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Abstract. In this paper we study Dupin hypersurfaces in R
5 parametrized

by lines of curvature, with four distinct principal curvatures. We give a
local characterization of this class of hypersurfaces in terms of the principal
curvatures and four vector valued functions of one variable. We prove that
these vectorial functions describe plane curves or points in R

5. We show
that the Lie curvature of these Dupin hypersurfaces is constant with some
conditions on the Laplace invariants and the Möbius curvature, but some
Möbius curvatures are constant along certain lines of curvature. We give
explicit examples of such Dupin hypersurfaces.

1. Introduction. Let M be an immersed hypersurface in Euclidean
space Rn or the unit sphere Sn ⊂ R

n+1. The hypersurface M is said to be Dupin

if along each curvature surface the corresponding principal curvature is constant.
The hypersurface M is called proper Dupin if the number g of distinct principal
curvatures is constant on M .
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Dupin surfaces were first studied by Dupin in 1822 and more recently
by many authors [1]–[6], [10]–[22], which studied several aspects of Dupin hy-
persurfaces. The class of Dupin hypersurfaces is invariant under Lie transfor-
mations [13]. Therefore, the classification of Dupin hypersurfaces is considered
up to these transformations. Pinkall [14] gave a complete classification up to
Lie equivalence for Dupin hypersurfaces M3 ⊂ R

4, with three distinct principal
curvatures. Niebergall [11, 12], Cecil and Jensen [6] studied proper Dupin hy-
persurfaces with four distinct principal curvatures and constant Lie curvature.
Niebergall [11, 12] proved that a connected irreducible proper Dupin hypersur-
face M4 in S5 with four principal curvatures and constant Lie curvature is Lie
equivalent to an isoparametric hypersurface under an additional assumption. In
[6], Cecil and Jensen proved that Niebergall’s additional assumptions are unnec-
essary. They showed that every connected irreducible proper Dupin hypersurface
M4 in S5 with four principal curvatures and constant Lie curvature is Lie equiv-
alent to an isoparametric hypersurface. Later Cecil et al. [4] generalized this
result to higher dimensions.

Tenenblat and Riveros [19] obtained a local characterization of the Dupin
hypersurfaces in R

5 parametrized by lines of curvature, with four distinct prin-
cipal curvatures and Tijkl 6= 0, in terms of the principal curvatures and four
vector valued functions in R

5 which are invariant by inversions and homotheties.
Riveros in [17] studied Dupin hypersurfaces parametrized by lines of curvature
with some conditions on the Laplace invariants.

Riveros, Rodrigues and Tenenblat [20] studied a class of proper Dupin
hypersurfaces Mn ⊂ in R

n+1 parametrized by lines of curvature, with n distinct
principal curvatures and constant Möbius curvature. They then showed that for
n ≥ 3 the condition of having constant Möbius curvature is equivalent to having
all Laplace invariants equal to zero.

Tenenblat et al. [7], obtain a characterization for Dupin hypersurfaces
in R

5, parametrized by lines of curvature with four distinct principal curvatures
and Tijkl 6= 0, in terms of three vector values functions, this result improves the
result obtained in [19].

In this paper we consider proper Dupin hypersurfaces in R
5, parametrized

by lines of curvature with four distinct principal curvatures and we ask if, it is
possible to obtain a similar result to obtained in [7] with the condition Tijkl = 0.
The Theorem 3.1 gives an affirmative answer to this question, more precisely, we
obtain a local characterization of a class of Dupin hypersurfaces parametrized by
lines of curvature and Tijkl = 0 in terms of the principal curvature functions and
four vector valued functions of one variable. Moreover, it follows from results of
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Pinkall [13] and Cecil and Jensen [4] that these hypersurfaces are either reducible
or have nonconstant Lie curvature. Furthermore, this result shows that the char-
acterization obtained in [7] is not true when Tijkl = 0. Also, we prove that the
vector valued functions in this characterization are plane curves or points in R

5.
Moreover, we prove that the Lie curvature of these hypersurfaces is constant with
some assumptions on the laplace invariants and the Möbius curvature, but some
Möbius curvatures are constant along certain lines of curvature. Finally, we give
explicit examples of this class of Dupin hypersurfaces.

2. Properties of hypersurfaces with distinct principal cur-
vatures. We consider Ω an open subset of Rn and x = (x1, x2, . . . , xn) ∈ Ω. Let
X : Ω ⊂ R

n → R
n+1, n ≥ 3, be a hypersurface parametrized by lines of curva-

ture, with distinct principal curvatures λi, 1 ≤ i ≤ n and N : Ω ⊂ R
n → R

n+1 a
unit normal vector field of X. Then

〈X,i,X,j〉 = δijgii, 1 ≤ i, j ≤ n,

N,i = −λiX,i,(2.1)

where the subscript ,i denotes the derivative with respect to xi.
Also,

X,ij − Γi
ijX,i − Γj

ijX,j = 0, 1 ≤ i 6= j ≤ n,(2.2)

Γi
ij =

λi,j

λj − λi

, 1 ≤ i 6= j ≤ n,(2.3)

where Γk
ij are the Christoffel symbols. From (2.2) we have

(2.4) Γi
ij,k = Γi

ik,j, 1 ≤ i 6= j 6= k ≤ n.

Besides,

(2.5) Γj
jk,i = Γi

ikΓ
j
ji + Γj

jkΓ
k
ik − Γj

jkΓ
j
ij, 1 ≤ i 6= j 6= k ≤ n.

The Christoffel symbols in terms of the metric (2.1) are given by

(2.6) Γk
ij = 0, Γi

ii =
gii,i
2gii

, Γj
ii = −

gii,j
2gjj

, Γi
ij =

gii,j
2gii

,

where i, j, k are distinct.
We now consider the higher-dimensional Laplace invariants of the system of equa-
tions (2.2) (see [8]–[9] for definitions of these invariants),

(2.7)
mij = −Γi

ij,i + Γi
ijΓ

j
ij ,

mijk = Γi
ij − Γk

kj, k 6= i, j, 1 ≤ k ≤ n.
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As a consequence of (2.3), (2.7) and the un-numbered lemma appearing in [9],
we obtain for 1 ≤ i, j, k, l ≤ n, i, j, k, l distinct,

(2.8)

mijk +mkji = 0,
mijk,k −mijkmjki = 0,
mijk −mijl −mljk = 0,

mlik,j +mijlmkil +mljkmkij = 0.

From (2.2) and (2.6), we obtain

(2.9) X,ii =
∑

j

Γj
iiX,j + giiλiN.

The Gauss equation for the immersion X is given by

(2.10)
Γi
ij,j

gjj
+

Γi
ij

gjj
(Γi

ij − Γj
jj) +

Γj
ji,i

gii
+

Γj
ji

gii
(Γj

ji − Γi
ii) +

∑

k 6=i 6=j

Γi
ikΓ

j
jk

gkk
+ λiλj = 0.

For hypersurfaces with distinct principal curvatures, theMöbius curvature

is defined, for distinct i, j, k, by

(2.11) Cijk =
λi − λj

λk − λj

,

and the Lie curvature is defined, for distinct i, j, k, l by

(2.12) Ψ =
(λj − λk)

(λj − λi)

(λl − λi)

(λl − λk)
.

Since all λi are distinct we conclude that Cijk 6= 0 and Cijk 6= 1. Möbius curva-
tures are invariant under Möbius transformations.

The following result extends Lemma 3.3 in [7] for hypersurfaces para-
metrized by lines of curvature.

Lemma 2.1. For n ≥ 3, let X : Ω ⊂ R
n → R

n+1, be a hypersurface

parametrized by lines of curvature, with distinct principal curvatures λi, 1 ≤ i ≤
n. Then

Γj
ji,ii = Γj

ijfij − (Γj
ij)

2hij − (Γj
ij)

3 + 3Γi
iiΓ

j
ij − λi,iλjgii +

gii
gjj

(mij,j + 2mijΓ
i
ij)

−
∑

k 6=i

mikΓ
j
jk

gii
gkk

,(2.13)
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where

fij = Γi
ii,i − 2(Γi

ii)
2 + 6Γi

iiΓ
j
ij − 3(Γj

ij)
2 − 3Γj

ij,i − λ2
i gii −

∑

k 6=i

(Γi
ik)

2 gii
gkk

,(2.14)

hij = 3(Γi
ii − Γj

ij).(2.15)

Moreover, the functions fij and hij do not depend xj.

P r o o f. The proof is a straightforward computation, it follows from
(2.3), (2.5)–(2.8) and (2.10). ✷

We considerX : Ω ⊂ R
4 → R

5, a proper Dupin hypersurface parametrized
by lines of curvature, with distinct principal curvatures λi, 1 ≤ i ≤ 4. Consid-
ering the higher-dimensional Laplace invariants satisfying (2.8), for 1 ≤ i 6= j 6=
k 6= l ≤ 4 fixed, we consider the functions Tijkl and Uijkl defined in [19] by

Tijkl = mjil +

[
log

(
mjik

mkil

)]

,i

,(2.16)

Uijkl = mkil +

[
log

(
mjik

mjil

)]

,i

,(2.17)

where mjik 6= 0, mjil 6= 0 and mkil 6= 0.

3. Characterization of a class of Dupin hypersurfaces. In this
section, the next theorems are our main results. They characterize locally a
class of Dupin hypersurfaces, parametrized by lines of curvature in R

5, with four
distinct distinct principal curvatures.

The following theorem shows that when Tijkl = 0, the theorem 4.1 ob-
tained in [7] is not true, i.e. in this case we have four vector valued functions in
R
5 and not three as in [7].

Theorem 3.1. Let X : Ω ⊂ R
4 → R

5, be a proper Dupin hypersurface,

parametrized by lines of curvature, with four distinct principal curvatures λr. For

i, j, k, l distinct fixed indices, suppose Tijkl = 0 and mijk = mijl = mjli = mkli =
0. Then

(3.1) X = V

[
Cj − Ck −

mjike
−S

mjilQk

∫
Gl(xl)dxl

]
,

where

(3.2) V =
e

∫ λk−λj

λj−λi
mjkidxk

λj − λi
, Cr =

1

Qr

[∫
QrGi(xi)

mjik

dxi +Gr(xr)

]
, r = j, k,
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Gr(xr), r = i, j, k, l are vector valued functions of R5, A,j = 0, A = −

∫
mjki,idxk

and

Qr =

{
e
∫
Adxi if r = j,

e
∫
(A+mjir)dxi if r = k,

(3.3)

(3.4) S =

∫ (
mikj +

mjklmjik

mjil

)
dxk.

Moreover, considering

(3.5) βi =
(
A+ Γj

ji

)
M +M,i, βs = Γi

isM +M,s, s 6= i,

where M = Cj − Ck −
mjike

−S

mjilQk

∫
Gl(xl)dxl, the functions Gr(xr) satisfy the

following properties in Ω, for 1 ≤ r 6= t ≤ 4 :

a) βr 6= 0,

b) 〈βr, βt〉 = 0, r 6= t,

c) λr =
〈βr

,r, β
i × βj × βk × βl〉

V |βr|2 |βi| |βj | |βk| |βl|
.

Conversely, let λr : Ω ⊂ R
4 → R, r = 1, . . . , 4 be real functions, distinct at each

point, such that λr,r = 0. Assume that the functions mrts defined by

(3.6) mrts =
λr,t

λt − λr
−

λs,t

λt − λs
, 1 ≤ r 6= t 6= s ≤ 4,

satisfy (2.8), and for i, j, k, l distinct fixed indices, Tijkl = 0 and mijk = mijl =
mjli = mkli = 0. Then for any vector valued functions Gr(xr), satisfying proper-

ties a) b) c), where βr is defined by (3.5), the function X : Ω ⊂ R
4 → R

5 given by

(3.1) describes a Dupin hypersurface, parametrized by lines of curvature, whose

principal curvatures are the functions λr.

The next result provides a geometric description of the vector valued
functions Gr(xr).

Theorem 3.2. Under the hypothesis of Theorem 3.1, the vector valued

functions Gr(xr), r = i, j, k, l, describe plane curves or points.
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The next results provide a characterization of this class of Dupin hyper-
surfaces using the Lie curvature and the Möbius curvature.

Theorem 3.3. Let X be a Dupin hypersurface as in Theorem 3.1. Then

X has Lie curvature constant, if and only if, mjik +mkilC
jkl = 0 and

mjkiC
ilk

λi − λj

+
mlkiC

ikl

λl − λk

= 0.

Theorem 3.4. Let X be a Dupin hypersurface as in Theorem 3.1. Then

for any s, r ∈ {j, k, l}, s 6= r, the Möbius curvatures Cirs are constant along the

lines of curvature corresponding to the principal curvatures λr or λs. Also, the

Möbius curvature Ckjl is constant along the lines of curvature corresponding to

the principal curvatures λj or λl.

We will now prove two lemmas that will be used in the proof of Theo-
rem 3.1.

Lemma 3.5. Let X be a proper Dupin hypersurface in R
5, parametrized

by lines of curvature, with four distinct principal curvatures λr. For i, j, k, l
distinct fixed indices, suppose Tijkl = 0 and mijk = mijl = mjli = mkli = 0. Then

i) The functions defined in (3.3) and (3.4) satisfy

Qj,i = AQj, Qj,j = 0, Qj,k = mikjQj , Qj,l = 0,

Qk,i = (A+mjik)Qk, Qk,j = 0, Qk,k = 0, Qk,l = 0,

S,i = 0, S,j = 0, S,k = mikj +
mjklmjik

mjil

, S,l = 0.

ii) The Dupin hypersurface is given by

(3.7) X =
V

mjik

[
Lk − Lj

]
,

where Lk(xi, xj , xl) and Lj(xi, xk, xl) satisfy the following systems of equations,

(3.8)

Lk
,ij +

(
A−

mjik,i

mjik

)
Lk
,j = 0,

Lk
,il +

(
A−

mjik,i

mjik

)
Lk
,l = 0,

Lk
,jl = 0.
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(3.9)

Lj
,ik +

(
A+mjik −

mjik,i

mjik

)
Lj
,k +mikjmjikL

j = 0,

Lj
,il +

(
A+mjik −

mjik,i

mjik

)
Lj
,l = 0,

Lj
,kl +

mjklmjik

mjil

Lj
,l = 0.

P r o o f. i) The proof it follows from (2.8), (3.3) and (3.4).
ii) Observe that from (2.2), it follows that

(3.10) X,sr − Γs
srX,s − Γr

srX,r = 0, 1 ≤ s 6= r ≤ 4.

For fixed distinct indices i, j, k, we consider the transformation

(3.11) X = V X,

as in Lemma 2.4 in [18], where V is given by (3.2). Then (3.10) reduces to

X ,ij +AX ,j = 0,

X ,ik + (A+mjik)X ,k = 0,

X ,il + (A+mjil)X ,l = 0,

X ,jk +mikjX ,j = 0,(3.12)

X ,jl = 0,

X ,kl +miklX ,l = 0.

(3.13) A,j = 0, A,r = −mjri,i, r = k, l.

We observe that mijk = mijl = mjli = mkli = 0, implies

(3.14) mljk = mjlk = 0.

From (2.8) and (3.13), one has

(3.15) (A+mjir),r = 0, r = k, l.

Also, the substitution of (3.13) and (3.15) in the first three equations of (3.12),
gives

X ,i +AX = Lj(xi, xk, xl),(3.16)
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X ,i + (A+mjik)X = Lk(xi, xj , xl),(3.17)

X ,i + (A+mjil)X = Ll(xi, xj , xk),(3.18)

where Lj , Lk and Ll are functions that do not depend on xj , xk and xl, respec-
tively. Since mjik 6= 0, it follows from (3.16) and (3.17) that

(3.19) X =
1

mjik

[Lk − Lj].

Thus, (3.11) and (3.19) ensure that X is given by (3.7).
We will now obtain the differential equations that Lk and Lj must satisfy, by
using (3.12), (3.16)-(3.18).
The substitution of X and X ,i into (3.16)-(3.18), gives

(
A−

mjik,i

mjik

)
[Lk − Lj ] + [Lk − Lj],i = mjikL

j,(3.20)

(
A+mjik −

mjik,i

mjik

)
[Lk − Lj ] + [Lk − Lj],i = mjikL

k,(3.21)

(
A+mjil −

mjik,i

mjik

)
[Lk − Lj ] + [Lk − Lj],i = mjikL

l.(3.22)

By a direct calculation the substitution of X and their derivatives in the system
(3.12), joint with (3.14) and the condition Tijkl = 0, we get the systems (3.8)
and (3.9). ✷

The solutions of the systems of equations (3.8) and (3.9) are given in the
following lemma.

Lemma 3.6. The solutions of the systems (3.8) and (3.9) are given by

Lk =
mjik

Qj

[∫
QjGi(xi)

mjik

dxi +

∫
G̃l(xl)dxl +Gj(xj)

]
,(3.23)

Lj =
mjik

Qk

[∫
QkGi(xi)

mjik

dxi +

∫
e−SGl(xl)dxl +Gk(xk)

]
,(3.24)

where S is given by (3.4).

P r o o f. From equations (2.8) we can easily verify that

(3.25)

(
A−

mjik,i

mjik

)

,r

= 0, r = j, l.



178 Carlos M. C. Riveros

Substituting this expression in the first two equations of (3.8) and by integration
with respect to xi joint with (3.3) we get

(3.26) Lk =
mjik

Qj

[∫
QjGi(xi)

mjik

dxi +H(xj , xl)

]
.

We will now find the expression of the function H(xj , xl) and so Lk will be
completely determined, for this, differentiating Lk, by using (2.8), (3.25) and
Lemma 3.5, we have

Lk
,i = −

(
A−

mjik,i

mjik

)
+Gi(xi),(3.27)

Lk
,l =

mjik

Qj
H,l,(3.28)

Lk
,jl =

mjik

Qj
H,jl.(3.29)

By using (3.29) in the third equation of (3.8), we obtain H,jl = 0, whose solution
is given by

(3.30) H(xj , xl) =

∫
G̃l(xl)dxl +Gj(xj),

where Gj(xj) and G̃l(xl) are vector valued functions in R
5. Thus, (3.23) it follows

from (3.26) and (3.30).
Similarly, from equations (2.8) we get

(
A+mjir −

mjir,i

mjir

)

,r

= mjirmirj, r = k, l.(3.31)

By using this expression in the first two equations of (3.9) and by integration
with respect to xi joint with (3.3) we get

(3.32) Lj =
mjik

Qk

[∫
QkG̃i(xi)

mjik

dxi + H̃(xk, xl)

]
.

Now to get the function H̃(xk, xl) we derive Lj, using (2.8), (3.3), (3.31) joint
with Lemma 3.5 to obtain

Lj
,i = −

(
A+mjik −

mjik,i

mjik

)
Lj + G̃i(xi),(3.33)
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Lj
,l =

mjik

Qk

H̃,l,(3.34)

Lj
,kl = −mjkiL

j
,l +

mjik

Qk

H̃,kl.(3.35)

On the other hand, by using (3.34), (3.35) in the third equation of (3.9) yield

H̃,kl +

(
mikj +

mjklmjik

mjil

)
H̃,l = 0,

whose solution is given by

(3.36) H̃(xk, xl) =

∫
e−SGl(xl)dxl +Gk(xk),

where Gl(xl) and Gk(xk) are vector valued functions in R
5 and S is defined in

(3.4). Thus, from (3.32) and (3.36), we conclude that the solution of (3.9) is
given by (3.24). Finally, we observe that the expressions (3.20), (3.27) and (3.33)

ensure that Gi(xi) = G̃i(xi). Thus, the proof of Lemma is complete. ✷

3.1. Proof of the main results.

P r o o f o f T h e o r em 3.1 From Lemmas 3.5 and 3.6 we obtain that the
Dupin hypersurface X is given by (3.7), where Lk and Lj are given for (3.23)
and (3.24) respectively.

The next step is to show that there exist a relation between the vector
valued functions G̃l and Gl given in (3.23) and (3.24) respectively, for this, the
expressions (3.16)–(3.18) ensure that

(3.37) Lk − Lj =
mjik

mkil

[Ll − Lk].

Now, differentiating (3.37) with respect to xl, and by using (2.8), (3.14), (3.28)
and (3.34) we obtain

(3.38)
1

Qj
H,l =

mkil

mjilQk

H̃,l.

By using (3.3), (3.30), (3.36) in (3.38) we obtain the following relation between
G̃l and Gl

(3.39) G̃l(xl) =
mkil

mjil

e
−

∫
mjikdxi

e−SGl(xl).
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On the other hand, it follows from (2.8), (3.14) and Lemma 3.5, that

mkil

mjil

e
−

∫
mjikdxi

e−S




,l

= 0, consequently, using this fact in (3.23) we get

(3.40)

Lk =
mjik

Qj

[∫
QjGi(xi)

mjik

dxi +
mkil

mjil

e−
∫
mjikdxie−S

∫
Gl(xl)dxl +Gj(xj)

]
.

Thus, substituting (3.24) and (3.40) in (3.7) we obtain (3.1).
Now, considering βi and βt, t = j, k, l defined by (3.5), it follows from

(2.7) and Lemmas 2.3, 2.4 in [18]

(3.41) X,r = V βr , r = i, j, k, l,

and as a consequence of this expression we obtain

(3.42) X,rr = V,rβ
r + V βr

,r , r = i, j, k, l.

Observe that from (3.41) it follows that βr 6= 0, which proves item a).
Also, it follows from (3.41) that the metric of X is given by

(3.43) grr = (V )2|βr|2 , grt = 0 , r 6= t,

(which proves item b)) and

(3.44) N =
βi × βj × βk × βl

|βi| |βj | |βk| |βl|
.

is a unit vector field normal to X.
Since X is a Dupin hypersurface parametrized by orthogonal curvature

lines, with λt, as principal curvature we get, for 1 ≤ r 6= t ≤ 4

〈N,X,rt〉 = 0, λt =
〈X,rr, N〉

grr
.

Hence, from the above expressions joint with (3.42) and (3.44) we obtain the item
c).

The converse is a straightforward calculation. Therefore, the proof of the
Theorem 3.1 is complete. �

Remark 3.7. It is easy to show that the vector valued functions Gr(xr)
in the Theorem 3.1 are invariant under inversions and homotheties of R5.
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We will now prove Theorem 3.2.
P r o o f o f Th e o r em 3.2. We will prove that Gr(xr) describes a plane

curve by showing that the vector valued functions G′
r, G

′′
r and G′′′

r are linearly
dependent. Differentiating (3.1) with respect xj and using Lemma 3.5 we get

(3.45) G′
j =

Qj

V

(
X,j − Γi

ijX
)
.

Diferentiating (3.45) with respect xj and using (2.9) we get

G′′
j =

Qj

V


[Γj

jj − 2Γi
ij ]X,j −

∑

k 6=j

Γj
jk

gjj
gkk

X,k + [(Γi
ij)

2 − Γi
ij,j]X + λjgjjN


 .

Differentiating once again and using Lemma 2.1 we obtain

G′′′
j = hjiG

′′
j + fjiG

′
j .

Thus, G′′′
l , G

′′
l and G′

l are linearly dependent. Similarly, differentiating (3.1) with
respect xl and using Lemma 3.5 we get

Gl = −
mjile

SQk

mjikV
[X,l − Γi

ilX]

Differentiating with respect xl and using (2.9) and the fact that

(
mjile

SQk

mjik

)

,l

=

0, we obtain

G′
l = −

mjile
SQk

mjikV


[Γl

ll − 2Γi
il]X,l −

∑

j 6=l

Γl
lj

gll
gjj

X,j + [(Γi
il)

2 − Γi
il,l]X + λlgllN


 .

Differentiating once again and using Lemma 2.1 we obtain

(3.46) G′′
l = hliG

′
l + fliGl.

From (3.46) we obtain

G′′′
l = G′′

l

(
hli +

fli,l
fli

)
+G′

l

(
fli + hli,l +

hlifli,l
fli

)
.

Therefore, G′′′
l , G

′′
l and G′

l are linearly dependent. Similar arguments prove that
Gi and Gk describes a plane curve. Since X is a parametrized hypersurface in R

5,
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at least two of the vector valued functions Gr(xr) of Theorem 3.1 are nonzero on
open sets, therefore, some vector valued functions can be degenerated in a point
(see examples 4.1 and 4.2). �

Now, we will prove Theorem 3.3.
P r o o f o f T h e o r em 3.3. From (2.11) and (2.12) it follows that the

Lie curvature of X is given by

(3.47) Ψ = CkjiCilk, i, j, k, l distinct.

Differentiating (3.47) we get

Ψ,i = −CkijCilk
(
mjik +mkilC

jkl
)
,

Ψ,j = 0,(3.48)

Ψ,k = (λk − λi)C
kji

(
mjkiC

ilk

λi − λj
+

mlkiC
ikl

λl − λk

)
,

Ψ,l = 0.

The result it follows from (3.48). �

Finally, we will prove Theorem 3.4.
P r o o f o f Th e o r em 3.4. Since

mjkimkji = 0, mljimjli = 0, mklimlki = 0,

i.e.

(3.49) msrimrsi = 0, ∀ r, s ∈ {j, k, l}, r 6= s.

From (2.7) and (3.49) we obtain
(
log

(
λi − λr

λs − λr

))

,r

(
log

(
λi − λs

λr − λs

))

,s

= 0.

Hence, (
λi − λr

λs − λr

)

,r

(
λi − λr

λs − λr

)

,s

= 0,

i.e. the Möbius curvatures Cirs are constant along the lines of curvature corre-
sponding to the principal curvatures λr or λs.
Similarly, from mljkmjlk = 0 we have

(
λk − λj

λl − λj

)

,j

(
λk − λj

λl − λj

)

,l

= 0,
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therefore, the Möbius curvature Ckjl is constant along the lines of curvature
corresponding to the principal curvatures λj or λl. �

4. Examples. In this section using the Theorem 3.1, for fixed indices
i = 1, j = 2, k = 3 and l = 4, we give examples of Dupin hypersurfaces in R

5,
parametrized by lines of curvature with four distinct principal curvatures and
nonconstant Lie curvature.

Example 4.1. We consider the Dupin hypersurface parametrized by lines
of curvature given by

X(x1, x2, x3, x4) =
(1 + x4)

R

(
2a cos x2, 2a sinx2, 2x1, 2

(
a2 + x21

)
x3,

−1 +
(
a2 + x21

) (
1− x23

))
,

defined in Ω = {(x1, x2, x3, x4) ∈ R
4/ x1 > 0, 0 < x2 < 2π, x3 ∈ R, x4 > −1},

R = 1 + (a2 + x21)(1 + x23), a > 0.
The principal curvatures of X are given by

λ1 =
a(1 + x23)

1 + x4
, λ2 =

−1 + (1 + x23)(a
2 − x21)

2a(1 + x4)
, λ3 = −

a

(1 + x4)(a2 + x21)
, λ4 = 0.

From (2.3) and (2.7) we get

(4.1) m213 = −
2x1

a2 + x21
6= 0, m214 = −

2x1(1 + x23)

R
6= 0, m314 =

2x1
(a2 + x21)R

6= 0.

Moreover, m123 = m124 = m241 = m341 = 0 and using (4.1) we obtain T1234 = 0.
Thus, from Theorem 3.1, the Dupin hypersurface X is given by (3.1), where

V = −
2a(1 + x4)

R
, Q2 = 1, Q3 =

1

a2 + x21
, s3 = − ln (1 + x23).

The vector valued functions are given by

G1(x1) =

(
0, 0,

1

ax1
, 0, 0

)
,

G2(x2) = (− cos x2,− sinx2, 0, 0, 0) ,

G3(x3) =

(
0, 0, 0,

x3
a
,
1− x23
2a

)
,

G4(x4) = (0, 0, 0, 0, 0).

Observe that m213 + m314C
234 = −

x1
a2

6= 0, hence, from Theorem 3.3, the Lie

curvature of X is nonconstant.
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Example 4.2. We consider the Dupin hypersurface parametrized by lines
of curvature

X(x1, x2, x3, x4) =

(
(a+ r cos x1) cos x2

B
,
(a+ r cos x1) sinx2

B
,
r sinx1

B
,
x3
B

,x4

)

defined in Ω = {(x1, x2, x3, x4) ∈ R
4/0 < x1 < π, 0 < x2 < 2π, x3 > 0, x4 ∈ R},

B = a2 + r2 + x23 + 2ar cos x1, a > r > 0.
The principal curvatures of X are given by

λ1 =
a2 − r2 + x23

r
, λ2 = −

2ar + (a2 + r2 − x23) cos x1
a+ r cosx1

,

λ3 = −2(r + a cos x1), λ4 = 0.

From (2.3) and (2.7) we get

(4.2)
m213 = −

r sinx1
a+ r cos x1

6= 0, m214 = −
r(a2 − r2 − x23) sinx1

(a+ r cos x1)B
6= 0,

m314 =
2ar sinx1

B
6= 0.

Moreover, m123 = m124 = m241 = m341 = 0 and using (4.2) we obtain T1234 = 0.
Thus, from Theorem 3.1, the Dupin hypersurface X is given by (3.1), where

V = −
r(a+ r cos x1)

aB
, Q2 = 1, Q3 = a+ r cos x1, s

3 = − ln (r2 − a2 + x23).

The vector valued functions are given by

G1(x1) =

(
0, 0,

a

sinx1(a+ r cos x1)
, 0, 0

)
,

G2(x2) =
(
−
a

r
cos x2,−

a

r
sinx2, 0, 0, 0

)
,

G3(x3) =
(
0, 0, 0,

ax3
r

, 0
)
,

G4(x4) =
(
0, 0, 0, 0,

a

r

)
.

Observe that m213 +m314C
234 = −

r2 sinx1
(a+ r cos x1)(r + a cos x1)

6= 0, hence, from

Theorem 3.3, the Lie curvature of X is nonconstant.
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