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Abstract. We study self-avoiding walks (SAWs) on restricted square lat-
tices, more precisely on the lattice strips Z×{−1, 0, 1} and Z×{−1, 0, 1, 2}.
We obtain the value of the connective constant for the Z×{−1, 0, 1} lattice
in a new shorter way and deduce close bounds for the connective constant
for the Z×{−1, 0, 1, 2} lattice. Moreover, for both lattice strips we find close
lower and upper bounds for the number of SAWs of length n by using the
connective constant. Additionally, we present a transformation of SAWs on
the square lattice to a special kind of walks on the honeycomb lattice. By us-
ing H. Duminil-Copin and S. Smirnov’s results for SAWs on the honeycomb
lattice we present non-rigorous ways by which close bounds for the number
of SAWs and for the connective constant of the non-restricted square lattice
could eventually be obtained without the need of long computer computa-
tions.

1. Introduction. A self-avoiding walk (SAW) is a path that does not
self-intersect, i.e., it does not pass through a given point more than once. SAWs
were introduced by Flory, a theoretical chemists, in order to model the behaviour
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of linear polymers in dilute solutions ([6, p. 672]). They quickly became an
intriguing combinatorial problem for mathematicians and an interesting compu-
tational problem for computer scientists (see [10]).

In this paper we study SAWs on the two-dimensional square lattice.

Definition 1.1. A self-avoiding walk (SAW) of length n is a sequence of
points (w0, w1, . . . , wn) where w0 = (0, 0) and wi = (xi, yi) (xi and yi integers),
such that no point repeats itself and |xi+1 − xi| + |yi+1 − yi| = 1 for all i, where
i ∈ {0, 1, . . . , n− 1}. We define the move from point wi to point wi+1 to be called
a step.

For the lattice Z × {x, x + 1, . . . , y} we denote the number of SAWs of
length n with c[x,y]n. If x and y are, respectively, minus and plus infinity we just
write cn.

An exact formula for c[x,y]n has only been obtained for c[0,1]n ([2, 9, 13]).

Theorem 1.2 ([13]). For n ≥ 2, the number of SAWs of length n on the
grid Z× {0, 1} is

c[0,1]n = 8Fn − δn

where Fn is the nth Fibonacci number and δn = 4 if n is odd and δn = n otherwise.

It is conjectured cn ∼ Aµnnv, where A, µ and v are constants. The most
studied one of them is the connective constant µ.

Definition 1.3. The limit lim
n→∞

n
√
cn is called the connective constant and

we denote it by µZ×Z. For the lattice strip Z × {x, x + 1, . . . , y} we define the
connective constant analogously and denote it by µ[x,y].

The connective constant could be proven to exist and to be finite by using
Fekete’s lemma and that cncm ≥ cn+m. There are also strong bounds for cn using
µZ×Z in [8]. However, even the value for µZ×Z is not known.

A way one could obtain µ is to observe when does the series of the gener-
ating function (for a background on generating functions see [11])

G(t)[x,y] = 1 + c[x,y]1t+ c[x,y]2t
2 + · · ·

converge. G(t)[x,y] has been found only when x = 0 and y = 1 (see [13]) and
when x = −1 and y = 1 (see [3]). Respectively, µ[0,1] equals the golden ratio and
µ[−1,1] ≈ 1.914 . . . .

It is a natural idea to try to study increasingly larger lattice strips since if
we let the width of the strip go to infinity then we end up at the original problem
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for the Z × Z lattice. In 1990 S. Erick and J. Svante obtained the value for the
connective constant of all lattice strips on the square lattice with width up to 9
by using the transfer matrix method (see [1]). However, the bigger the lattice, the
more computational power is needed and even with modern computers we cannot
get very far.

Here, we take a computationally less expensive approach of counting SAWs
via the following major breakthrough, made by H. Kesten. He showed that there
exists a class of walks called bridges which have the same connective constant as
all SAWs on the square lattice (see [7]).

Definition 1.4. Let us have a self-avoiding walk with coordinates
(w0, w1, . . . , wn), as w0 = (0, 0). Then a SAW is a bridge if x0 < xj ≤ xn
for all j > 0, where xi is the x-axis coordinate of the ith point. We use bn to

denote the number of n-step bridges on the Z × Z grid. Kesten showed that b
1

n

n

converges to µZ×Z as n→∞. For the lattice strip Z× {x, x+ 1, . . . , y} we denote
the number of bridges by b[x,y]n. Respectively, we define the generating function

of the bridges to be B(t)[x,y] =
∑

n=0

b[x,y]nt
n.

Moreover, the above definition can be extended to the hexagonal lattice
with the difference that the coordinates xj will not be integers. In 2010, by using
bridges, H. Duminil-Copin and S. Smirnov proved a conjecture by B. Nienhuis

that the connective constant on the honeycomb lattice equals µH =

√

2 +
√
2

(see [5]). In this project we want to apply this result for the square lattice.

In the second and third section of this paper we show an application of
counting bridges directly with generating functions. We find µ[−1,1] in a new
shorter way and obtain close lower and upper bounds for µ[−1,2]. Our method

yields that
1

µ[−1,1]
is the smallest modulus root of the equation 1− t− 2t3 − t4 −

2t5 − 2t6 = 0 and that 2.050 ≤ µ[−1,2] ≤ 2.166. Moreover, the Hammersley-Welsh
method (see e.g. [8, p. 57]) allows us to derive close lower and upper bound for
c[−1,1]n and c[−1,2]n through the use of µ[−1,1] and µ[−1,2], respectively. In the end
we do not have the exact number of walks but we do have a good idea for their
growth rate.

In the fourth section of the paper we present a transformation of n-step
SAWs on the square lattice to a special type of walks – SSAWs (semi-self-avoiding
walks) on the honeycomb lattice with 2n steps (the transformation is bijective).
Our interest comes from the fact that the walks on the honeycomb lattice are easier
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to describe mathematically, because we know that µH =

√

2 +
√
2. In addition,

we make a conjecture that, on average, a SAW on the square lattice with length n

will make approximately 0.6n turns for sufficiently large n. Moreover, we propose
methods which eventually may yield close bounds for cn and µZ×Z without the
need of long computer calculations.

2. The connective constant on the Z × {−1, 0, 1} lattice.

We prove the following result

(1) µn
[−1,1] ≤ c[−1,1]n ≤ µn+1

[−1,1]((n+1)+2(n+1)2+3(n+1)3+2(n+1)4+(n+1)5)

for n ≥ 1 in Appendix B by using the Hammersley-Welsh Method. From the

proof one gets as a bonus that lim
n→∞

n

√

b[−1,1]n = µ[−1,1].

Therefore, the problem translates to counting bridges. To do that we
use Zeilberger’s Decomposition Method (see [13]) and irreducible bridges. Zeil-
berger’s Decomposition Method is an “alphabetical” approach for describing the
self-avoiding walk. A generalisation of this method is presented in [12] in order to
count up-side SAWs. One divides the SAWs in their basic movements which they
perform and for each of them one chooses a symbol to represent it. These symbols
become our “letters” of an “alphabet” for creating different “words” (SAWs). For
example, our language for the Z×{−1, 0, 1} grid consists of 3 different two letter
combinations allowing us to construct every bridge.

• IO — denotes an irreducible bridge between an inner and outer line;
• OO — denotes an irreducible bridge between the two outer lines;
• OI — denotes an irreducible bridge between an outer and inner line.

The two outer lines are the horizontal lines y = 1 and y = −1. The inner line is
the horizontal line y = 0.

We proceed with the explanation of what is an irreducible bridge.
Whenever we join two bridges of lengths m and n we get another bridge of length
m + n. As a result, every bridge can be decomposed into irreducible bridges
(bridges which cannot be decomposed further). However, now a straight line of
k right steps is actually k irreducible bridges of length 1 glued to each other.
Therefore, for our convenience let us make the following correction in our under-
standing of what an irreducible bridge will be (this new understanding is used
above, when describing the two-letter combinations IO, OO and OI). If we have
a line of k irreducible bridges of length 1 and then another irreducible bridge of
length bigger than 1, then we will consider all these k + 1 irreducible bridges as
a single irreducible bridge (see Fig. 1). We will relate to the k right steps in the
beginning of the irreducible bridge as its tail.
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Fig. 1. An OO irreducible bridge with a tale of length 2

Proposition 2.1. The following code using OO, OI and IO describes all
bridges.

[IOOO
∗OI ]

∗ĨOOO
∗r∗

where the symbol ’*’ is an indefinite superscript (≥ 0), the tilde indicates that the
movement may not be executed and r is a step to the right.

The tilde and star can be considered as the “punctuation” needed for our
“language”.

In order to deduce the generating function of all bridges we need to find
the generating function for each of the types of irreducible bridges — OO, OI , and
IO.

In this section we will obtain the generating function of the most complex
one, the OO type. Firstly, we derive the generating function of the irreducible
bridges without a tail. Let us assume we are on the higher outer line (because
the grid is symmetric it does not matter). The irreducible bridges follow a certain
pattern. For k ≥ 0 they always consists of k + 1 steps to the right followed by a
step down and k steps to the left. Then we have another step down and k steps
to the right. The generating function is:

t3

1− t3

We can add the tail by multiplying the generating function by
1

1− t
:

GOO =
t3

1− t− t3 + t4
.

We find the generating functions of the other types of irreducible bridges
similarly (Table 1).

We need to calculate the generating function of OO
∗. Since OO∗ is just an

indefinite number of OO irreducible bridges glued to each other, the generating
function is

G(t)OO∗ =
1

1− t3

1−t−t3+t4

=
1− t− t3 + t4

1− t− 2t3 + t4
.
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Table 1

Irred. Bridge Generating function

OI
t
2

(1−t) = t2 + t3 + t4 + t5 + · · ·

IO
2t2

(1−t) = 2t2 + 2t3 + 2t4 + 2t5 + · · ·

OO
t
3

1−t−t3+t4
= t3 + t4 + t5 + 2t6 + · · ·

Hence,

B(t)[−1,1] =
1

1−G(t)IOG(t)OO∗G(t)OI

(1 +G(t)IOG(t)OO∗)G(t)u∗

=
1−5t+12t2−22t3+35t4−47t5+56t6−58t7+49t8−37t9+25t10−11t11+2t12

1−6t+15t2−24t3+35t4−48t5+53t6−46t7+31t8−16t9+4t10+10t11−17t12+10t13−2t14
.

Hence, we have obtained our desired generating function. In order to deduce the
value of µ[−1,1], we find the smallest modulus root of the denominator of B(t)[−1,1],
and take its reciprocal:

Proposition 2.2. The value of the connective constant on the Z×{−1, 0, 1}
lattice is approximately:

µ[−1,1] ≈
1

0.522295
≈ 1.914.

However, if we look carefully, the real structure of the SAW is encoded in
the generating function of [IOOO

∗OI ]
∗. One could only calculate that generating

function and it turns out that the desired root is really there. The denominator
reduces to the simple polynomial 1− t− 2t3 − t4 − 2t5 − 2t6.

3. Self-avoiding walks on the Z × {−1, 0, 1, 2} grid. In Ap-
pendix B we prove that

(2) µn
[−1,2] ≤ c[−1,2]n ≤ µn+1

[−1,2]P (n)

where P (n) = (n+1)+2(n+1)2+3(n+1)3+4(n+1)4+3(n+1)5+2(n+1)6+(n+1)7

for n ≥ 1 by using the Hammersley-Welsh Method. It yields as a bonus that

lim
n→∞

n

√

b[−1,2]n = µ[−1,2].

We again introduce a similar linguistic approach to the problem and use
the same definition for an irreducible bridge. We use the same irreducible bridges
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of types OO, OI , IO, however, we do introduce one more: II will denote an
irreducible bridge between the two inner lines, because now we have two outer
(y = 2 and y = −1) and two inner (y = 0 and y = 1) lines.

Proposition 3.1. Every bridge can be encoded in the following way:

[II
∗IOOO

∗OI ]
∗II

∗ĨOOO
∗r∗.

Hence, the problem translates to finding the generating function for each
of the four types of irreducible bridges. However, on the Z× {−1, 0, 1, 2} lattice,
SAWs have much more freedom and thus, their behaviour is harder to describe. If
we want to count all bridges, we will have to count SAWs, such as the one shown
in Fig. 2, and in some way include it in our generating function. The calculations
soon becomes quite unpleasant. Nevertheless, we can use our method to derive
close bounds for the connective constant. For example, if we count parts of the
irreducible bridges of each type (OO, IO, . . . ) and analyse the resulting generating
function, we will obtain a lower bound for the connective constant. The same
reasoning is used for for the upper bound.

Fig. 2. An OO irreducible bridge with a tail of length 2

We show examples of how we can obtain “good” bounds for the connective
constant, although if one makes more calculations, even better bounds could be
found.

3.1. Lower bound for the connective constant. For our lower bound
we need to count part of the irreducible bridges for each of the types OO, OI , II
and IO. Let us count only those which do not make a step to the left. Hence,
we will count right-side walks, whose first step is to the right. We present a table
with the generating functions:

Therefore, the generating function of all right-side SAWs, which start with
a right step is:

1− t+ t2 + t3 − t4

1− 2t+ t3 − 2t4 − t5
= 1 + t+ 3t2 + 6t3 + 12t4 + 24t5 + · · · .

The radius of convergence is approximately 0.487645.
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Table 2

Irred. Bridge Generating function

II
t
2

1−t
= t2 + t3 + t4 + t5 . . .

OI
t
2+t

3

(1−t) = t2 + 2t3 + 2t4 + 2t5 + . . .

IO
t
2+t

3

(1−t) = t2 + 2t3 + 2t4 + 2t5 + . . .

OO
t
4

(1−t) = t4 + t5 + t6 + t7 + . . .

Corollary 3.2. The following lower bound for the connective constant is
true:

1

0.487645
≈ 2.050 ≤ µ[−1,2].

3.2. Upper bound for the connective constant. We proceed with
the upper bound. Through exhaustive search we discover that there are 2 types
of irreducible bridges, which follow certain patterns:

We may have a tail. Then we have a step to the right and respectively one,
two or three steps upward or downward depending on which type of irreducible
bridge we are performing – we will call these irreducible bridges simple (Fig. 3).

Fig. 3. A simple OI irreducible bridge. We have a tail of length four followed by a step
to the right. Afterwards we have two steps upwards

The other pattern is as follows. We assume we are on one of the two lower
lines, parallel to the x-axis (y = 0 and y = −1), as the other case is analogical. We
may have a tail. Then we have 3 avoidable SAWs on strips with length 1, which go
in “opposite” directions, as the first walk goes right (on the strip Z×{−1, 0}), the
second one goes left (on the strip Z× {0, 1}), and the third one goes to the right
again (on the strip Z × {1, 2}). Their starting and ending points are determined
by the type of irreducible bridge. We call these bridges complicated (Fig. 4).

First, we examine irreducible bridges of type OO.
Let us imagine a complicated bridge that starts from the higher outer line.

We ignore the tail for now and perform the following operation: do not move the
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Fig. 4. A complicated OI irreducible bridge. We have a tail of length 1. Afterwards we
have a walk that goes right on the strip Z× {−1, 0} of length 7. Then a walk that goes
left on the strip Z× {0, 1} of length 8 followed by a walk that goes right on the strip

Z× {1, 2} of length 7

walk that goes right on the grid Z × {1, 2}. However, we add a right step where
it ends and place the beginning of the walk that goes left in the end of the added
right step and rotate it about its beginning by 180 degrees. It became a walk
that goes right. We proceed by adding another right step and at its end we place
the beginning of the walk that goes right on the grid Z × {−1, 0}. Hence, we
transformed our irreducible bridge without a tail into a walk with two more steps
on the grid Z × {1, 2}, as we know the lines on which it starts and ends. (We
show an example on Figures 5 and 6.) Notice that we add right steps because
otherwise our transformed walk may not be a SAW. Moreover, every irreducible
bridge OO without a tail has a unique transformed walk. However, the inverse is
not true.

Fig. 5. OO irreducible bridge without a tail

Fig. 6. The bridge from Fig. 5 after the transformation
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We now find the generating function of the transformed SAWs. Such a
transformed SAW cannot make left steps, it is only on the grid Z×{1, 2}, its
starting and ending points are on different lines (beginning on the outer line and
ending on the inner one) and the first step is always to the right.

The generating function equals

t2

1−t

1− t4

(1−t)2

1

1− t
=

t2

1− 2t+ t2 − t4
.

If we divide the above generating function by t2 (because of the added 2
right steps) we will obtain a generating function whose coefficient in front of the
nth power is bigger than or equal to the number of irreducible bridges of type OO

without a tail of length n:

1

1− 2t+ t2 − t4
= 1 + 2t+ 3t2 + 4t3 + 6t4 + 10t5 + · · · .

However, as we want to make the coefficients more accurate, we will de-
crease the coefficients in front of the first 14 powers. (We check by exhaustive
search that these coefficients can be decreased.)

1

1− 2t+ t2 − t4
− (1 + 2t+ 3t2 + 4t3 + 5t4 + 10t5 + 17t6 + 24t7 + 45t8 + 72t9

+109t10+188t11+301t12+474t13)

=
t4−2t5+t6+4t7−9t8+4t9+7t10−18t11+11t12+12t13+756t14−286t15+301t16+474t17

1−2t+t2−t4
.

Moreover, we notice that we also counted the simple irreducible bridges in
the generating function. (We did not decrease the coefficient in front of the fourth
power with 6.) Now we can add the tail by multiplying by 1

1−t
. Hence we will

obtain a generating function whose coefficient in front of the nth power is bigger
than or equal to the number of irreducible bridges of type OO with length n.

The other types of irreducible bridges will be considered in Appendix A.
In the end, our calculations yield one “big” generating function. We again

look at the “important” part of the code of all bridges:

[IOO
∗
OOII

∗
I ]

∗.

The denominator of the generating function of this part of the code is

D(t) = 1− 12t+ 65t2 − 209t3 + 434t4 − 568t5 + 338t6 + 305t7 − 907t8
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+ 770t9 + 292t10 − 1462t11 + 1406t12 + 446t13 − 3945t14 + 13408t15

− 42903t16 + 101573t17 − 158117t18 + 136952t19 + 4507t20

− 182921t21 + 225943t22 − 49787t23 − 215357t24 + 317489t25

− 108470t26 − 314100t27 + 801774t28 − 1620468t29 + 3204285t30

− 4939210t31 + 4697564t32 − 1024682t33 − 3939143t34 + 5903640t35

− 3220560t36 − 980952t37 + 2685716t38 − 1510904t39 − 162295t40

+ 605850t41 − 239118t42 − 42432t43 + 55764t44.

The radius of convergence is approximately 0.461722.

Corollary 3.3. The following upper bound for the connective constant is
true:

µ[−1,2] ≤ 2.166.

4. Transformation of SAWs on the square lattice in walks

on the honeycomb lattice. In this section we will present a transformation
of SAWs on the square lattice Z × Z to a special kind of walks on the so called
honeycomb lattice or hexagonal lattice, but with twice as many steps. We are
interested in this transformation because the value of the connective constant for

the hexagonal lattice is known and equals µH =

√

2 +
√
2.

Fig. 7. The square grid analogue drawn over the hexagonal grid

Let us draw a grid of rhombuses onto the hexagonal lattice as shown on
Fig. 7. We will refer to this grid as a square lattice as it is analogical.
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Now on every step on the square lattice we will superpose two steps on
the hexagonal lattice, with whom the step on the square lattice forms an isosceles
triangle (Fig. 8).

Fig. 8. Mapping a step on the square lattice to two steps on the hexagonal lattice

We will analyse what kind of characteristics do walks on the hexagonal
lattice have, when they are transformed from a SAW on the square lattice.

• The walk starts from a point through which the square lattice passes.

• It is not allowed the steps between points 1 - 2 and 2 - 3 (Fig. 8) for a
given hexagon to occur consecutively, as we cannot superpose a step on the
square lattice.

• Consider the configuration of two hexagons on Fig. 9. If on the square

Fig. 9. Situation of intersection

lattice we made steps from point A to point D and then to point B, on
the hexagonal lattice we will have passed through the segment C - D twice.
The same would happen if the SAW goes in the opposite direction. This
intersection is the only one for this type of walks as every step on the square
lattice has its unique pair of steps on the hexagonal lattice.

Definition 4.1. A walk with the above properties will be called a semi-
self-avoiding walk (SSAW).
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Theorem 4.2. There is a bijective correspondence between SAWs from
the square lattice with length n and SSAWs on the hexagonal lattice with length
2n.

P r o o f. To prove the theorem we will establish consecutively that the
transformation is injective and surjective.

We notice that every step on the square lattice has a unique for itself
combination of two steps on the honeycomb lattice. Something more – unique
two points from the walk on the hexagonal grid, which are divided by two steps.
Hence, one walk on the square grid determines in a unique manner the first,
second, third, fourth, and so on, till the 2k+1st point of the walk on the hexagonal
grid (let us call this points odd and respectively the others – even). In fact, the
whole hexagonal grid can be divided into points, which always will be even and
others which are always odd (Fig. 10). Hence, two different walks on the square
lattice determine, for the walks they are transformed into, different odd points.
From here it follows that the transformation is injective.

Fig. 10. Black points, which are odd, and white points, which are even

Now, let us start with the proof that the transformation is surjective. We
will proof that every SSAW of 2n-steps is a result of the transformation of a SAW
on the square lattice.

We consider the odd points of this walk and we notice that through every
point there, the walk has passed exactly one time, because the only permitted
intersection is in an even point. Moreover, every two odd points, through which
the walk passes consecutively, correspond to the move on the square grid. This
follows from the SSAW’ characteristics. Thus we finished our proof. ✷

We denote the number of SSAWs with length n by Sn. Theorem 4.2
implies that

S2n = cn,
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µZ×Z = ( lim
n→∞

n
√

Sn)
2

as we know that lim
n→∞

n
√

Sn exists, because of Fekete’s lemma.

Let us call branches the parts where the walk self-intersects and passes
two times through one of the hexagon’s sides, while the other part of the walk
will be named the main branch (Fig. 11). The main branch is simply a SAW on
the hexagonal lattice and determines, in a unique manner, where the branches
will be attached.

Fig. 11. An SSAW with three branches and length of the main branch equal to 14 is
transformed into a SAW on the square lattice with length 10

If we want to find cn, we need to know the number of SSAWs with a length

of the main branch n − k and
k

2
branches, for all possible k. A branch appears

whenever on the square lattice we make a right step followed by a step upwards
or whenever we have a step downwards followed by a step to the left. We we call
these turns – branch-creating (Fig. 12).

Fig. 12. Branch-creating turns

Let An be the number of turns all cn SAWs on the square lattice make.
Then the number of branch-creating turns is An

4 . On average a SAW on the square

lattice makes
An

4cn
branch-creating turns. We take the first 22 values of An from

[PR] and moreover calculate it up to n = 27. Then we examine the fraction

An

cn
= xn

for all n smaller than 28 (Fig. 13). A table is shown in Appendix C.
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Conjecture 4.3. For sufficiently large n, on average, the number of turns
a SAW of length n on the square lattice makes is

xn ≈ 3

5
n.

Fig. 13. Number of turns on average divided by n, as n grows

On average the length of the main branch will be 2n− xn

2
, because every

branch is made out of 2 steps. Let us, for example, accept that lim
n→∞

xn

n
= 0.6.

Then lim
n→∞

2n − xn

2

n
=

17

10
. Denote the number of SAWs on the hexagonal lattice

of length n with hn. Let us consider the values of n when it is divisible by 10
(n = 10k). Let x1, x2, . . . , xc10k be the lengths of the main branches of all c10k
transformed SAWs from the square lattice of length n. Therefore we have:

lim
k→∞

x1 + x2 + · · · + xc10k
kc10k

= lim
k→∞

17kh17k
kh17k

.

The purpose of this result is to be able to obtain a purely mathematical
close bound for the number of walks and for the connective constant without the
work of thousands of hours of computer computations. If we manage to prove
that

(3) x1 + x2 + · · ·+ xc10k ≤ 17kh17k
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for sufficiently large k. Then we will have that

lim
k→∞

c10k

h17k
≤ 1.

Hence, for sufficiently large n we have that

c10k ≤ h17k.

Moreover, this yields
lim
n→∞

10k
√
c10k ≤ lim

n→∞
10k
√

h17k,

µZ×Z ≤ µH

17

10 ≈ 2.84.

However, one should notice that the bound for the connective constant follows
directly from the inequality (3) and does not need our previous computations.
In addition, proving a lower bound for xn would again yield an upper bound,
however, they will be weaker.

Consider a SAW on the hexagonal lattice which does not move in a di-
rection which is partially south. Then it can be seen that the number of SAWs
of this type of length n is Fn+1 where Fi is the ith Fibonacci number (F0 and F1

equal 1). Could we compare these SAWs and SSAWs in some way? Let us assume
that

Fn ≤ Sn.

Therefore
1 +

√
5

2
≤ lim

n→∞
n
√

Sn,

(1 +
√
5

2

)2
≈ 2, 618 ≤ µZ×Z.

We hope that in the future we will be able to prove that

Fn ≤ cn, c10k ≤ h17k,

2.618 ≤ µZ×Z ≤ 2.84.

Moreover, we want to prove the above inequalities without any or with little
computer computations as the value of µH was obtained purely mathematically.
We presented a way in which this might happen. For comparison, the best known
bounds nowadays (see [8]) are:

2.62002 ≤ µZ×Z ≤ 2.67919,

µn ≤ cn ≤ µn
Z×Ze

k
√
n.
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Appendix A. Upper bound for µ[−1,2]. We consider the other 3
types of irreducible bridges. We use the same method to make an injective trans-
formation that maps the irreducible bridges to SAWs on a lattice strip of width
one. Then, after finding the generating function of the codomain, we decrease
some of the coefficients. The calculations are in Table 3.

Table 3

OO IO OI II

Transformed

SAWs

t2

1− 2t+ t2 − t4
(1− t)t

1− 2t+ t2 − t4
(1− t)t

1− 2t+ t2 − t4
t2

1− 2t+ t2 − t4

Extracting the

added steps

1

1− 2t+ t2 − t4
(1− t)

1− 2t+ t2 − t4
(1− t)

1− 2t+ t2 − t4
t2

1− 2t+ t2 − t4

D
ec

re
a
si

n
g

th
e

co
effi

ci
en

ts
w

it
h

..
.

1
+

2
t
+
3
t2

+
4
t3

+
5
t4

+
1
0
t5

+
1
7
t6

+
2
4
t7

+
4
5
t8

+
7
2
t9

+
1
0
9
t1

0

+
1
8
8
t1

1
+
3
0
1
t1

2
+
4
7
4
t1

3

1
+
t
+
2
t4

+
4
t5

+
6
t6

+
1
1
t7

+
1
6
t8

+
2
6
t9

+
4
4
t1

0
+
6
7
t1

1
+
1
1
5
t1

2
+
1
8
0
t1

3

1
+
t
+
2
t4

+
4
t5

+
6
t6

+
1
1
t7

+
1
6
t8

+
2
6
t9

+
4
4
t1

0
+
6
7
t1

1
+
1
1
5
t1

2
+
1
8
0
t1

3

2
t3

+
3
t4

+
4
t5

+
6
t6

+
1
0
t7

+
1
7
t8

+
2
8
t9

+
4
5
t1

0
+
7
2
t1

1
+
1
1
5
t1

2
+
1
8
6
t1

3
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Table 4

Final result

OO

t4−2t5+t6+4t7−9t8+4t9+7t10−18t11+11t12+12t13+756t14−286t15+301t16+474t17

(1−2t+t2−t4)(1−t)

IO
t2−t3−t4+t5−3t7+2t8−t9−2t10+6t11−9t12+9t13+289t14−113t15+115t16+180t17

(1−2t+t2−t4)(1−t)

OI

t2−t3−t4+t5−3t7+2t8−t9−2t10+6t11−9t12+9t13+289t14−113t15+115t16+180t17

(1−2t+t2−t4)(1−t)

II
t2−2t3+t4−t6+t12+302t14−114t15+115t16+186t17

(1−2t+t2−t4)(1−t)

Next we explain the second and third row of Table 3 in the following
paragraphs:

A.1. OI irreducible bridges. We apply the same procedure as for the
OO case. We examine the complicated bridges first (let us assume that we are on
the higher outer line). The difference is that we do not need to add a right step
after the walk that goes right on the grid Z×{1, 2}, because the irreducible bridge
finishes on an inner line, and therefore, the first step of the walk that goes left on
the grid Z×{0, 1} is a step to the left. Thus, after the rotation by 180 degrees we
will still have a SAW. (The beginning of the rotated walk is not moved.) Hence,
after the transformation we have a SAW on the grid Z×{1, 2}, which does not
have left steps, its starting and ending points are on the same line, its first step
is to the right and its length is with 1 bigger than the length of the walk it was
obtained from.

A.2. IO irreducible bridges. We see that the number of irreducible
bridges of types OI and IO are equal (Figures 14 and 15). Hence, we can use the
same reasoning.

Fig. 14. An irreducible bridge of type OI with a tail of length 2

A.3. II irreducible bridges. Let us assume that the walk starts from
the higher inner line. We again perform the same operation with the difference
that we do not need to add any right steps because we start and finish the bridge
on inner lines and as a result, after the transformation we have a SAW on the
grid Z×{1, 2} with the same length.
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Fig. 15. Fig. 7 after the transformation to an irreducible bridge of type IO, that moves
in the “opposite” direction

Appendix B. Lower and upper bounds for the number of
SAWs on the Z × {−1, 0, 1} and Z × {−1, 0, 1, 2} lattices. We use
the Hammersley Welsh-Method which was used to find bounds for the number of
SAWs on the Z× Z lattice (see [8, p. 57]).

B.1. Lower bound. We introduce Fekete’s lemma.

Lemma B.1. For every subadditive set {an}∞n=1, the bound lim
n→∞

an

n
exists

and is equal to inf
an

n
.

Let y be equal to 1 or 2. Then

c[−1,y]n+m ≤ c[−1,y]nc[−1,y]m

log c[−1,y]n+m ≤ log c[−1,y]n + log c[−1,y]m.

Therefore,

inf
log c[−1,y]n

n
= lim

n→∞

log c[−1,y]n

n

log µ[−1,y] = inf
log c[−1,y]n

n
µn
[−1,y] ≤ c[−1,y]n

for n ≥ 1.

B.2. Upper bound. We will prove (1) (Section 2) for the Z×{−1, 0, 1}
lattice, however, one can prove (2) (Section 3) for the Z × {−1, 0, 1, 2} lattice in
the same way.

B.2.1. Z × {−1, 0, 1} lattice. Before going into details, we need several
definitions and one lemma.

Definition B.2. An n-step half-space walk (all points after the first one
are on the right of the line, parallel to the x-axis passing through it) is a SAW,
whose x-axis coordinates of the points satisfy the following inequality:

x0 < xi
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for all i = 1, 2, . . . , n.
The number of n-step half-space walks is denoted with h[−1,1]n. By conven-

tion, h[−1,1]0 = 1.

In particular, every bridge is a half-space walk.

Definition B.3. The span of a n-step SAW is the difference between the
smallest and biggest x-axis coordinate of points, which are part of the walk:

max
0≤i≤n

xi − min
0≤i≤n

xi.

The number of n-step half-space walks (respectively bridges) starting at the origin
(0, 0) and having span A is denoted by h[−1,1]n,A (respectively b[−1,1]n,A).

Note that h[−1,1]n,0 is 1 if n = 0, and it is 0 otherwise.

Lemma B.4. For each integer A > 0, let PF (A) denote the number of
partitions of A into distinct integers, whose number is less than 4 (i.e the number
of ways to write A = A1 + · · ·+Ak, where A1 > · · · > Ak > 0 and k ≤ 3). Then

PF (A) ≤ 1 +A+A2.

By assumption we let PF (0) = 1 since 1 ≤ 1 + 0 + 0.

P r o o f. If k = 1, then we have one way. If k = 2, then we have at most
A ways, as for every choice for A1, we have at most one possibility for A2. The
next case is analogical, as for k = 3 we count all possibilities for A1 and A2, and
we get at most A2 different sums. ✷

The following proposition contains the first part of the proof of our upper
bound.

Proposition B.5. For every n ≥ 0,

h[−1,1]n ≤ PF (n)b[−1,1]n.

P r o o f. Let us have an n-step half-space walk denoted by w that starts
at the origin (0, 0). Let n0 = 0. For each i = 1, 2, . . . , respectively define Aj(w)
and nj(w) so that

Ai = max
ni−1≤j≤n

(−1)i(xni−1
− xj)

and ni is the largest value of j, for which this maximum is attained. The recursion
is stopped at the smallest integer k such that nk = n; this means that Ak+1(w)
and nk+1(w) are not defined. Observe that A1(w) is the span of w; in general
Ai+1 is the span of the SAW (wni

, . . . , wn) (wi is the i + 1 point of the walk
w), which is either a half-space walk or the reflection of one. Moreover, each
of the subwalks (wni

, . . . , wni+1
) is either a bridge or the reflection of one. Also

observe that A1 > A2 > · · · > Ak > 0 and that as we are working on the grid
Z×{−1, 0, 1,}, then k ≤ 3, because when we reach wn1

, the rest of the walk cannot
have points on at least one of the lines. This follows from the fact that the last
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rightmost point is higher or lower (let us assume that it is lower) from the first
rightmost point, and all other points need to have a smaller x-axis coordinate.
As a result, since we have a half-space walk, all the points need to be below the
walk with ends (wn0

, wn1
). From here we can see that the statement is true. As

the same process continues, we find that k ≤ 3.

w0

wn1

wn2
wn3

Fig. 16. A half-space walk w in H14[4, 3, 2]

Fig. 17. The transformed walk w′ in H14[7, 2]

For every decreasing sequence of k positive integers a1 > a2 > · · · > ak >

0, let Hn[a1, a2, . . . , ak] be the set of n-step half-space walks w with w0 = (0, 0)
and A1(w) = a1, . . . , Ak(w) = ak and nk(w) = n. Note that in particular Hn[a]
is the set of n-step bridges of span a.

Given an n-step half-space walk w, define a new n-step walk w′ as follows:
for 0 ≤ j ≤ n1(w), define w′

j = wj; and for n1(w) < j ≤ n, define w′
j to

be the reflection of the point wj in the hyperplane x1= A1(w). Observe that
if w is in Hn[a1, a2, . . . , ak], then w′ is in Hn[a1 + a1, a3, . . . , ak]; moreover, this
transformation maps an unique walk (the transformation is one-to-one), so

|Hn[a1, a2, . . . , ak]| ≤ |Hn[a1 + a2, a3, . . . , ak]|.
Therefore, summing over all possible sequences a1 > · · · > ak > 0, we get

that

h[−1,1]n =
∑

|Hn[a1, . . . , ak]| ≤
∑

|Hn[a1 + · · ·+ ak]|

=
∑

b[−1,1]n,a1+···+ak

which tells us that

h[−1,1]n ≤
∑

PF (A)b[−1,1]n,A.
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Note that PF (A) ≤ PF (n) for A ≤ n. Hence,

h[−1,1]n ≤ PF (n)
n
∑

A=1

b[−1,1]n,A = PF (n)b[−1,1]n

which proves the proposition. ✷

Therefore, we are ready to prove our upper bound.
P r o o f. Given an arbitrary n-step SAW w, let M = minxj and m be the

largest j such that xj = M . Then (wm, . . . , wn) is a half-space walk, as is

(w(m)− (1, 0), w(m), w(m − 1), . . . , w(0)).

Using this decomposition method, as well as Proposition B.5 and the in-
equality b[−1,1]ib[−1,1]j ≤ b[−1,1]i+j (which follows from the fact that whenever we
concatenate two bridges we get a new bridge) we obtain:

c[−1,1]n ≤
n
∑

m=0

h[−1,1]n−mh[−1,1]m+1 ≤
n
∑

m=0

b[−1,1]n−mb[−1,1]m+1PF (m+1)PF (n−m)

≤ b[−1,1]n+1

n
∑

m=0

(1 + (m+ 1) + (m+ 1)2)(1 + (n−m) + (n−m)2)

≤ b[−1,1]n+1((n+ 1) + 2(n + 1)2 + 3(n+ 1)3 + 2(n+ 1)4 + (n+ 1)5)

for all n. Therefore, since b[−1,1];n+1 ≤ µn+1
[−1,1] (the proof of this fact, as for our

lower bound for the number of SAWs, uses Fekete’s lemma, when concerning
superadditive sequences), we have

c[−1,1]n ≤ µn+1
[−1,1]((n + 1) + 2(n+ 1)2 + 3(n+ 1)3 + 2(n + 1)4 + (n+ 1)5). ✷

Corollary B.6. For all n ≥ 2 we have that

µn−1
[−1,1]

(n+ 1) + 2(n + 1)2 + 3(n + 1)3 + 2(n + 1)4 + (n+ 1)5
≤ b[−1,1]n ≤ µn

[−1,1].

P r o o f. The left bound follows from (1) and from the fact that µn
[−1,1] ≤

c[−1,1]n. The right bound can be proven by using the superadditive sequence

{log b[−1,1]n}∞n=1. Thus, lim
n→∞

n

√

b[−1,1]n = µ[−1,1]. ✷

B.2.2. Z × {−1, 0, 1, 2} lattice. When using the method for the
Z×{−1, 0, 1, 2} lattice we would have that PF (A) ≤ 1+A+A2 +A3. Hence, we
would have that

c[−1,2]n ≤
n
∑

m=0

h[−1,2]n−mh[−1,2]m+1 ≤
n
∑

m=0

b[−1,2]n−mb[−1,2]m+1PF (m+1)PF (n−m)

≤ b[−1,2]n+1

n
∑

m=0

(1+(m+1)+(m+1)2+(m+1)3)(1+(n−m)+(n−m)2+(n−m)3)
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≤ b[−1,2]n+1((n+1)+2(n+1)2+3(n+1)3+4(n+1)4+3(n+1)5+2(n+1)6+(n+1)7)

for all n ≥ 1. Thus, since b[−1,2]n+1 ≤ µn+1
[−1,2] (the proof again uses Fekete’s lemma),

we have

c[−1,2]n ≤ µn+1
[−1,2]((n + 1) + 2(n+ 1)2

+ 3(n + 1)3 + 4(n+ 1)4 + 3(n+ 1)5 + 2(n + 1)6 + (n+ 1)7).
We have the analogous corollary that

lim
n→∞

n

√

b[−1,2]n = µ[−1,2].

Appendix C. Number of turns on the square lattice.

Table 5

n cn An

An

cn
= xn

xn

n
1 4 0 0 0
2 12 8 0.666666667 0.333333333
3 36 48 1.333333333 0.444444444
4 100 192 1.92 0.48
5 284 720 2.535211268 0.507042254
6 780 2448 3.138461538 0.523076923
7 2172 8144 3.749539595 0.535648514

8 5916 25760 4.354293442 0.54428668
9 16268 80752 4.963855422 0.551539491
10 44100 245648 5.570249433 0.557024943
11 120292 743312 6.179230539 0.561748231
12 324932 2205168 6.786552263 0.565546022
13 881500 6518864 7.395194555 0.56886112
14 2374444 19003088 8.003173796 0.571655271

15 6416596 55258640 8.611830946 0.574122063
16 17245332 159004448 9.220144211 0.576259013
17 46466676 456716656 9.828907409 0.578171024
18 124658732 1301118688 10.43744523 0.579858068
19 335116620 3701802736 11.04631199 0.581384841
20 897697164 10462677056 11.6550185 0.582750925
21 2408806028 29541536240 12.26397472 0.583998796

22 6444560484 82959601504 12.87280982 0.585127719
23 17266613812 232785788080 13.48184367 0.586167116
24 46146397316 650238685680 14.09077899 0.587115791
25 123481354908 1815160933616 14.69987866 0.587995146
26 329712786220 5047538209296 15.30889435 0.588803629
27 881317491628 14028855411952 15.91804945 0.589557387


