E|f̂(tk+1, z(tk+1), x(tk+1 − τ))− f̂(tk+1, zk+1, xk+1−Nτ
)|2

+ 4λ2∆E|ĝ(tk, z(tk), x(tk − τ))− ĝ(tk, zk, xk−Nτ
)|2

≤ 4θ2∆2
E|f(tk+1, x(tk+1), x(tk+1 − τ))− f(tk+1, xk+1, xk+1−Nτ

)|2

+ 4λ2∆E|g(tk, x(tk), x(tk − τ))− g(tk, xk, xk−Nτ
)|2

≤ 4K1θ
2∆2

E
(
|x(tk+1)− xk+1|

2 + |x(tk+1 − τ)− xk+1−Nτ
|2
)

+ 4K1λ
2∆E

(
|x(tk)− xk|

2 + |x(tk − τ)− xk−Nτ
|2
)
.(21)

A combination of (21) and the fact that

|x(tk)− xk|
2 = |z(tk) +N(x(tk − τ))− zk −N(xk−Nτ

)|2
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≤ 2|e(tk)|
2 + 2κ2|x(tk − τ)− xk−Nτ

|2,(22)

leads to the estimation

2E|R(tk)|
2 ≤ 4K1θ

2∆2
(
2E|e(tk+1)|

2 + (1 + 2κ2)E|x(tk+1 − τ)− xk+1−Nτ
|2
)

+ 4K1λ
2∆

(
2E|e(tk)|

2 + (1 + 2κ2)E|x(tk − τ)− xk−Nτ
|2
)

≤ C1∆
(
E|e(tk+1)|

2 + E|e(tk)|
2 + E|x(tk+1 − τ)− xk+1−Nτ

|2

+ E|x(tk − τ)− xk−Nτ
|2
)
,(23)

where C1 = max
{
8K1θ

2ν, 4K1θ
2ν(1 + 2κ2), 8K1λ

2, 4K1λ
2(1 + 2κ2)

}
with

ν =
τ

2
.

Also by using the Cauchy-Schwarz inequality, we have

2|E〈e(tk), δ∆(tk)〉| = 2|E
(
E (〈e(tk), δ∆(tk)〉 | Ftk)

)
|

≤ 2E|〈e(tk),E(δ∆(tk) | Ftk)〉|

≤ 2
(
∆E|e(tk)|

2
) 1

2
(
∆−1

E|E(δ∆(tk) | Ftk)|
2
) 1

2

≤ ∆E|e(tk)|
2 +∆−1

E|E(δ∆(tk) | Ftk)|
2.(24)

By using Jensen’s inequality |E(X | Y)|2 ≤ E(|X|2 | Y) and the elementary in-
equality (a+ b)2 ≤ 2a2 + 2b2, for the estimation |E(δ∆(tk) | Ftk )|

2, we obtain

(25)

|E(δ∆(tk) | Ftk )|
2

= |E
( ∫ tk+1

tk

(
f(s, x(s), x(s− τ))− f(tk, x(tk), x(tk − τ))

)
ds | Ftk

)

−∆E
(
f(tk+1, x(tk+1), x(tk+1 − τ))− f(tk, x(tk), x(tk − τ)) | Ftk

)
|2

≤ 2|E
( ∫ tk+1

tk

(
f(s, x(s), x(s − τ))− f(tk, x(tk), x(tk − τ))

)
ds | Ftk

)
|2

+2∆2|E
(
f(tk+1, x(tk+1), x(tk+1 − τ))− f(tk, x(tk), x(tk − τ)) | Ftk

)
|2

≤ 2∆E
( ∫ tk+1

tk

|f(s, x(s), x(s − τ))− f(tk, x(tk), x(tk − τ))|2ds | Ftk

)

+2∆2
E
(
|f(tk+1, x(tk+1), x(tk+1 − τ))− f(tk, x(tk), x(tk − τ))|2 | Ftk

)
.
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According to conditions (5) and (7), we have

(26)

|E(δ∆(tk) | Ftk)|
2

≤ 4∆E

(∫ tk+1

tk

|f(s, x(s), x(s − τ))− f(tk, x(s), x(s − τ))|2ds | Ftk

)

+4∆E

(∫ tk+1

tk

|f(tk, x(s), x(s − τ))− f(tk, x(tk), x(tk − τ))|2ds | Ftk

)

+4∆2
E
(
|f(tk+1, x(tk+1), x(tk+1 − τ))− f(tk, x(tk+1), x(tk+1 − τ))|2 | Ftk

)

+4∆2
E
(
|f(tk, x(tk+1), x(tk+1 − τ))− f(tk, x(tk), x(tk − τ))|2 | Ftk

)

≤ 4K3∆E

(∫ tk+1

tk

(1 + |x(s)|2 + |x(s − τ)|2)|s− tk|ds | Ftk

)

+4K1∆E

(∫ tk+1

tk

(|x(s)− x(tk)|
2 + |x(s − τ)− x(tk − τ)|2)ds | Ftk

)

+4K3∆
3
E
(
1 + |x(tk+1)|

2 + |x(tk+1 − τ)|2 | Ftk

)

+4K1∆
2
E
(
|x(tk+1)− x(tk)|

2 + |x(tk+1 − τ)− x(tk − τ)|2 | Ftk

)
.

Subsequently, by using Proposition 3.2 and Lemma 3.3, we get the final inequality
of (26)

E|E(δ∆(tk) | Ftk )|
2 ≤ 2K3

(
1 + 2CL

(
1 + E( sup

t0−τ≤t≤t0

|ψ(t)|p)
))

∆3 + 4K1L2∆
3

+ 4K3

(
1 + 2CL

(
1 + E( sup

t0−τ≤t≤t0

|ψ(t)|p)
))

∆3 + 8K1L2∆
3

= C2∆
3,(27)

where C2 = 6K3

(
1 + 2CL

(
1 + E( sup

t0−τ≤t≤t0

|ψ(t)|p)
))

+ 12K1L2, which implies

2|E〈e(tk), δ∆(tk)〉| ≤ ∆E|e(tk)|
2 +∆−1

E|E(δ∆(tk) | Ftk)|
2

≤ ∆E|e(tk)|
2 + C2∆

2.(28)

For the estimation E|δ∆(tk)|
2, we can easily derive that

2E|δ∆(tk)|
2 ≤ 12∆E

(∫ tk+1

tk

|f(s, x(s), x(s− τ))− f(tk, x(s), x(s − τ))|2ds

)

+ 12∆E

(∫ tk+1

tk

|f(tk, x(s), x(s − τ))− f(tk, x(tk), x(tk − τ))|2ds

)
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+ 12E

(∫ tk+1

tk

|g(s, x(s), x(s − τ))− g(tk, x(s), x(s − τ))|2ds

)

+ 12E

(∫ tk+1

tk

|g(tk, x(s), x(s − τ))− g(tk, x(tk), x(tk − τ))|2ds

)

+ 12∆2
E
(
|f(tk+1, x(tk+1), x(tk+1 − τ))−f(tk, x(tk+1), x(tk+1 − τ))|2

)

+ 12∆2
E
(
|f(tk, x(tk+1), x(tk+1 − τ))− f(tk, x(tk), x(tk − τ))|2

)
.(29)

Again, by using Proposition 3.2 and Lemma 3.3, we get from (29) the following
inequality:

2E|δ∆(tk)|
2 ≤ 12K3(1 + ∆)E

(∫ tk+1

tk

(1 + |x(s)|2 + |x(s − τ)|2)|s− tk|ds

)

+ 12K1(1 + ∆)E

(∫ tk+1

tk

(|x(s)− x(tk)|
2 + |x(s − τ)− x(tk − τ)|2)ds

)

+ 12K3∆
3
(
1 + E|x(tk+1)|

2 + E|x(tk+1 − τ)|2
)

+ 12K1∆
2
(
E|x(tk+1)− x(tk)|

2 + E|x(tk+1 − τ)− x(tk − τ)|2
)
,(30)

which implies

2E|δ∆(tk)|
2 ≤ C3∆

2,(31)

with C3 = 24K3

(
1 + 2CL

(
1 + E( sup

t0−τ≤t≤t0

|ψ(t)|p)
))

+ 24K1L2.

It follows from (5), (18) and (22) that

|E(R(tk) | Ftk)|
2

= |θ∆E
(
f̂(tk+1, z(tk+1), x(tk+1 − τ))− f̂(tk+1, zk+1, xk+1−Nτ

) | Ftk

)
|2

≤ θ2∆2
E
(
|f(tk+1, x(tk+1), x(tk+1 − τ))− f(tk+1, xk+1, xk+1−Nτ

)|2 | Ftk

)

≤ K1θ
2∆2

E
(
|x(tk+1)− xk+1|

2 + |x(tk+1 − τ)− xk+1−Nτ
|2 | Ftk

)

≤ K1θ
2∆2

E
(
2|e(tk+1)|

2 + (1 + 2κ2)|x(tk+1 − τ)− xk+1−Nτ
|2 | Ftk

)

≤ C4∆
2
(
E(|e(tk+1)|

2 | Ftk) + E|e(tk)|
2 + E|x(tk+1 − τ)− xk+1−Nτ

|2

+ E|x(tk − τ)− xk−Nτ
|2
)
,(32)

where C4 = max
{
2K1θ

2,K1θ
2(1 + 2κ2)

}
.
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Therefore by using the Cauchy-Schwarz inequality for the last term of
relation (19), we have

2|E〈e(tk), R(tk)〉| = 2|E
(
E
(
〈e(tk), R(tk)〉 | Ftk

))
|

≤ 2E|〈e(tk),E(R(tk) | Ftk)〉|

≤ 2
(
∆E|e(tk)|

2
) 1

2
(
∆−1

E|E(R(tk) | Ftk)|
2
) 1

2

≤ ∆E|e(tk)|
2 + C4∆

(
E|e(tk+1)|

2 + E|e(tk)|
2 + E|x(tk+1 − τ)− xk+1−Nτ

|2

+ E|x(tk − τ)− xk−Nτ
|2
)

≤ C5∆
(
E|e(tk+1)|

2 + E|e(tk)|
2 + E|x(tk+1 − τ)

− xk+1−Nτ
|2 + E|x(tk − τ)− xk−Nτ

|2
)
,(33)

where C5 = C4 + 1. Inserting relations (23), (28), (31) and (33) into (19), it
yields that

E|e(tk+1)|
2 ≤ (C1 + C5)∆E|e(tk+1)|

2 +
(
1 + (1 + C1 +C5)∆

)
E|e(tk)|

2

+ (C1 + C5)∆
(
E|x(tk+1 − τ)− xk+1−Nτ

|2 + E|x(tk − τ)− xk−Nτ
|2
)

+ (C2 + C3)∆
2.(34)

Let mT =

[
T − t0
τ

]
+ 1, and repeat of recursive relation of (22) we have

(1− C6∆)E|e(tk+1)|
2 ≤ (1 + C7∆)E|e(tk)|

2 + C8∆ max
0≤j≤k

E|e(tj)|
2 + C9∆

2,(35)

where

C6 = C1 + C5, C7 = 1 + C1 + C5, C8 = 4
(
1 + 2κ2 + · · · + (2κ2)mT−1

)
(C1 +C5)

and C9 = C2 + C3.
Let βk := max

0≤j≤k
E|e(tj)|

2 with β0 := 0, and from (35) we get

(36) βk+1 ≤
1 + (C7 + C8)∆

1− C6∆
βk + 2C9∆

2 ≤ (1 +C10∆)βk + 2C9∆
2,

where C10 = 2(C6 + C7 + C8). By induction, it can be achieved that

(37) βk+1 ≤ (1+C10∆)k+1β0+2C9∆
2

k∑

j=0

(1+C10∆)j ≤
2C9

C10

(
eC10(T−t0)− 1

)
∆,
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and by taking the square root, inequality (37) implies that

max
0≤k≤N

(
E(|z(tk)− zk|

2)
) 1

2 ≤ C∆
1

2 ,

where C =

√
2C9(eC10(T−t0) − 1)/C10. This completes the proof of Theorem

3.4. ✷

4. Numerical experiments. This section is devoted to present our
theoretical estimates obtained by a numerical experiment. We consider the fol-
lowing nonlinear NSDDE:

(38) d

[
x(t)−

1

4
sin(x(t− 1))

]

=
(
− 6x(t) + x(t− 1)

)
dt+ x(t) cos(x(t− 1))dW (t), t ∈ [t0, T ],

with the initial data x(t) = ψ(t) = 1 for t ∈ [−1, 0]. We consider the mean-
square convergence of equation (38). When t ∈ [0, 2], it is easy to see that the
drift and diffusion coefficients satisfy the conditions (5) and (6). To illustrate
the convergence of the SIE method, 103 sample trajectories are simulated. A
set of 10 blocks each containing 100 outcomes (i, j : 1 ≤ i ≤ 10, 1 ≤ j ≤ 100) are
applied and for each block the estimator is defined as

(39) ei =
1

100

100∑

j=1

|xT,j,i − xT,j,i|
2,

where xT,j,i denotes the approximate solution obtained using the SIE method for
stepsizes ∆ = 2−9, 2−8, 2−7, 2−6, 2−5 and 2−4. Then, the mean of estimator (39),
which is itself estimated in the usual way

(40) Error =
1

10

10∑

i=1

ei.

Since the exact solution xT,j,i needed in (39) is not available, a very accurate
estimation of it is obtained as the reference solution by using a very large number
of time steps or equivalently the stepsize so small (∆ = 2−14). In order to evaluate
the time convergence rate, the number of time steps employed N is progressively
doubled. We show the Error results in Table 1 and Figure 1 for different cases of
θ and λ as well different values of stepsize ∆.
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Table 1. Numerical results for SIE method with T = 2.

Error ∆ = 2−9 ∆ = 2−8 ∆ = 2−7 ∆ = 2−6 ∆ = 2−5 ∆ = 2−4

θ, λ = 0.1 5.72e−6 1.68e−5 2.30e−5 5.15e−5 1.05e−4 2.60e−4

θ, λ = 0.5 4.64e−6 6.71e−6 7.50e−6 1.18e−5 2.34e−5 3.37e−5

θ, λ = 1 3.55e−6 3.96e−6 5.31e−6 1.07e−5 1.86e−5 2.71e−5

Fig. 1. The convergence rate of the SIE method

Conclusion. In this paper, we have investigated SIE method for non-
linear NSDDEs. In this regard we examined the mean-square convergence for
these kind of equations. The parameters θ and λ can enhance the accuracy of
the convergence for SIE method. We obtained the strong convergence of order

p =
1

2
and we show in Table 1 that get till 5 digit accuracy.
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