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Abstract. Given two families u = (up)p∈I and v = (vq)q∈J of real continu-
ous functions on a topological space X , we define a preorder R = R(u, v) on
X by the condition that any member of u is an R-increasing and any member
of v is an R-decreasing function. It turns out that if the topological space
X is quasi-compact and sequentially compact, then any element x ∈ X is
R-dominated by an R-maximal element m ∈ X : xRm. In particular, since
the (n− 1)-dimensional simplex is a compact subset of Rn, then considering
its members as portfolios consisting of n financial assets, we obtain the clas-
sical 1952 result of Harry Markowitz that any portfolio is dominated by an
efficient portfolio. Moreover, several other examples of possible application
of this general setup are presented.

1. Markowitz optimization.

1.1. Return of a portfolio. Let

∆n−1 =

{

(x1, . . . , xn) ∈ R
n
+ |

n
∑

i=1

xi = 1

}

be the (n − 1)-dimensional simplex and let [n] = {1, . . . , n}. The ordered pairs
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([n], x), x ∈ ∆n−1, are sample spaces with set of outcomes [n] and probability
assignment x : [n] → R, x(i) = xi, i = 1, . . . , n. The set of all sample spaces of
this form can be identified with the (n − 1)-dimensional simplex ∆n−1 and also
are said to be (n− 1)-dimensional lotteries or (n− 1)-dimensional portfolios.

Given a sample space S, let s1, . . . , sn be random variables on S with
expected values µ1, . . . , µn, respectively. For any portfolio x ∈ ∆n−1 the weighted
sum s(x) = x1s1 + · · · + xnsn is a random variable with expected value u(x) =
E(s(x)) = x1µ1+ · · ·+xnµn and the variance v(x) = Var(s(x)) is a non-negative
quadratic form in x1, . . . , xn.

Remark 1.1.1. Below we interpret i ∈ [n] as financial assets, the sample
space S as a financial market, the random variables si on S as returns on asset
i, i = 1, . . . , n, in the end of a fixed time period, and s(x) as the return of the
portfolio x. Then u(x) = E(s(x)) is the expected return and v(x) = Var(s(x)) is
the risk (or, the volatility) of the portfolio x — see, for example, [2, 2.1].

1.2. Markowitz preferences. Let x ∈ ∆n−1 be a portfolio and u(x) =
E(s(x)) and v(x) = Var(s(x)) be the expected return and the volatility of x. The
Markowitz’s approach to portfolio selection is based on the following definition of
preference R on the set ∆n−1 of portfolios: xRy if u(x) ≤ u(y) and v(y) ≤ v(x).
Non-formally, xRy means that the portfolio y is at least as good as x. The
symmetric part E of the preorder R is

E = {(x, y) ∈ ∆2
n−1 | u(x) = u(y) and v(y) = v(x)}

and the asymmetric part F of R is F = R\E. Thus, xFy if and only if either
u(x) < u(y) and v(y) ≤ v(x) or u(x) ≤ u(y) and v(y) < v(x). Non-formally, xFy

means that the portfolio y is definitely better than the portfolio x.

In [1, p. 82] H. Markowitz gives (up to notation) the following definition:

The portfolio x is said to be efficient if

(1.2.1) u(x) = max
y∈∆n−1,v(y)≤v(x)

u(y) and v(x) = min
y∈∆n−1,u(y)≥u(x)

v(y).

In other words, for any portfolio y ∈ ∆n−1 the inequality v(y) ≤ v(x) implies
the inequality u(x) ≥ u(y) and the inequality u(y) ≥ u(x) implies the inequality
v(x) ≤ v(y). The negation of the last statement is: There exists y ∈ ∆n−1 such
that xFy, that is, the portfolio x is not R-maximal.

Thus, we see that x is Markowitz’s efficient portfolio if and only if x is
R-maximal – this is our setup.
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2. Generalization. In this section we present a wide generalization of
Markowitz’s preference relation, defined in 1.2. Using Kuratowski-Zorn Theorem
(equivalent to the Axiom of Choice), we show that any member of this preference
structure is dominated by a maximal element (generalized efficient portfolio). In
particular, the set of generalized efficient portfolios is not empty.

2.1. A preorder on a topological space. Let X be a topological space
and let u = (up)p∈I and v = (vq)q∈J be two families of continuous real functions
on X. We define a preorder R = R(u, v) on X in the following way:
(2.1.1)

R = {(x, y) ∈ X2 | up(x) ≤ up(y) and vq(x) ≥ vq(y) for all p ∈ I, q ∈ J}.

Then for the symmetric part E of R (an equivalence relation) one has

E = {(x, y) ∈ X2 | up(x) = up(y) and vq(x) = vq(y) for all p ∈ I, q ∈ J}

and for the asymmetric part F of R (an asymmetric and transitive relation) one
has F = R\E. Thus, xFy means xRy and either there exists index p0 ∈ I with
up0(x) < up0(y) or there exists index q0 ∈ J with vq0(x) > vq0(y).

On the account of repetitions of functions within one family and adding
the negatives of functions from one family to the other, we can assume that both
families have the same set of indices, u = (up)p∈I , v = (vp)p∈I , without changing
the corresponding preorder on X. Moreover, on the account of adding a third
countable family of continuous functions onX to both families, the corresponding
preorder can be defined by two systems of inequalities and a system of equalities.

Below, if the opposite is in not stated, the families u = (up)p∈I and
v = (vp)p∈I have the same index set.

2.2. Maximal elements. In order to fix the terminology, we remind
several definitions. A topological space X is called quasi-compact if every open
covering of X contains a finite open covering. The space X is called compact if it
is quasi-compact and Hausdorff, and sequentially compact if any infinite sequence
of elements of X has a converging subsequence.

It is well known (see, for example, [3, Sec. 1]) that any compact and first
countable space is sequentially compact and that every Lindelöf, sequentially
compact (and Hausdorf) space is quasi-compact (compact).

Given a prerder R on the set X, a subset C ⊂ X is said to be chain in X

if the induced preorder on C is complete. A preordered set X is called inductive
if every chain in X has an upper bound.

Below, if the opposite is not stated, we suppose that the topological space
X is furnished with the preorder R produced by the families of continuous func-
tions u = (up)p∈I and v = (vp)p∈I .
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The sequence (xι)
∞
ι=1, xι ∈ X, is said to be R-increasing (respectively,

strictly R-increasing) if xιRxι+1 (respectively, xιFxι+1) for all ι ≥ 1. By analogy,
we define R-decreasing (respectively, strictly R-decreasing) sequences.

Given an R-chain C ⊂ X, for any p ∈ I and any real number r ∈ R we
set:

Mp = sup
x∈C

up(x), mp = inf
x∈C

vp(x),

Cp = {x ∈ C | up(x) = Mp}, C(−)
p = {x ∈ C | up(x) < Mp},

cp = {x ∈ C | vp(x) = mp}, c(+)
p (r) = {x ∈ C | vp(x) > mp}.

Finally, we denote C∗
p = {x ∈ X | up(x) = Mp}, c

∗
p = {x ∈ X | vp(x) = mp}, so

Cp ⊂ C∗
p and cp ⊂ c∗p. Note that C = Cp ∪ C(−)

p = cp ∪ c(+)
p .

Lemma 2.2.1. Let p, q ∈ I.
(i) One has cp ⊂ Cp or Cp ⊂ cp.
(ii) One has cp ∩ Cp ⊂ cq ∩ Cq or cq ∩ Cq ⊂ cp ∩ Cp.

P r o o f. (i) If vp(x) = mp for all x ∈ Cp, then Cp ⊂ cp. Otherwise, there
exists x ∈ Cp with vp(x) > mp and, hence, vp(y) < vp(x) for all y ∈ cp. Since any
y ∈ cp is R-comparable with x, we have up(y) ≥ up(x) = Mp, that is, y ∈ Cp. In
other words, cp ⊂ Cp.

(ii) If vq(x) = mq and uq(x) = Mq for all x ∈ cp∩Cp, then cp∩Cp ⊂ cq∩Cq.
Otherwise, there exists x ∈ cp∩Cp with vq(x) > mq or uq(x) < Mq. If vq(x) > mq

(respectively, uq(x) < Mq), then vq(y) < vq(x) (respectively, uq(x) < uq(y))
for all y ∈ cq ∩ Cq. Since x and y are R-comparable, in both cases we have
up(y) ≥ up(x) = Mp and mp = vp(x) ≥ vp(y). In other words, y ∈ cp ∩ Cp for all
y ∈ cq ∩ Cq. ✷

Let us fix a positive integer s and a finite subset {p1, . . . , ps} ⊂ I.
Using Lemma 2.2.1, (i), (ii), and induction, we obtain immediately the

following:

Corollary 2.2.2. The intersection cp1 ∩ Cp1 ∩ . . . ∩ cpk ∩ Cpk is equal to
one of the sets cp1 , Cp1, . . ., cpk , Cpk for all k ≤ s.

Given an s ≥ 1, in accord with Lemma 2.2.1, (i), (ii), and eventual
renumbering of the pairs of functions upk , vpk , we order the intersections cpk∩Cpk ,
k ≤ s, with respect to inclusion from smallest to largest:

(2.2.1) cp1 ∩ Cp1 ⊂ · · · ⊂ cpℓ ∩ Cpℓ ⊂ cpℓ+1
∩ Cpℓ+1

⊂ · · · ⊂ cps ∩ Cps ,

where cpi = ∅ or Cpi = ∅, 1 ≤ i ≤ ℓ, and cpℓ+1
∩Cpℓ+1

6= ∅. Below, if the opposite
is not stated, after fixing {p1, . . . , ps} ⊂ I, we assume that (2.2.1) holds.
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Thus, the existence of k ≤ s with cpk = ∅ or Cpk = ∅ after renumbering
implies ℓ ≥ 1, that is, cp1 = ∅ or Cp1 = ∅.

Lemma 2.2.3. Let X be a sequentially compact space and let Cp1 = ∅
(respectively, cp1 = ∅).

(i) There exists a strictly R-increasing and divergent sequence

(2.2.2) (xι)
∞
ι=1,

with xι ∈ C and limit x∗ ∈ X, such that the sequence of real numbers (up1(xι))
∞
ι=1

is strictly increasing and diverges to up1(x
∗) = Mp1 and every sequence of real

numbers (vq(xι))
∞
ι=1, q ∈ I, is decreasing and diverges to vq(x

∗) = mq (respec-
tively, the sequence of real numbers (vp1(xι))

∞
ι=1 is strictly decreasing and diverges

to vp1(x
∗) = mp1 and every sequence of real numbers (uq(xι))

∞
ι=1, q ∈ I, is in-

creasing and diverges to uq(x
∗) = Mq).

(ii) Let for the sequence (2.2.2) from part (i) one has up1(x
∗) = Mp1,

up2(x
∗) = Mp2,. . . , upk(x

∗) = Mpk (respectively, vp1(x
∗) = mp1, vp2(x

∗) =
mp2,. . . , vpk(x

∗) = mpk), for some k < s. Then either there exists y ∈ ∩λ∈Icλ ∩
Cp1 ∩ . . . ∩Cpk ∩Cpk+1

(respectively, y ∈ cp1 ∩ . . . ∩ cpk ∩ cpk+1
∩λ∈I Cλ), or there

exists a strictly R-increasing and divergent sequence (yκ)
∞
κ=1, with yκ ∈ C and

limit y∗ ∈ X, such that up1(y
∗) = Mp1, up2(y

∗) = Mp2,. . . , upk(y
∗) = Mpk , and

vq(y
∗) = mq, q ∈ I (respectively, vp1(y

∗) = mp1, vp2(y
∗) = mp2,. . . , vpk(y

∗) =
mpk , and uq(x

∗) = Mq, q ∈ I), the sequence of real numbers (upk+1
(yκ))

∞
κ=1

is strictly increasing and diverges to upk+1
(y∗) = Mpk+1

and every sequence of
real numbers (vq(yκ))

∞
κ=1, q ∈ I, is decreasing and diverges to vq(y

∗) = mq

(respectively, the sequence of real numbers (vpk+1
(yκ))

∞
κ=1 is strictly decreasing and

diverges to vpk+1
(y∗) = mpk+1

and every sequence of real numbers (uq(yκ))
∞
κ=1,

q ∈ I, is increasing and diverges to uq(y
∗) = Mq).

P r o o f. Below, when cp1 = ∅, we replace uq with −vq, vq with −uq, and
use the corresponding proofs in case Cp1 = ∅.

(i) Let Cp1 = ∅. Then Mp1 = sup
x∈C

(−)
p1

up1(x) and we choose (xι)
∞
ι=1 to

be a sequence of members of C = C(−)
p1

such that the sequence of real numbers
(up1(xι))

∞
ι=1 is strictly increasing with lim

ι→∞
up1(xι) = Mp1 . Since the elements xι

ι ≥ 1, are pairwise R-comparable, it turns out that the sequences of real numbers
(uq(xι))

∞
ι=1, q ∈ I, q 6= p1, are increasing and (vq(xι))

∞
ι=1, q ∈ I, are decreasing.

Thus, the sequence (xι)
∞
ι=1 is strictly R-increasing. In accord with the sequential

compactness of the topological space X, we can suppose that (xι)
∞
ι=1 diverges to a

point x∗ ∈ X. Thus, up1(x
∗) = Mp1 . For any q ∈ I we set m′

q = lim
ι→∞

vq(xι). Let
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us suppose mq0 < m′
q0

for some q0 ∈ I and let y ∈ C be such that vq0(y) < m′
q0
.

In particular, vq0(y) < vq0(xι), hence up1(y) ≥ up1(xι) for all ι ≥ 1. Taking
the limit we obtain up1(y) ≥ Mp1 , that is, y ∈ Cp1 , which is a contradiction.
Therefore mq = m′

q and vq(x
∗) = mq for all q ∈ I.

(ii) Let M ′
pk+1

= lim
ι→∞

upk+1
(xι). We have M ′

pk+1
≤ Mpk+1

and if M ′
pk+1

=

Mpk+1
, then upk+1

(x∗) = Mpk+1
. In other words, x∗ ∈ ∩∞

λ=1c
∗
λ ∩C∗

p1
∩ . . . ∩C∗

pk
∩

C∗
pk+1

. Now, let M ′
pk+1

< Mpk+1
.

In case Cpk+1
6= ∅, we choose y ∈ Cpk+1

and since xι’s and y are R-
comparable, the inequalities upk+1

(xι) ≤ M ′
pk+1

< upk+1
(y) yield

(2.2.3) uq(xι) ≤ uq(y)

for all q ∈ I, q 6= pk+1, and

(2.2.4) vq(xι) ≥ vq(y)

for all q ∈ I. Taking the limit ι → ∞ in (2.2.3) for all q = p1, . . . , pk and in (2.2.4)
for all q ∈ I, we obtain y ∈ ∩∞

λ=1cλ ∩ Cp1 ∩ . . . ∩ Cpk ∩ Cpk+1
.

In case Cpk+1
= ∅, there exists a sequence (yκ)

∞
κ=1, yκ ∈ C, such that

M ′
pk+1

< upk+1
(yκ) < Mpk+1

, κ ≥ 1, the sequence of real numbers (upk+1
(yκ))

∞
κ=1

is strictly increasing and diverges to Mpk+1
. In particular, upk+1

(xι) < upk+1
(yκ)

for all ι, κ ≥ 1. Since xι’s and yκ’s are R-comparable, we obtain for all ι, κ ≥ 1
the inequalities

(2.2.5) uq(xι) ≤ uq(yκ) ≤ Mq

for all q 6= pk+1, and

(2.2.6) vq(xι) ≥ vq(yκ) ≥ mq

for all q ∈ I. Since the topological space X is sequentially compact, we can
assume that (yκ)

∞
κ=1 diverges with limit y∗ ∈ X, so upk+1

(y∗) = Mpk+1
. Taking

consecutively the limits ι → ∞, κ → ∞, in (2.2.5) for all q = p1, . . . , pk and
in (2.2.6) for all q ∈ I, we obtain y∗ ∈ ∩∞

λ=1c
∗
λ ∩ C∗

p1
∩ . . . ∩C∗

pk
∩ C∗

pk+1
. ✷

Proposition 2.2.4. Let X be a sequentially compact space endowed with
the preorder R from (2.1.1) and let C ⊂ X be a chain.

(i) For any finite subset {p1, . . . , ps} ⊂ I one has

(2.2.7) ∩s
i=1C

∗
pi
∩ c∗pi 6= ∅.

(ii) If X is, in addition, quasi-compact, then

(2.2.8) ∩p∈IC
∗
p ∩ c∗p 6= ∅.
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P r o o f. (i) If C is a finite R-chain, then its largest element is a member
of the intersection ∩s

i=1Ci ∩ ci.

Now, let us suppose that the R-chain C is infinite. In case all sets c1,
C1, . . ., cs, Cs, are nonempty Corollary 2.2.2 implies that their intersection is not
empty, hence (2.2.8) holds. Otherwise, using Lemma 2.2.3 and induction with
respect to k, we are done.

(ii) Since X is quasi-compact, part (i) implies part (ii). ✷

Corollary 2.2.5. If X is a quasi-compact and sequentially compact space,
then the preordered set X is inductive.

P r o o f. Every element x∗ ∈ ∩p∈IC
∗
p ∩ c∗p is an upper bound of the

R-chain C, hence the preordered set X is inductive. ✷

Now, Corollary 2.2.5 and Kuratowski-Zorn Theorem yield the following:

Theorem 2.2.6. Let X be a quasi-compact and sequentially compact
space. For any element x ∈ X there exists an R-maximal element y ∈ X with
xRy.

2.3. Examples. Since the (n − 1)-dimensional simplex ∆n−1 is a com-
pact set in R

n, it is a quasi-compact and sequentially compact topological space.
In case the family u consists of one function u(x) — the expected return of the
portfolio x and the family v consists of one function v(x) — its volatility, us-
ing Theorem 2.2.6, we obtain the existence of Markowitz efficient portfolios and
something more: Any portfolio is R-dominated by a Markowitz efficient portfolio.

Moreover, replacing the simplex ∆n−1 with a closed ball Bn−1 in the

affine hyperplane

n
∑

i=1

xi = 1 in R
n, such that ∆n−1 ⊂ Bn−1, we admit bounded

negative xi’s (that is, constrained short sales) and again Theorem 2.2.6 assures
existence of Markowitz efficient portfolios which dominate any given portfolio.

Below, we remind some notions from statistics and give examples of ap-
plication of Theorem 2.2.6.

Given the integer ℓ ≥ 2, the ℓ-th central moment of the random variable
s(x) is E((s(x)−E(s(x)))ℓ). The standard variance is the second central moment
v(x) = E((s(x)−E(s(x)))2) of s(x) and it is a quadratic form in x1, . . . , xn. The
third central moment E((s(x)−E(s(x)))3) is a cubic form and the fourth central
moment E((s(x) − E(s(x)))4) is a form of degree 4 in x1, . . . , xn.

Given x ∈ ∆n−1 and t ∈ R, we set Fx(t) = P ({m ∈ S | s(x)(m) < t}),
so Fx : R → [0, 1] is the cumulative distribution function of the random variable
s(x). We assume that s(x) is a continuous random variable with density function
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fx(t), so Fx(t) =

∫ t

−∞

fx(τ)dτ and F ′
x(t) = fx(t). In particular, the functions

Fx(t) are continuous.

We define recursivelyD(1)
x (t) = Fx(t), D

(2)
x (t) =

∫ t

−∞

Fx(τ)dτ ,. . . , D
(ℓ)
x (t) =

∫ t

−∞

D(ℓ−1)
x (τ)dτ , . . ..

The portfolio x ∈ ∆n−1 is said to be ℓ-th order stochastically dominated
by portfolio y ∈ ∆n−1 if D(ℓ)

y (t) ≤ D(ℓ)
x (t) for all t ∈ R. In case the previous

inequalities hold and D(ℓ)
y (t) < D(ℓ)

x (t) for some t ∈ R, x is said to be ℓ-th order
strictly stochastically dominated by y.

We set

Skew(s(x)) =
E((s(x) −E(s(x)))3)

Var(s(x))
3
2

to be the skewness and

Kurt(s(x)) =
E((s(x) − E(s(x)))4)

Var(s(x))2
− 3

to be the kurtosis, or, excess kurtosis of the random variable s(x).
If the random variable s(x) is normal, then Skew(s(x)) = Kurt(s(x)) = 0.

Example 2.3.1. In case I = {1}, J = ∅, the function u = u1 can be
considered as an utility function on ∆n−1 and R is the corresponding preference
relation with negatively transitive asymmetric part F .

Example 2.3.2. In case I = {1}, J = {1},

u1(x) = E(s(x)),

v1(x) = Var(s(x)),

we obtain the classical Markowitz setup.

Example 2.3.3. In case

u1(x) = E(s(x)),

v1(x) = Var(s(x)), v2(x) = Skew2(s(x)),

we simultaneously maximize the expected returnE(s(x)) and minimize the volatil-
ity Var(s(x)) and the absolute value of the skewness Skew(s(x)) of the return s(x)
of the portfolio x.
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Example 2.3.4. In case

u1(x) = E(s(x)),

v1(x) = Var(s(x)), v2(x) = Kurt2(s(x)),

we simultaneously maximize the expected returnE(s(x)) and minimize the volatil-
ity Var(s(x)) and the absolute value of the kurtosis Kurt(s(x)) of the return s(x),
thus balancing the tails of its distribution.

Example 2.3.5. In case

u1(x) = E(s(x)),

v1(x) = Var(s(x)), v2(x) = Skew2(s(x)), v3(x) = Kurt2(s(x)),

we simultaneously maximize the expected returnE(s(x)) and minimize the volatil-
ity Var(s(x)), the the absolute value of the skewness Skew(s(x)), and the absolute
value of the kurtosis Kurt(s(x)) of the return s(x). In this way we balance both
the tails of the distribution of s(x) and ”round” the maximum of its density
function fx(t).

Example 2.3.6. In case

vt(x) = D(ℓ)
x (t), t ∈ R,

we maximize the ℓ-th order stochastic dominance, ℓ ≥ 1.

Example 2.3.7. In case

u(x) = E(s(x)),

v(x) = Var(s(x)), vt(x) = D(ℓ)
x (t), t ∈ R,

we simultaneously maximize the expected return E(u(x)) and the ℓ-th order
stochastic dominance, ℓ ≥ 1, and minimize the volatility Var(s(x)).

Example 2.3.8. Let X be a quasi-compact and sequentially compact
space and let f : X ×X → R be a continuous real function. For any p ∈ X we
set

up(x) = f(x, p), x ∈ X,

vp(y) = f(p, y), y ∈ X.

Further, for any x ∈ X we set

U (≥)
x = {y ∈ X | f (y, p) ≥ f (x, p) for all p ∈ X},
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V (≤)
x = {y ∈ X | f (p, y) ≤ f (p, x) for all p ∈ X},

and for any x, p ∈ X we set

U (p̂;≥)
x = {y ∈ X | f (y, q) ≥ f (x, q) for all q ∈ X, q 6= p},

V (p̂;≤)
x = {y ∈ X | f (q, y) ≤ f (q, x) for all q ∈ X, q 6= p}.

Note that U (≥)
x , V (≤)

x , U (p̂;≥)
x , V (p̂;≤)

x , are closed subsets of X and that

x ∈ U (≥)
x ⊂ U (p̂;≥)

x , x ∈ V (≤)
x ⊂ V (p̂;≤)

x

for all x, p ∈ X. According to Theorem 2.2.6, there exists an element m ∈ X,
such that for any p ∈ X one has

f(m, p) = max
y∈U

(p̂;≥)
m ∩V

(≤)
m

f(y, p)

and
f(p,m) = min

y∈U
(≥)
m ∩V

(p̂;≤)
m

f(p, y).
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