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ABSTRACT. In this paper we study Dupin hypersurfaces in R® parametrized
by lines of curvature, with four distinct principal curvatures. We give a
local characterization of this class of hypersurfaces in terms of the principal
curvatures and four vector valued functions of one variable. We prove that
these vectorial functions describe plane curves or points in R®>. We show
that the Lie curvature of these Dupin hypersurfaces is constant with some
conditions on the Laplace invariants and the Mobius curvature, but some
Moébius curvatures are constant along certain lines of curvature. We give
explicit examples of such Dupin hypersurfaces.

1. Introduction. Let M be an immersed hypersurface in Euclidean
space R" or the unit sphere S™ ¢ R™"!. The hypersurface M is said to be Dupin
if along each curvature surface the corresponding principal curvature is constant.
The hypersurface M is called proper Dupin if the number g of distinct principal
curvatures is constant on M.
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Key words: Dupin hypersurfaces, Lie curvature, Laplace invariants, lines of curvature.
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Dupin surfaces were first studied by Dupin in 1822 and more recently
by many authors [1]-[6], [10]-[22], which studied several aspects of Dupin hy-
persurfaces. The class of Dupin hypersurfaces is invariant under Lie transfor-
mations [13]. Therefore, the classification of Dupin hypersurfaces is considered
up to these transformations. Pinkall [14] gave a complete classification up to
Lie equivalence for Dupin hypersurfaces M? C R?*, with three distinct principal
curvatures. Niebergall [11, 12], Cecil and Jensen [6] studied proper Dupin hy-
persurfaces with four distinct principal curvatures and constant Lie curvature.
Niebergall [11, 12] proved that a connected irreducible proper Dupin hypersur-
face M* in S° with four principal curvatures and constant Lie curvature is Lie
equivalent to an isoparametric hypersurface under an additional assumption. In
[6], Cecil and Jensen proved that Niebergall’s additional assumptions are unnec-
essary. They showed that every connected irreducible proper Dupin hypersurface
M* in S° with four principal curvatures and constant Lie curvature is Lie equiv-
alent to an isoparametric hypersurface. Later Cecil et al. [4] generalized this
result to higher dimensions.

Tenenblat and Riveros [19] obtained a local characterization of the Dupin
hypersurfaces in R parametrized by lines of curvature, with four distinct prin-
cipal curvatures and Tjj;; # 0, in terms of the principal curvatures and four
vector valued functions in R which are invariant by inversions and homotheties.
Riveros in [17] studied Dupin hypersurfaces parametrized by lines of curvature
with some conditions on the Laplace invariants.

Riveros, Rodrigues and Tenenblat [20] studied a class of proper Dupin
hypersurfaces M™ C in R™"! parametrized by lines of curvature, with n distinct
principal curvatures and constant Mobius curvature. They then showed that for
n > 3 the condition of having constant Mobius curvature is equivalent to having
all Laplace invariants equal to zero.

Tenenblat et al. [7], obtain a characterization for Dupin hypersurfaces
in R®, parametrized by lines of curvature with four distinct principal curvatures
and Tjj; # 0, in terms of three vector values functions, this result improves the
result obtained in [19].

In this paper we consider proper Dupin hypersurfaces in R, parametrized
by lines of curvature with four distinct principal curvatures and we ask if, it is
possible to obtain a similar result to obtained in [7] with the condition Tjz; = 0.
The Theorem 3.1 gives an affirmative answer to this question, more precisely, we
obtain a local characterization of a class of Dupin hypersurfaces parametrized by
lines of curvature and Tj;z; = 0 in terms of the principal curvature functions and
four vector valued functions of one variable. Moreover, it follows from results of
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Pinkall [13] and Cecil and Jensen [4] that these hypersurfaces are either reducible
or have nonconstant Lie curvature. Furthermore, this result shows that the char-
acterization obtained in [7] is not true when Tjj;; = 0. Also, we prove that the
vector valued functions in this characterization are plane curves or points in R5.
Moreover, we prove that the Lie curvature of these hypersurfaces is constant with
some assumptions on the laplace invariants and the Md6bius curvature, but some
Mobius curvatures are constant along certain lines of curvature. Finally, we give
explicit examples of this class of Dupin hypersurfaces.

2. Properties of hypersurfaces with distinct principal cur-
vatures. We consider 2 an open subset of R" and x = (z1,z2,...,x,) € Q. Let
X :Q CcR* = R"! n >3 bea hypersurface parametrized by lines of curva-
ture, with distinct principal curvatures \;, 1 <i<mnand N:Q C R* - R"" a
unit normal vector field of X. Then

(X0, Xj) = 0ijgui, 1 <i,5 <,
(2.1) N; = —XNX,
where the subscript ; denotes the derivative with respect to ;.
Also,
(2.2) Xij — ngX,i - ngX,j =0, 1<i#j<n,
; Aij .,

where I‘fj are the Christoffel symbols. From (2.2) we have

(2.4) Ui =T 1<i#j#k<n.

ij,k
Besides,
(2.5) D =T + T —TL T, 1<i#j#k<n,
The Christoffel symbols in terms of the metric (2.1) are given by
; Gii i j Gii,j j Gii,j
2.6 rk —o 1% = 2% = 2% e = 2%J
(2:6) + ’ "2y " 293']'7 Y 297

where i, j, k are distinct.

We now consider the higher-dimensional Laplace invariants of the system of equa-
tions (2.2) (see [8]-[9] for definitions of these invariants),

mi; = T+ Tyl

2.7 )
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As a consequence of (2.3), (2.7) and the un-numbered lemma appearing in [9],
we obtain for 1 <14,7,k,l < n, 1,7, k,[ distinct,

Mg + My = 0,
29 ke M =
ik — M50 — Mjg = s
Myik,j + MijiMgi + mygmp; = 0.
From (2.2) and (2.6), we obtain
(2.9) Xii =Y TLX;+gihN.
J
The Gauss equation for the immersion X is given by
.. T6 oo , i1’
(2.10) —2  Wypi iy Wy s iy ST IR v =0
955 953 Gii Gii kit Ykk

For hypersurfaces with distinct principal curvatures, the Mobius curvature
is defined, for distinct 4, j, k, by

A — A

2.11 Cik =
(211) A=A

and the Lie curvature is defined, for distinct ¢, j, k, [ by

(A=) (i —N)

(2.12) YO T

Since all \; are distinct we conclude that C%% £ 0 and C¥* £ 1. Mébius curva-
tures are invariant under Mobius transformations.

The following result extends Lemma 3.3 in [7] for hypersurfaces para-
metrized by lines of curvature.

Lemma 2.1. Forn > 3, let X : @ ¢ R® — R"™ be a hypersurface
parametrized by lines of curvature, with distinct principal curvatures \;, 1 <1 <
n. Then

Tl = Tiifi = (047 heg — (T3)° + 3TLTY — Aiidjgi + %(mm +2m; ;)
27
(213) =Y mul 2

ki Jkk
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where

) 2 9i
(2.14) fij = T — 2(T%)% + 605,17, — 3())% = 307, = Agii — > (Ty)? g,z;’
ki

(2.15) hij = 3(% - ng)-
Moreover, the functions f;; and h;; do not depend x;.

Proof.  The proof is a straightforward computation, it follows from
(2.3), (2.5)—(2.8) and (2.10). O

We consider X : Q ¢ R* — R®, a proper Dupin hypersurface parametrized
by lines of curvature, with distinct principal curvatures A;, 1 < i < 4. Consid-
ering the higher-dimensional Laplace invariants satisfying (2.8), for 1 <1 # j #
k # 1 < 4 fixed, we consider the functions Tj;,; and Ujji; defined in [19] by

(2.16) Tijer = mja+ [log (mﬂkﬂ ,
Mgl i
(2.17) Uikt = mpqy + [log <M>] ,
Mg /1 ;

where mj;, # 0, mjg # 0 and my; # 0.

3. Characterization of a class of Dupin hypersurfaces. In this
section, the next theorems are our main results. They characterize locally a
class of Dupin hypersurfaces, parametrized by lines of curvature in R®, with four
distinct distinct principal curvatures.

The following theorem shows that when Tj;;; = 0, the theorem 4.1 ob-
tained in [7] is not true, i.e. in this case we have four vector valued functions in
R5 and not three as in [7].

Theorem 3.1. Let X : Q@ C R* — R, be a proper Dupin hypersurface,
parametrized by lines of curvature, with four distinct principal curvatures \,.. For
i,7,k,1 distinct fized indices, suppose Tiji; = 0 and myj, = myj = mj;; = My =
0. Then

(3.1) X =V [Cj _ g, - e /Gl @ dml}
m]Zle
where
ef %mﬂid‘vk 1 Q ( )
3.2 V=—— " (C,=— 2 de + Gy ],r:',k,
( ) )\j - /\z QT |: miik ( ) J
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Gr(x,), r =1,7,k,1 are vector valued functions of R, A;j=0,A=— / Mjki Ty,

and

el A if = j,

(33) QT = { ef(A‘i'm]'ir)dxi ’lf r = l{j’

(3.4 s= | (m ¥ M)d

mjil

Moreover, considering

(3.5) = (A+TS) M+ My, B =TI M+ M, s i,
mjike_s . .

where M = C; — Cj, — o /Gl(ml)dml, the functions G,(x,) satisfy the
miil Wk

following properties in Q, for 1 <r #t <4:

a) B"#0,
b) (B7,8") =0, r#t,
(B, B x B x g% x Bl
~ VIBTE 1B 189 16*] 167
Conversely, let A\, : Q CR* 5> R, r =1,...,4 be real functions, distinct at each
point, such that \,, = 0. Assume that the functions mys defined by

c) Ar

/\r,t _ /\s,t
/\t - /\r /\t - /\57

(3.6) Myts = 1<r+#t+#s<4,

satisfy (2.8), and for i,j,k,l distinct fized indices, Tiji = 0 and mjj, = myj =
mji; = my; = 0. Then for any vector valued functions G, (x,), satisfying proper-
ties a) b) ¢), where 3" is defined by (3.5), the function X : Q C R* — R® given by
(3.1) describes a Dupin hypersurface, parametrized by lines of curvature, whose
principal curvatures are the functions \,.

The next result provides a geometric description of the vector valued
functions G, ().

Theorem 3.2. Under the hypothesis of Theorem 3.1, the vector valued
functions Gr(x,), r =1i,7,k,l, describe plane curves or points.
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The next results provide a characterization of this class of Dupin hyper-
surfaces using the Lie curvature and the Mobius curvature.

Theorem 3.3. Let X be a Dupin hypersurface as in Theorem 3.1. Then

X has Lie curvature constant, if and only if, mj;, + meiC7* =0 and

mjkicilk mlk‘icikl 0
XN—XN o N—M

Theorem 3.4. Let X be a Dupin hypersurface as in Theorem 3.1. Then
for any s,r € {j, k,1}, s # r, the Mébius curvatures C*™* are constant along the
lines of curvature corresponding to the principal curvatures A, or As. Also, the
Moébius curvature C*' is constant along the lines of curvature corresponding to
the principal curvatures \j or A;.

We will now prove two lemmas that will be used in the proof of Theo-
rem 3.1.

Lemma 3.5. Let X be a proper Dupin hypersurface in R®, parametrized
by lines of curvature, with four distinct principal curvatures \.. For i, j, k, |
distinct fized indices, suppose Ty = 0 and myji, = myj = mj; = my; = 0. Then
i) The functions defined in (3.3) and (3.4) satisfy

Qji = AQj, Q;; =0, Qjr=mu;Q;, Qi1 =0,

Qi = (A+myix)Qr, Qrj =0, Qpr =0, Qr; =0,
S,i =0, S,j =0, S,k = Myk; + w, S,l =0.
m

1) The Dupin hypersurface is given by

v

Mjik

(3.7) X = [Lk — LJ} ,

where Lk(xi,a:j,xl) and L7 (x;, 1, x;) satisfy the following systems of equations,

k Myjik,i Eo_
L+ <A - m—> L; =0,
jik
(3.8) Lkz‘l+ (A— M) ij — 0,
b m]Zk 9
Lk, = o.

gl
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L?ik—i_ <A+mjik;_ ﬂ”ilk;:> Lfk—l-mikjmjikL] = 0,
ji
(3.9) Ll + <A+mjik——mjik’i> L = o
’ ik ’
i GRMik
Dt ———1Ly = 0
gl

Proof. i) The proof it follows from (2.8), (3.3) and (3.4).
i7) Observe that from (2.2), it follows that

(3.10) Xo—T5 X —T5,X, =0, 1<s#r<4
For fixed distinct indices ¢, j, k, we consider the transformation
(3.11) X=VX,
as in Lemma 2.4 in [18], where V is given by (3.2). Then (3.10) reduces to
X+ AX =0,
X ik + (A+mjp)X ) =0,
X+ (A4+mu)X,; =0,

(312> X,jk —i—mikj

>

J=0
773'[ — 0,

X g +mi X =0.

(3.13) Aj=0, A,=-—mj; r=Ek,lL
We observe that myj, = myj = mj;; = my; = 0, implies
(3.14) myjr = mji = 0.

From (2.8) and (3.13), one has

(3.15) (A+mji)r =0, 7 =k,L.

Also, the substitution of (3.13) and (3.15) in the first three equations of (3.12),
gives

(3.16) X+ AX = I (zi, zk, 1),
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(3.17) X+ (A+myp)X = L¥(z, 25,21),

(3.18) X+ (A+mn)X = LYz, 25, 21),

where L7 ,Lk and L' are functions that do not depend on xj, 7} and z;, respec-
tively. Since mj;, # 0, it follows from (3.16) and (3.17) that

1

3.19 X =
(3.19) -

[LF — L]

Thus, (3.11) and (3.19) ensure that X is given by (3.7).

We will now obtain the differential equations that L* and L’ must satisfy, by
using (3.12), (3.16)-(3.18).

The substitution of X and X ; into (3.16)-(3.18), gives

(3.20) <A - M) [LF — D)+ [LF - L7]; = myul?,
mjik
(3:21) (A +myik — mﬂkl) [LF = D)+ [LF = L) = myaLt,
mjik
29 A o MYk, LF 17 LF 17, = I
(3.22) + myy [ ]+ i = myil’.
mMjik

By a direct calculation the substitution of X and their derivatives in the system
(3.12), joint with (3.14) and the condition Tjji; = 0, we get the systems (3.8)
and (3.9). O

The solutions of the systems of equations (3.8) and (3.9) are given in the
following lemma.

Lemma 3.6. The solutions of the systems (3.8) and (3.9) are given by

(323) IF = ”gj’“ [ Qﬂmﬂ(; ) oy + / G () day +Gj($j)] :
(3.24) LJ = Tlg;k [ Qkﬂfjfi)dﬂci +/65G1(1‘1)dazz +Gk(l‘k):| ;

where S is given by (3.4).

Proof. From equations (2.8) we can easily verify that

(3.25) <A — mﬂ—k> —0, r=4l
Mjik /)
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Substituting this expression in the first two equations of (3.8) and by integration
with respect to z; joint with (3.3) we get

Myjif [ QjGi(l‘i)dx'
Qj
We will now find the expression of the function H(z;,2;) and so L* will be

completely determined, for this, differentiating L*, by using (2.8), (3.25) and
Lemma 3.5, we have

(3.26) Lk =

(3.27) Lk = —<A—M>+Gi($i)a
’ Mk
(3.28) k= ity
’ Qj
mai;
(3.29) Lk = QLJ"“HW.

By using (3.29) in the third equation of (3.8), we obtain H ;; = 0, whose solution
is given by

(3.30) H(z,x) = / Gy(z)dar + G (),

where G(z;) and Gy () are vector valued functions in R®. Thus, (3.23) it follows
from (3.26) and (3.30).
Similarly, from equations (2.8) we get

(3.31) <A + Myjir — M) = MjyrMirj, T = k,l.
Jir r

By using this expression in the first two equations of (3.9) and by integration
with respect to z; joint with (3.3) we get

_ Myik [ QrGi(x;)

i
(3.32) V=

dl‘i + ﬁ(l‘k, xl)] .
mjik

Now to get the function H(zy,z;) we derive L7, using (2.8), (3.3), (3.31) joint
with Lemma 3.5 to obtain

(3.33) = - <A +myi — mﬂ—’“) L+ Gi(y),

7
’ Mjik
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(3.34) o= Dikg,

’ Qk

. o ~
(3.35) Ly = —mjul’ + ij H .

On the other hand, by using (3.34), (3.35) in the third equation of (3.9) yield

~ MikMjik \ 7
J J

Hng + (mikj + 7) H,l =0,
m il

whose solution is given by

(3.36) B g, 2) = / =Sy (ay)day + Crl(r),

where Gy(z;) and G (z)) are vector valued functions in R® and S is defined in
(3.4). Thus, from (3.32) and (3.36), we conclude that the solution of (3.9) is
given by (3.24). Finally, we observe that the expressions (3.20), (3.27) and (3.33)

ensure that G;(z;) = G;(x;). Thus, the proof of Lemma is complete. O

3.1. Proof of the main results.

Proof of Theorem 3.1 From Lemmas 3.5 and 3.6 we obtain that the
Dupin hypersurface X is given by (3.7), where L¥ and L’ are given for (3.23)
and (3.24) respectively.

The next step is to show that there exist a relation between the vector
valued functions G; and G; given in (3.23) and (3.24) respectively, for this, the
expressions (3.16)—(3.18) ensure that

[L!— L¥].
Ml

(3.37) LF— 7 =
Now, differentiating (3.37) with respect to z;, and by using (2.8), (3.14), (3.28)
and (3.34) we obtain

1 = Mg

Q; 7 muQr

By using (3.3), (3.30), (3.36) in (3.38) we obtain the following relation between
Gl and Gl

(3.38)

_ o= | mypda;
(3.39) Gl(a:l):mmle / ’ e 2Gy(x).

mjil
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On the other hand, it follows from (2.8), (3.14) and Lemma 3.5, that

me:; — mﬂkdazl
—hie / e ¥ | =0, consequently, using this fact in (3.23) we get

Ml
N
(3.40)
i GZ 7 v =
Ik _ 7725 k [ Q]m (l‘ )de + :Zkl fmyzkd‘vl /Gl x dl‘l + G, (37])
j jik Jil

Thus, substituting (3.24) and (3.40) in (3.7) we obtain (3.1).
Now, considering 3° and 8¢, t = j,k,1 defined by (3.5), it follows from
(2.7) and Lemmas 2.3, 2.4 in [18]

(3.41) X, = VB, r=i4k,l,

)

and as a consequence of this expression we obtain
(342> X,rr = V:rﬁr + V/B,rr , I'= i)ja ka L.

Observe that from (3.41) it follows that 8" # 0, which proves item a).
Also, it follows from (3.41) that the metric of X is given by

(343) Grr = (V)2|/8r‘2 y 9rt = 0 y T # t?
(which proves item b)) and

B x B x pF x p

3.44 N=C_"" :
(40 1871167 |8*] 18]

is a unit vector field normal to X.
Since X is a Dupin hypersurface parametrized by orthogonal curvature

lines, with A, as principal curvature we get, for 1 <r # ¢ <4
X, N
(N,X,Tt>:0, )\tzw.
9rr

Hence, from the above expressions joint with (3.42) and (3.44) we obtain the item
c).

The converse is a straightforward calculation. Therefore, the proof of the
Theorem 3.1 is complete. O

Remark 3.7. It is easy to show that the vector valued functions G, (z,)
in the Theorem 3.1 are invariant under inversions and homotheties of R5.
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We will now prove Theorem 3.2.

Proof of Theorem 3.2. We will prove that G,(x,) describes a plane
curve by showing that the vector valued functions G, G and G’ are linearly
dependent. Differentiating (3.1) with respect x; and using Lemma 3.5 we get

Q;

(3.45) G =<

(X —T5,X).
Diferentiating (3.45) with respect x; and using (2.9) we get

)

G = 52| 0y = 231X = ST TG 4 [(T)2 = T )X+ Ay

5,3
k) 9kk

Differentiating once again and using Lemma 2.1 we obtain
G = hiGl + fi:G).

Thus, G}, G/ and G are linearly dependent. Similarly, differentiating (3.1) with
respect x; and using Lemma 3.5 we get

mjie’ Qy

G =—
! mjikv

(X, —T}X]

)

S
mjie
Differentiating with respect z; and using (2.9) and the fact that <M> =
mjik 1

0, we obtain

mjilest;

G, =-
l
mjikV

T} — 1= YT X5+ [(T0)? — T )X + NguN
J#l 93

Differentiating once again and using Lemma 2.1 we obtain
(3.46) G = hiG + fuGh.

From (3.46) we obtain

i, hai fri
G///—Gg/ (hli fl l> +Gl <fli+hli,l+ lfl ,l>.

Jui Jui

Therefore, G}, G| and Gj are linearly dependent. Similar arguments prove that
G; and G}, describes a plane curve. Since X is a parametrized hypersurface in R,
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at least two of the vector valued functions G, (x,) of Theorem 3.1 are nonzero on
open sets, therefore, some vector valued functions can be degenerated in a point
(see examples 4.1 and 4.2). O

Now, we will prove Theorem 3.3.
Proof of Theorem 3.3. From (2.11) and (2.12) it follows that the
Lie curvature of X is given by

(3.47) U =Crigit i 5k, distinct.
Differentiating (3.47) we get
v, = —CcMict (mjik + mkilcjkl) ;
. /m klczlk mlkicikl
Uyp = (M —N)OH [ 2

v, = 0
The result it follows from (3.48). O

Finally, we will prove Theorem 3.4.
Proof of Theorem 3.4. Since

Mjkimeji = 0, myjmg,; = 0, mgmy; = 0,
i.e.
(3.49) MeriMys; =0, V1,5 € {j,k, 1}, r # 5.
From (2.7) and (3.49) we obtain

)\i_)\r /\i_)\s
1 1 =0.
<0g<)‘s_)‘r>>,r<Og<)‘r_)‘8>),s ’
i — A =M
)\S_)\T RS )\s_)\r ,3_ ’

i.e. the Mdbius curvatures C*"* are constant along the lines of curvature corre-
sponding to the principal curvatures A, or As.
Similarly, from my;pm i, = 0 we have

()\k—/\j> (Ak—)\]) 0
N=N) NN )

Hence,
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therefore, the Mobius curvature C*7' is constant along the lines of curvature
corresponding to the principal curvatures A\; or A;. O

4. Examples. In this section using the Theorem 3.1, for fixed indices
i =1,7 =2k =3and !l = 4, we give examples of Dupin hypersurfaces in R®,
parametrized by lines of curvature with four distinct principal curvatures and
nonconstant Lie curvature.

Example 4.1. We consider the Dupin hypersurface parametrized by lines
of curvature given by

1
X(x1,29,73,14) = % (2acosx2,2asinx2,21‘1,2 (a2 -l—x%) T3,

-1+ (a2 +:1:%) (1 — :1:%)) ,
defined in Q = {(z1, z2,x3,24) € R4/ x1 >0, 0 <z <27, zg3 €R, x4 > —1},
R=1+(a*+ 23 (1 +23), a>0.

The principal curvatures of X are given by

a(l + 22 —14+(1+22)(a? — 22 a
N o0ted) e —ad) __a=o
1424 2a(1 + x4) (1+x4)(a? + 23)

From (2.3) and (2.7) we get

221 221 (1 + 23)
(41) mai3 = _m 7é 0, mo1g = —T 75 0, mzi4 =

2.1‘1
(a2 +2?)R
Moreover, mq123 = my24 = mag1 = m3q1 = 0 and using (4.1) we obtain Tj934 = 0.
Thus, from Theorem 3.1, the Dupin hypersurface X is given by (3.1), where
2a(1 + 24) 1
i St -1 - -
R ) QZ 5 Q?) a2 _’_J:%v

The vector valued functions are given by

£0

V=_ s3 = —In(1+ 23).

1
Gl(l‘l) = <0707—707O> )
axy
Go(xy) = (—cosme, —sinxs,0,0,0),
B r3 1— 3
G3($3) - (070>07 a ) 2, ) )
Gy(zg) = (0,0,0,0,0).

Observe that mas + mg O = _a:_; # 0, hence, from Theorem 3.3, the Lie
a

curvature of X is nonconstant.
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Example 4.2. We consider the Dupin hypersurface parametrized by lines
of curvature

sy o L4

(a+rcoszy)cosxy (a+rcoszy)sinxg rsinx; xj3
X (w1, 22,23, 14) = 5 ; 5 "5 B

defined in Q = {(z1,x2,x3,24) € R4/0 <z <m, 0<m<2m, xg >0, zq4 € R},
B :a2+r2+x§+2arcosxl, a>r>0.
The principal curvatures of X are given by
2 _ .2 2
A = w, Ay =

T a4+ rcosxy
A3 = —2(r+acoszy), Ag=0.

~ 2ar + (a% +r? — 23) cos 11

i

From (2.3) and (2.7) we get

: 2,2 2y
rsin g r(a® —r® — x3)sina;
mog = ———— 75 0, mo1g = — ( 3) 75 0,
(4.2) a+1rcos T (a+rcosx)B
2ar sin x1
ma3i4 = B # 0.

N[OI‘QOVE}I‘7 mM193 = M124 = MM941 = MM341 = 0 and using (42) we obtain T1234 = 0.
Thus, from Theorem 3.1, the Dupin hypersurface X is given by (3.1), where

r(a+ rcosxy)

3 2

V=- B , Qa=1, Q3s=a+rcoszy, s°=—1In(r —a2—i—x§).
The vector valued functions are given by
Gi(z) = (0,0, : 2 ,0,0) :
sinzy(a + rcosxy)
Ga(za) = (—%cosxg, —%sinm,0,0,0) ,

Ga(ws) = (o,o,o, ?o)

Gu(zs) = (0,0, 0,0, g) .

r2 sin x;

Observe that mas 4+ mg1aC?3* = —

0, h , £
(a+rcoszy)(r +acosxy) 7 enee, trom

Theorem 3.3, the Lie curvature of X is nonconstant.
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