


Serdica Math. J. 43 (2017), 221–266 Serdica
Mathematical Journal

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

TRUNCATED ESTIMATION METHOD

AND APPLICATIONS

Tatiana V. Dogadova, Marat I. Kusainov, Vyacheslav A. Vasiliev

Communicated by P. Jagers

Abstract. This paper presents an estimation method of ratio type func-
tionals by dependent sample of fixed size. This method makes it possible to
obtain estimators with guaranteed accuracy in the sense of the L2m-norm,
m ≥ 1.

As an illustration, some parametric estimation problems on a time in-
terval of a fixed length are considered. In particular, parameters of lin-
ear continuous-time and non-linear discrete-time processes are estimated.
Moreover, the parameter estimation problem of non-Gaussian Ornstein–
Uhlenbeck process by discrete-time observations with guaranteed accuracy
is solved.

In addition to non-asymptotic properties, the limit behavior of presented
estimators is investigated. It is shown that all the truncated estimators have
rates of convergence of the estimators they are based upon. These estimators
are used for the construction of adaptive predictors for dynamical systems
with unknown parameters.
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The problem of asymptotic efficiency of adaptive one-step predictors for
stable discrete- and continuous-time processes with unknown parameters is
considered. The proposed criteria of optimality are based on the loss func-
tion, defined as a linear combination of sample size and squared prediction
error’s sample mean. As a rule, the optimal sample size is a special stopping
time.

1. Introduction. The main purpose of this paper is to present applica-
tions of the truncated estimation method in order to construct optimal adaptive
predictors for the stochastic processes related with discrete and continuous-time
dynamical systems. The proposed procedures are based on the so-called truncated
estimators which have been developed in order to estimate ratio type functionals
from a wide class by dependent observations and by samples of fixed size so that
they had guaranteed accuracy in the sense of the L2m-norm, m ≥ 1. Examples
of parameter estimation problems of discrete and continuous time systems on a
time interval of a fixed length are considered.

It is shown that truncated estimators may keep asymptotic properties
of the estimators they are based upon. One of the many useful applications of
estimators with the said quality is adaptive prediction for dynamical systems
with unknown parameters. It is then possible to optimize the risk function which
is a linear combination of sample mean of mean-square deviation of predictors
and sample size. The risk function of such structure was proposed in [3], see also
references therein.

According to Ljung’s concept the prediction is a crucial part in construct-
ing complete probabilistic models of dynamical systems (see [24, 25]). A model is
considered to be useful if it allows to make predictions of high statistical quality.
Models of dynamical systems often have unknown parameters, which demand
estimation in order to build adaptive predictors. The quality of adaptive predic-
tion explicitly depends on the chosen estimators of model parameters. Possible
estimation methods include the classic stochastic approximation, maximum like-
lihood, least squares and sequential estimation methods among others. The first
three methods provide estimators with given statistical properties under asymp-
totic assumptions, when the duration of observations tends to infinity (see, e.g.,
[1, 36]). The sequential estimation method makes it possible to obtain estimators
with guaranteed accuracy by samples of finite but random and unbounded size
(see, e.g., [4, 9, 15, 16, 17, 18, 23, 27, 29, 30, 33, 34, 35, 37] among others).

Both approaches do not guarantee prescribed estimation accuracy when
using samples of non-random finite size and lead up to complicated analytical
problems in adaptive procedures.
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Results in non-asymptotic parametric and non-parametric problems can
be found in [28, 37] among others. In particular, they investigated non-asymptotic
properties of the LSE-estimator for the scalar first-order autoregressive process.

At the same time, the more modern truncated sequential estimation
method yields estimators with prescribed accuracy by samples of random but
bounded size (see, e.g., [5, 8, 13, 14, 34, 35]). However, at the moment this ap-
proach is developed for scalar dynamic systems only. The truncated estimation
method was introduced in [40] as a modification of the truncated sequential es-
timation one. Truncated estimators were constructed for ratio type multivariate
functionals by samples of fixed size and have guaranteed accuracy in the sense of
the L2m-norm, m ≥ 1 (see also [41]).

The requirement of both good prediction quality and reasonable duration
of observations is formulated as a risk efficiency problem. The criterion is given by
certain loss functions and optimization is performed based on it. The loss function
describing sample mean of squared prediction errors and sample size as well as
the corresponding risk was examined in [38, 39] in application to scalar AR(1).
Later the results of those papers were refined and extended to other stochastic
models in [11]. There was considered a risk function defined on the basis of
squared estimation error of sequential estimator of the dynamic parameter. A
modified stopping rule was proposed, enhancing the result of [38]. In the two
papers on risk efficiency problems mentioned above the least squares estimators
and sequential estimators of unknown parameters were used.

In this paper we construct and investigate real-time predictors which only
use past values of the process. Such an approach leads to some technical diffi-
culties but is more closely related to real applications. We consider the problem
of minimization of the risk function associated with predictors of values of the
process and size of a sample. It should be noted that first truncated parameter
estimation method was applied for construction of adaptive optimal predictors
of VAR(1) in [22]. Here we apply this method for more complicated stochastic
systems. Among the processes considered are stable multivariate discrete time
AR(1), ARMA(1, 1) and RCA(1), as well as continuous time diffusion and time
delayed processes. The proposed procedure is shown to be asymptotically risk
efficient as the cost of prediction error tends to infinity.

2. Truncated estimation method. General results. Let (Ω,F ,
P) be a probability space with a filtration {Ft} in discrete or continuous time
and let ft and gt be {Ft}-adapted random processes, where ft and gt is s × q-
dimensional matrix and scalar function respectively.
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Let

(1) ΨT = fT/gT

be an estimator of a matrix Ψ. For instance, the matrix Ψ can be a ratio

Ψ = f/g

and fT and gT are estimators of matrix f and number g respectively.

Consider the following modification of the estimator ΨT :

(2) Ψ̃T (H) = ΨT · χ(|gT | ≥ H),

where H is a function H = HT , defined below and the notation χ(A) means the
indicator function of set A.

Our main aim is to formulate general conditions on the processes fT , gT
and on the parameter H giving a possibility to estimate Ψ with a guaranteed
accuracy in the sense of the L2m-norm, m ≥ 1.

Define for some ϕT (m), wT (µ), H and g, the function

VT (m,µ,H) =
1

H2m
ϕT (m) +

‖Ψ‖2m
(|g| −H)2µ

wT (µ),

as well as for positive integer p < m and a positive monotonously decreasing
function HT , the function

VT (p) = 22p−1g−2p·
(
ϕT (p) +H−2p

T · ϕ
p
m

T (m) · w
p
µ

T (µ)

)
+‖Ψ‖2p·(g −HT )

−2µ·wT (µ)

and the time T0 = inf{T ≥ 0 : HT ≤ |g|}.
Theorem 2.1. Assume for some values m and µ there exist positive

functions ϕT (m) and wT (µ), decreasing to zero, as well as a value g such that
the following assumptions hold

(i) E‖fT −ΨgT ‖2m ≤ ϕT (m);

(ii) E(gT − g)2µ ≤ wT (µ).

Then, the estimator Ψ̃T (H) defined in (2) has the following properties

(a) in the case of known number g for every H ∈ (0, |g|)

E‖Ψ̃T (H)−Ψ‖2m ≤ VT (m,µ,H);
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(b) in the case of unknown g for every (possibly slowly decreasing to zero)
positive function H = HT and every positive integer p, satisfying for some m >
1 and µ > 1

mp

m− p
≤ µ

it holds
E‖Ψ̃T (H)−Ψ‖2p ≤ VT (p), T > T0.

Remark 1. If the number g in Theorem 2.1 is unknown but a positive
lower bound g∗ for |g| is known, then the parameter H in the definition of the
truncated estimator (2) should be taken from the interval (0, g∗) and the number
|g| in the definition of the function VT (m,µ,H) should be replaced by g∗.

Proof of Theorem 2.1 is similar to the proof of Theorem 1 from [40]
formulated for the discrete-time case.

3. Parameter estimation. Examples.
3.1. Discrete-time systems.

3.1.1. Estimation of parameters of a stable first order scalar autoregres-
sion. Consider the process satisfying the following equation

(3) xn = λxn−1 + ξn, n ≥ 1,

where noises ξn, n ≥ 1 are i.i.d. zero mean random variables with finite (for some
even number γ ≥ 2) moments σ2γ = Eξ2γn , as well as Ex2γ0 < ∞ and |λ| < 1.

Consider the estimation problem of λ and σ2 = Eξ2n with a guaranteed
accuracy.

In what follows, C will denote a generic non-negative constant whose
value is not critical (and not necessarily the same throughout the paper).

a) Non-asymptotic estimation of λ
We define the estimator of the type (2) with T = N on the basis of the

least squares estimator (LSE) of the form (1)

λ̂N =

1
N

N∑
n=1

xnxn−1

1
N

N∑
n=1

x2n−1

, N ≥ 1.

According to general notation, in this case we have

Ψ = λ, ΨN = λ̂N ,



226 T. V. Dogadova, M. I. Kusainov, V. A. Vasiliev

fN =
1

N

N∑

n=1

xnxn−1, gN =
1

N

N∑

n=1

x2n−1

and Ψ̃N = λ̃N ,

(4) λ̃N = λ̂N · χ(gN ≥ H).

Using the equality

gN =
σ2

1− λ2
+

1

(1− λ2)N

[
x20 − x2N + 2λ

N∑

n=1

xn−1ξn +

N∑

n=1

(ξ2n − σ2)

]
,

which can be obtained from (3), we can find the limit (see [37, 40])

g = lim
N→∞

gN =
σ2

1− λ2
Pλ − a.s.

All the conditions of Theorem 2.1 hold, hence
– for the case of known σ2 and 0 < H < σ2

(5) Eθ(λ̃N − λ)2m ≤ C(θ)

Nm
+

C(θ)

N2m
, N ≥ 1;

– for the case of unknown σ2 we put H = (HN ) (e.g., slowly decreasing
function) from Theorem 2.1 in the definition (4) of the estimator λ̃N and for N
large enough, we have

Eθ(λ̃N − λ)2m ≤ C(θ)H2m
N

Nm
.

Here θ = (λ, σ2, σ2γ).
For the parameter estimation with a guaranteed accuracy we have to know

that, e.g., θ ∈ Θ, where Θ = {θ = (λ, σ2, σ2γ) : |λ| ≤ r < 1, 0 < σ2 ≤ σ2 ≤ σ2}.
In this case we can find the known functions

ϕN (m) = sup
θ∈Θ

ϕN (m, θ) and wN (m) = sup
θ∈Θ

wN (m, θ)

such that
sup
Θ

Eθ(fN − λgN )2m ≤ ϕN (m),

sup
Θ

Eθ(gN − g)2m ≤ wN (m).
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In general, for 0 < H < σ2, we have

(6) sup
Θ

Eθ(λ̃N − λ)2m ≤ C

Nm
+

C

N2m
, N ≥ 1.

In particular, for γ = 2 and m = 1,

sup
Θ

Eθ(λ̃N − λ)2 ≤
[

(σ2)2

(1− r2)H2
+

r2C

(σ2 −H)2

]
1

N
+

r2C

(σ2 −H)2
1

N2
.

b) Non-asymptotic estimation of σ2

Consider the estimation problem of the noise variance σ2 in the model
(3) under the assumption γ = 4 (σ8 < ∞, Ex80 < ∞).

In the definition of the LSE type estimator σ̂2
N defined as

σ̂2
N =

1

N

N∑

n=1

(xn − λ̃Nxn−1)
2, N ≥ 1,

we use the estimator λ̃N of λ, which is defined in (4) and has known non-
asymptotic properties (6) for m = 1 and m = 2.

Thus, we have obtained estimator of σ2 with a guaranteed accuracy:

sup
Θ

Eθ(σ̂
2
N − σ2)2 ≤ C

N
, N ≥ 1.

It should be noted, that this estimator is asymptotically equivalent to the
corresponding LSE. In particular, it has optimal rate of convergence as N → ∞.

Full proofs of results of this section can be found in [40].

3.1.2. Estimation of parameters of a stable ARARCH(1,1). Consider the
process satisfying the following equation

xn = λxn−1 +
√

σ2
0 + σ2

1x
2
n−1 · ξn, n ≥ 1,

where noises ξn, n ≥ 1 are i.i.d. zero mean random variables with the variance
equal to one and finite fourth moment σ4 = Eξ41 , as well as Ex

4
0 < ∞.

Define the LSE λ̂N of λ of the form:

λ̂N =

1
N

N∑
n=1

xnxn−1

1
N

N∑
n=1

x2n−1

, N ≥ 1,
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which is strongly consistent under the following stability condition

(7) λ4 + 6λ2σ2
1 + (σ2

1)
2σ4 < 1.

a) Non-asymptotic estimation of λ
According to general notation, in this case we have

Ψ = λ, ΨN = λ̂N ,

fN =
1

N

N∑

n=1

xnxn−1, gN =
1

N

N∑

n=1

x2n−1

and Ψ̃N = λ̃N ,

(8) λ̃N = λ̂N · χ(gN ≥ H).

Define for some known numbers r ∈ (0, 1), σ2
0, σ

2
0, σ

2
1, and σ2

1 the set

Θ = {θ = (λ, σ2
0 , σ

2
1) : λ4+6λ2σ2

1+(σ2
1)

2σ4 ≤ r, σ2
0 ≤ σ2

0 ≤ σ2
0, σ2

1 ≤ σ2
1 ≤ σ2

1}.

Then for 0 < H <
σ2
0

1− σ2
1

and every N ≥ 1

sup
Θ

Eθ(λ̃N − λ)2 ≤ 1

H2N
+

(1− σ2
1)

2

(σ2
0 − (1− σ2

1)H)2
1

N2
.

It should be noted, that the rate of convergence of the obtained upper
bound is the same as the rate of the LSE and is optimal.

b) Non-asymptotic estimation of σ2
0 and σ2

1

We will construct estimators with guaranteed accuracy on the basis of
correlation estimators:

1b) of σ2
0 with known σ2

1 :

σ̂2
0(N) =

1

N

N∑

n=1

[x2n − (λ̂2
N + σ2

1)x
2
n−1];

2b) of σ2
1 with known σ2

0 :

σ̂2
1(N) =

N∑
n=1

(x2n − σ2
0)

N∑
n=1

x2n−1

− λ̂2(N),
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which are strongly consistent under the condition (7), see, e.g., [26].
Define estimators for considered cases

1b) σ̃2
0(N) =

1

N

N∑

n=1

[x2n − ((λ∗
N )2 + σ2

1)x
2
n−1];

2b) σ̃2
1(N) =

1
N

N∑
n=1

(x2n − σ2
0)

1
N

N∑
n=1

x2n−1

χ(gN ≥ H)− (λ∗
N )2,

where
λ∗
N = proj[−1,1]λ̃N ,

λ̃N and gN are defined in (8).
Similar to the previous sections, the upper bounds for the MSE’s of these

estimators with known constants C0 and C1 can be found

(i) sup
Θ0

Eθ(σ̃
2
0(N)− σ2

0)
2 ≤ C0

N
,

where Θ0 = {θ = (λ, σ2
0) : λ4 + 6λ2σ2

1 + (σ2
1)

2σ4 ≤ r, σ2
0 ≤ σ2

0 ≤ σ2
0} and

(ii) sup
Θ1

Eθ(σ̃
2
1(N)− σ2

1)
2 ≤ C1

N
,

where Θ1 = {θ = (λ, σ2
1) : λ4 +6λ2σ2

1 + (σ2
1)

2σ4 ≤ r, σ2
1 ≤ σ2

1 ≤ σ2
1}, r ∈ (0, 1).

Full proofs of results of this section can be found in [40].

3.1.3. Estimation of parameters of a stable first order VAR(1). We apply
in this section the presented general truncated method for estimation of matrix
parameters in multivariate systems.

Consider the p-dimensional process (p > 1) satisfying the following equa-
tion

(9) x(n) = Λx(n − 1) + ξ(n), n ≥ 1,

where noises ξ(n), n ≥ 1 are i.i.d. zero mean random column vectors with the
variance matrix Σ = Eξ(n)ξ′(n) and finite moments of the order 8(p− 1), as well
as E‖x(0)‖8(p−1) < ∞ and the stability condition for the process (9) is satisfied,
i.e. all the eigenvalues of the matrix Λ lie in the open unit circle.

It should be noted, that under these conditions there exist finite numbers
σ2m
x , such that

sup
n,Λ0

EΛ‖x(n)‖2m ≤ σ2m
x , 1 ≤ m ≤ 4(p − 1),
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where Λ0 is a compact set from the stable region of (x(n)).
Consider the estimation problem of Λ with a guaranteed accuracy.
We define the estimator of the type (2) on the basis of the LSE of the

form (1)

Λ̂N = G
−1
N ΦN , N ≥ 1,

where

GN =
1

N
GN , GN =

N∑

n=1

x(n− 1)x′(n− 1),

ΦN =
1

N
ΦN , ΦN =

N∑

n=1

x(n)x′(n− 1), N ≥ 1.

Define the matrix

G
+
N = ∆NG

−1
N , ∆N = det(GN ).

According to the general notation, in this case we have

Ψ = Λ, ΨN = Λ̂N ,

fN = ΦNG
+
N , gN = ∆N ,

and Ψ̃N = Λ̃N ,
Λ̃∗
N = Λ̂N · χ(gN ≥ H).

It is easy to verify that with PΛ-probability one

lim
N→∞

GN = F and lim
N→∞

∆N = ∆ > 0,

where F is a positive definite p× p-matrix (see, e.g., [1, 12]).
Then

f = Λ∆, g = ∆.

It can be shown, see [40] that there exists a given number C0 such that
for every N ≥ 1,

sup
Λ∈Λ0

EΛ‖Λ̃∗
N − Λ‖2 ≤ C0

N
,

Λ0 is a compact set from the stable region of the process (9).
Consider the case of unknown Λ0.

Define the number N0 = max
{
p,

⌊
e∆

−2
⌋}

.

Let the truncated estimators Λ̃N be defined as follows

(10) Λ̃N = Λ̂N · χ(∆N ≥ HN ), HN = log−1/2(N + 1).
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Lemma 3.1. Assume the model (9) and let for some integer m ≥ 1 the
conditions

E‖ξ(1)‖4mp < ∞, E‖x(0)‖4mp < ∞
be true. Then the truncated estimators Λ̃N satisfy

(i) for 1 ≤ N < N0

EΛ‖Λ̃N − Λ‖2m ≤ C;

(ii) for N ≥ N0

(11) EΛ‖Λ̃N − Λ‖2m ≤ C logmN

Nm
.

For Proof of Lemma 3.1 see Section 4.1 in [22].

Remark 2. Note that the truncated estimator of the parameter of the
scalar first-order autoregression considered in Section 3.1.1 has simpler structure
and a little stronger basic property compare (11) to (5).

3.1.4. Estimation of parameters of a stable first order multivariate random
coefficient autoregressive model. Consider a stable p-dimensional vector random
coefficient autoregressive process (VRCA(1)) satisfying the equation

(12) x(k) = Λk−1x(k − 1) + ξ(k), k ≥ 1,

Λk = Λ+ η(k), k ≥ 0.

The parameter matrix Λ of size p × p is unknown, processes (ξ(k)) and (η(k −
1)) are mutually independent and form sequences of i.i.d. random vectors and
matrices respectively for which

Σ = Eξ(1)ξ′(1) > 0, σ2
ξ = E‖ξ(1)‖2 < ∞,

Ση = Eη′(0)η(0) > 0, Eξ(1) = Eη(0) = 0.

Here Σ > 0 denotes that Σ is positive definite in the sense of quadratic forms,
i.e. yTΣy > 0 for every constant vector y 6= 0. For the process to be stable it is
required that the matrix Λ = EΛ⊗2

0 = Λ⊗2+Eη⊗2(0) be stable (i.e. its eigenvalues
lie in the open unit circle), where Y ⊗2 = Y ⊗ Y.

We define the estimator of the type (2) as follows

(13) Λ̃k = Λ̂kχ
(
∆k ≥ Hk

)
, k ≥ 1,
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where

Λ̂k = GkF
−1
k , k ≥ p, and Λ̂i = 0, i = 0, p − 1,

Hk = log−1/2(k + 1), Gk =
1

k

k∑

i=1

x(i)x′(i− 1),

(14) F k =
1

k

k∑

i=1

x(i− 1)x′(i− 1), ∆k = det(F k).

Using formula (12) it can be shown that almost surely

lim
k→∞

F k = F and lim
k→∞

∆k = ∆ > 0,

where F is a positive definite p× p matrix.

Define the number k0 = max
{
p,

⌊
e∆

−2
⌋}

.

Lemma 3.2. Assume the model (12) and let for some integer m ≥ 1 the
matrix EΛ⊗4mp

0 be stable, let also the following conditions hold

E‖ξ(1)‖4mp < ∞, E‖x(0)‖4mp < ∞.

Then for the truncated estimators Λ̃k it holds

(i) for 1 ≤ k < k0

(15) Eθ‖Λ̃k − Λ‖2m ≤ C;

(ii) for k ≥ k0

(16) Eθ‖Λ̃k − Λ‖2m ≤ C logm k

km
.

Here Eθ denotes expectation under the distribution Pθ with the given
parameter θ = (λ11, ..., λpp, Ση, σ2

ξ ).

See Appendix for the proof of lemma.

3.1.5. Estimation of parameters of a stable first order multivariate auto-
regressive moving-average model. Consider a stable p-dimensional vector
ARMA(1,1) process satisfying the equation

(17) x(k) = Λx(k − 1) + ξ(k) +Mξ(k − 1), k ≥ 1,
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where Λ and M are p × p stable matrices. We assume the parameter Λ to be
unknown and M to be known. The random vectors ξ(k) for k ≥ 1 are i.i.d. with
zero mean and finite variance σ2 = E‖ξ(1)‖2.

Let the truncated estimators of the autoregressive parameter Λ be based
on the following Yule-Walker type estimators

Λ̂k = ΦkG
−1
k , k ≥ 2, Λ0 = Λ1 = 0,

where

Φk =
1

k − 1

k∑

i=2

x(i)x′(i− 2), Gk =
1

k − 1

k∑

i=2

x(i− 1)x′(i− 2),

and have the form

(18) Λ̃k = Λ̂kχ
(
|∆k| ≥ Hk

)
, k ≥ 2.

Here ∆k = det(Gk) and Hk = log−1/2 k. It can be shown that the limit (in almost
sure sense) ∆ = lim

k→∞
∆k is nonzero if the matrix G defined as

G = ΛF +MΣ, F =
∑

n≥0

ΛnΣ̃(Λ′)n,

(19) Σ̃ = ΛΣM′ +MΣΛ′ +Σ+MΣM′, Σ = Eξ(1)ξ′(1)

is non-singular.

Define the number k0 = max
{
p,

⌊
e∆

−2
⌋}

.

Lemma 3.3. Assume the model (17) and let for some integer m ≥ 1 the
conditions

E‖ξ(1)‖4pm < ∞, E‖x(0)‖4pm < ∞
be true. Assume also that the matrix G is non-singular. Then the truncated
estimators Λ̃k satisfy

(i) for 1 ≤ k < k0

(20) Eθ‖Λ̃k − Λ‖2m ≤ C;

(ii) for k ≥ k0

(21) Eθ‖Λ̃k − Λ‖2m ≤ C logm k

km
.
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Here θ = (λ11, . . . , λpp, µ11, . . . , µpp, σ2).
See Appendix for the proof of this and next lemmas.

Lemma 3.4. Let for some integer m ≥ 1 the following conditions hold

E‖ξ(0)‖4m(p+1) < ∞, E‖x(0)‖4m(p+1) < ∞,

also let the matrices Σ and G be non-singular. Then the following holds
(i) for 1 ≤ k < k0

(22) Eθ‖M̃k −M‖2m ≤ C;

(ii) for k ≥ k0

(23) Eθ‖M̃k −M‖2m ≤ C logm k

km
.

3.2. Continuous-time systems.

3.2.1. Parameter estimation of a stable Ornstein–Uhlenbeck process. Con-
sider the model

(24) dxt = axtdt+ dwt, t ≥ 0

with an unknown parameter a, where x0 is zero mean random variable with
variance σ2

0 and finite moments of all order, (wt) is a standard Wiener process,
x0 and (wt) are mutually independent. Suppose that the process (24) is stable,
i.e. the parameter a < 0. Note that in this case for every m ≥ 1

sup
t≥0

Ex2mt < ∞.

We define the truncated estimators of the unknown parameter a

(25) as =

s∫
0

xvdxv

s∫
0

x2vdv

χ
( s∫

0

x2vdv ≥ s log−1 s
)
, s > 0,

constructed similarly to the discrete-time case [40] on the basis of the maximum
likelihood estimator.

The estimator at has the property

E(at − a)2p ≤ C

tp
.

Proof of this property can be found in [6].
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3.2.2. Parameter estimation of a multivariate diffusion process. Consider
the model

(26) dx(t) = Λx(t)dt+ dWt, t ≥ 0

with an unknown p×p matrix parameter Λ, where x(0) is zero mean random vec-
tor with variance matrix Σ0 and finite moments of all order, (Wt) is a multivariate
Wiener process with independent components, x(0) and (Wt) are mutually inde-
pendent. Suppose that the process (26) is stable, i.e. all the eigenvalues of the
matrix Λ have negative real parts. Note that in this case for every m ≥ 1

sup
t≥0

E‖x(t)‖2m < ∞.

Consider the estimation problem of Λ with guaranteed accuracy.
Define the estimator of the type (2) on the basis of the LSE of the form (1)

Λ̂′
T = G

−1
T ΦT , T > 0,

where

GT =
1

T
GT , GT =

T∫

0

x(t)x′(t)dt,

ΦT =
1

T
ΦT , ΦT =

T∫

0

x(t)dx′(t), T > 0.

Define the matrix

G
+
T = ∆TG

−1
T , ∆T = det(GT ).

According to the general notation, in this case we have

Ψ = Λ′, ΨT = Λ̂′
T ,

fT = G
+
TΦT , gT = ∆T

and Ψ̃T = Λ̃′
T ,

(27) Λ̃′
T = Λ̂′

T · χ(∆T ≥ H).

Using stability of the process (26) it is easy to verify (see, e.g. [42]) that
with PΛ-probability one

lim
T→∞

GT = F and lim
T→∞

∆T = ∆ > 0,
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where F is a positive definite p× p matrix.

Then

f = Λ′∆, g = ∆.

We show in Appendix that there exists a given number CΛ such that for
every T > 0

(28) sup
Λ∈Λ0

EΛ‖Λ̃T − Λ‖2 ≤ CΛ

T
,

where Λ0 is a compact set from the stable region of the process (x(n)).

3.2.3. Parameter estimation of one-parameter delay differential equation.
Assume w = wt, t ≥ 0 is a real-valued standard Wiener process, b is a real number
and x = (xt, t ≥ −r) is a solution of the stochastic delay differential equation

(29) dxt = bxt−r + dwt, t ≥ 0

with some fixed initial condition xt = X0(t), t ∈ [−r, 0], where X0(·) is a cadlag
stochastic process independent of w(·). Note that the process (29) is stable when
the parameter b ∈ (−π/2r, 0), see [10].

The solution x of (29) exists, it is pathwise uniquely determined and can
be represented as (see, e.g., [10, 31])

xt = x0(t)X0(0) + b

0∫

−r

x0(t− s− r)X0(s)ds+

t∫

0

x0(t− s)dws, t ≥ 0.

Obviously, it has continuous paths for t ≥ 0 with probability one and,
conditionally on X0(·), x is a Gaussian zero mean process. Here x0(t), t ≥ −r
denotes the so-called fundamental solution of the deterministic equation

ẋ0(t) = bx0(t− r), x0(0) = 1 and x0(t) = 0, t ∈ [−r, 0).

The truncated estimator of the unknown parameter b can be defined on
the basis of the MLE as follows

(30) bt =

t∫
r
xv−rdxv

t∫
r
x2v−rdv

χ




t∫

r

x2v−rdv ≥ t log−1 t


 , t > r.
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Define the number σ2
0 =

∞∫

0

x20(v)dv.

Estimators (30) have the properties (see Appendix)

(31) E(bt − b)2m ≤ C log2m t

tm
, m ≥ 1.

Estimation problems for stochastic differential equations with time delay
have been considered using asymptotic and sequential approaches in a few papers
up until now – see, e.g., [10, 17, 18] and the references therein.

3.2.4. Parameter estimation of a stable non-Gaussian Ornstein–Uhlenbeck
process by discrete-time observations. The results presented below allow statis-
tical inferences for continuous-time stochastic systems by finite sample size of
observations. Moreover, one of the main assumptions is a discrete scheme of ob-
servations. It corresponds to numerous real situations, in particular in problems
of financial mathematics.

Consider the following regression model

(32) dx(t) = ax(t)dt+ dξ(t), 0 ≤ t ≤ T

with an initial condition x(0) = x0 having finite moments of all order. Here
ξ(t) = ρ1W (t) + ρ2Z(t), ρ1 6= 0 and ρ2 are some constants, (W (t), t ≥ 0) is a
standard Wiener process on a probability space (Ω, F , {Ft}t≥0, P ), adapted

to a filtration {Ft}t≥0, Z(t) =

Nt∑

k=1

Yk, where Yk, k ≥ 1 are i.i.d.r.v.’s with finite

moments of all order and (Nt) is a Poisson process with the intensity λ > 0.
It should be noted that for ρ2 = 0 the process (32) is an Ornstein–

Uhlenbeck process.
We assume that the unknown parameter lies within the interval a ∈

[−∆,−δ], where δ and ∆ > δ are known positive numbers.
The problem is to estimate the parameter a by observations of the discrete-

time process y = (yk)

yk = x(tk), tk =
k

n
T, k = 0, n.

Using the representation for the solution of the equation (32) we get the
recurrent equation for the observations (yk):

(33) yk = byk−1 + ηk, k = 1, n,
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where b = eaT/n, ηk =

tk∫

tk−1

ea(tk−s)dξ(s) are i.i.d.r.v.’s with

Eaηk = 0, σ2 := Daηk =
1

2a
(ρ21 + λρ22)[b

2 − 1].

Moreover, for this model all the moments σ2m = Eaη
2m
k are finite and

there exist their upper bounds σ2m = sup
a≤−δ

σ2m, m ≥ 1.

Define the estimator ãn of a with a guaranteed accuracy using an estima-
tor b̃n of b as follows

(34) ãn =
n

T
log b̃n, n ≥ 1,

where the estimator b̃n is constructed on the basis of the LSE b̂n, obtained using
the equation (33)

b̃n = b̂n · χ(gn ≥ H) + Lχ(gn < H), b̂n =
fn
gn

.

Here L = [e−δT/n + e−∆T/n]/2,

fn =
1

n

n∑

k=1

ykyk−1, gn =
1

n

n∑

k=1

y2k−1

and the number g is defined as

g =
σ2

1− b2
.

Then the estimator b̃n has all the properties of the estimator λ̃N , defined
in (4). In particular, according to Theorem 2.1, which holds for this model for
all m ≥ 1 and µ ≥ 1, the following inequalities

(35) sup
a≤−δ

Ea(b̃n − b)2m ≤ C(m)

nm
+

C(µ)

nµ
, n ≥ 1

for an arbitrary 0 < H ≤ σ2 hold, where

σ2 =
1

2δ
(̺21 + λ̺22)[1− r2], r = e−δ
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and numbers C(m), C(µ) are known.
Using (34) and (35) it is easy to verify the following property of estimators

ãn for every m ≥ 1 and µ > m :

sup
a∈[−∆,−δ]

Ea(ãn − a)2m ≤ (nT−1e∆T/n)2m
{
C(m)

nm
+

C(µ)

nµ

}
, n ≥ 1.

Proofs of results of this section can be found in [40].

4. Optimal adaptive prediction.

4.1. Discrete-time systems.

4.1.1. Optimal adaptive prediction of VAR(1). Consider the problem of
optimal adaptive one-step prediction for the vector process (9). It is well known
that the optimal in the mean square sense one-step predictor is the conditional
expectation of the process with respect to its past, i.e.

xopt(k) = Λx(k − 1), k ≥ 1.

Substituting Λ with its estimator Λ̃k defined in (10) one obtains the one-step
predictors of the form

x̃(k) = Λ̃k−1x(k − 1), k ≥ 1,

for which the corresponding prediction errors have the following form

ẽ(k) = x(k)− x̃(k) = (Λ− Λ̃k−1)x(k − 1) + ξ(k).

Let e2(n) denote the sample mean of squared prediction error

e2(n) =
1

n

n∑

k=1

‖ẽ(k)‖2.

Define the loss function

Ln =
A

n
e2(n) + n,

where the parameter A(> 0) is the cost of prediction error. Such a loss function
formulates the problem of choosing between empirical mean-squared prediction
accuracy versus costs of increasing the sample size. Define the risk function

Rn = EθLn =
A

n
Eθe

2(n) + n.
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Here θ = (λ11, . . . , λpp, σ
2), where σ2 = E‖ξ(1)‖2.

Using the property (11) it can be shown that

Rn ≈ A

n
σ2 + n

if E‖ξ(1)‖8p < ∞, E‖x(0)‖8p < ∞. Minimization of this expression by n yields
the optimal sample size of the form

(36) no
A = A1/2σ

and the corresponding approximate minimal risk value

Rno
A
≈ 2A1/2σ,

where σ :=
√
σ2.

The requirements can be further refined to E‖ξ(1)‖4p < ∞, E‖x(0)‖4p <
∞ by using projB Λ̃k instead of Λ̃k, where B is a closed ball that contains the
stability region of the matrix parameter Λ.

However the expression for no
A is of little practical use as it contains the

unknown parameter σ. For this reason one replaces optimal sample size no
A with

an estimate of the following form

(37) TA = inf
n≥nA

{
n ≥ A1/2σ̃n

}
,

where nA is the initial sample size depending on A and specified below,

σ̃2
n =

1

n

n∑

k=1

‖x(k) − Λ̃nx(k − 1)‖2.

The modified risk takes the form

RA = EθLTA
= AEθ

1

TA
e2(TA) + EθTA.

Theorem 4.1. Let E‖ξ(1)‖8p+4 < ∞, E‖x(0)‖8p+4 < ∞ and nA in (37)
be such that

nA = o(A1/2) as A → ∞, nA ≥ max{k0, Ar log2 A}, r ∈ [2/5, 1/2).

Then the following holds

TA

no
A

−−−−→
A→∞

1 Pθ-a.s.,
EθTA

no
A

−−−−→
A→∞

1,
RA

Rno
A

−−−−→
A→∞

1.
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For proof of Theorem 4.1 see Section 4.2 in [22].
Assertions of Theorem 4.1 establish the asymptotic equivalence of TA and

no
A, as well as of RA and Rno

A
.

Remark 3. Note that similar result holds for the scalar first-order au-
toregression under lower restrictions to the model’s parameters (see Remark 2).

Since in Section 3.2.3 the observed process satisfies the scalar equation of
first-order autoregression then similar result on adaptive optimal prediction can
be obtained by using the estimators presented in Sections 3.1.1 and 3.1.3.

4.1.2. Optimal adaptive prediction of VRCA(1). Consider the problem
of optimal adaptive one-step prediction for the VRCA(1) process (12). The pre-
dictions and prediction errors are defined as follows

x̃(k) = Λ̃k−1x(k − 1), k ≥ 1,

where Λ̃k is defined in (13),

ẽ(k) = x(k)− x̃(k) = (Λ− Λ̃k−1)x(k − 1) + η(k − 1)x(k − 1) + ξ(k),

e2(n) =
1

n

n∑

k=1

‖ẽ(k)‖2.

The loss and risk functions are

Ln =
A

n
e2(n) + n, Rn =

A

n
Eθe

2(n) + n.

Using the property (16) it can be shown that if E‖ξ(1)‖8p < ∞,
E‖x(0)‖8p < ∞ and the matrix EΛ⊗8p

0 is stable then

Rn ≈ A

n
σ2 + n,

where
σ2 = σ2

ξ + tr(ΣηF ).

The optimal sample size then has the form analogous to that of (36)

no
A = A1/2σ.

Define the stopping time

(38) TA = inf
n≥nA

{
n ≥ A1/2σ̃n

}
,
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where nA is some function of A defined below and

σ̃2
n =

1

n

n∑

k=1

‖x(k) − Λ̃nx(k − 1)‖2.

Denote

RA = EθLTA
= AEθ

1

TA
e2(TA) + EθTA.

Theorem 4.2. Let E‖ξ(1)‖8p+4 < ∞, E‖x(0)‖8p+4 < ∞. Let also nA in
(38) be such that

nA = o(A1/2) as A → ∞, nA ≥ max{k0, Ar log2 A}, r ∈ [2/5, 1/2).

Then the following holds

(39)
TA

no
A

−−−−→
A→∞

1 Pθ-a.s.,
EθTA

no
A

−−−−→
A→∞

1,
RA

Rno
A

−−−−→
A→∞

1

for every θ ∈ Θ8p+4, where Θm = {θ : EΛ⊗m
0 is stable, 0 < σ2

ξ , σ2
η < ∞}.

See Appendix for the proof of theorem.

4.1.3. Optimal adaptive prediction of VARMA(1). Consider the problem
of optimal adaptive one-step prediction for the VARMA(1,1) process (17). As-
sume that the matrix parameter M is known. Then the predictions and prediction
errors are defined as follows

x̃(k) = Λ̃k−1x(k − 1) +Mξ̃(k − 1), k ≥ 1,

ẽ(k) = x(k)− x̃(k) = (Λ− Λ̃k−1)x(k − 1) +M(ξ(k − 1)− ξ̃(k − 1)) + ξ(k),

where the estimators Λ̃k were defined in (18) and

ξ̃(k) =
k−1∑

i=0

(−M)i
(
x(k − i)− Λ̃kx(k − 1− i)

)
.

Define the loss and risk functions

Ln =
A

n
e2(n) + n, e2(n) =

1

n

n∑

k=1

‖ẽ(k)‖2,

Rn =
A

n
Eθe

2(n) + n.
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Analogously to the previous subsections, if E‖ξ(0)‖8p < ∞, E‖x(0)‖8p <
∞, then it can be shown that

Rn ≈ A

n
σ2 + n

and the optimal sample size is

no
A = A1/2σ.

The corresponding approximate minimal risk value is

Rno
A
≈ 2A1/2σ.

If σ is unknown one defines the stopping time of the form

(40) TA = inf
n≥nA

{
n ≥ A1/2σ̃n

}
,

where nA is a function of A defined later, and the estimator of the parameter σ2

is defined as follows

σ̃2
n = Jp

1

n

n∑

k=1

(I +M⊗2)−1 × vec
[(
x(k)− Λ̃nx(k − 1)

)(
x(k)− Λ̃nx(k − 1)

)′]
,

where

Jp = 〈ji〉1×p2 , ji =
{
1, i = 1 + (l − 1)(p + 1) for l = 1, p; 0 otherwise}.

Here 〈ji〉1×p2 denotes a row vector of the length p2 with elements ji.
Define

RA = AEθ
1

TA
e2(TA) + EθTA.

Theorem 4.3. Let E‖ξ(1)‖8p+4 < ∞, E‖x(0)‖8p+4 < ∞. Let also nA in
(40) be such that

nA = o(A1/2) as A → ∞, nA ≥ max{k0, Ar log2 A}, r ∈ [2/5, 1/2).

Then the following holds

TA

no
A

−−−−→
A→∞

1 Pθ-a.s.,
EθTA

no
A

−−−−→
A→∞

1,
RA

Rno
A

−−−−→
A→∞

1.

Proof of Theorem 4.3 is analogous to that of Theorem 4.1. See also [20],
where Theorem 4.3 is proved in a more specific case of uncorrelated and identically
distributed components ξj(k), j = 1, p of noises ξ(k). This condition allows one
to use a simpler form of the estimators σ̃2

n and apart from that difference the
proofs are identical.
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4.2. Continuous-time systems.

4.2.1. Prediction of the Ornstein–Uhlenbeck process. Consider the model
(24). The problem is to construct a predictor for xt by observations xt−u =
(xs)0≤s≤t−u which is optimal in the sense of the risk function introduced below.
Here u > 0 is a fixed time delay.

Using the solution of (24) we obtain the following representation

(41) xt = λxt−u + ξt,t−u, t ≥ u,

where ξt,t−u =

t∫

t−u

ea(t−s)dws, λ = eau. Applying properties of the Ito integral it

is easy to make sure that

Eξt,t−u = 0, σ2 := Eξ2t,t−u =
1

2a
[λ2 − 1].

Optimal in the mean square sense predictor x0t for xt is the conditional
mathematical expectation of xt under the condition of xt−u which can be found
by (41)

x0t = λxt−u, t ≥ u.

Since the parameters a and λ are unknown, we define the adaptive pre-
dictor

(42) x̂t = λt−uxt−u, t ≥ u,

where λs = eâsu, âs = proj(−∞,0]as, estimator as is defined in (25).

Define the prediction errors of x0t and x̂t as

e0t = xt − x0t = ξt,t−u,

et = xt − x̂t = (λ− λt−u)xt−u + ξt,t−u, t ≥ u.

Now we define the loss function

Lt =
A

t
e2(t) + t, t ≥ u,

where e2(t) =
1

t

∫ t

u
e2sds and the parameter A > 0 is the cost of prediction error.

We also define the risk function Rt = ELt which has the following form

Rt =
A

t
Ee2(t) + t
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and consider optimization problem

Rt → min
t

.

For the optimal predictors x0t it is possible to optimize the corresponding
risk function

(43) R0
t = E

(
A

t
(e0(t))2 + t

)
=

Aσ2

t
+ t → min

t
,

where (e0(t))2 =
1

t

t∫

u

(e0s)
2ds.

In this case the optimal duration of observations T 0
A and the corresponding

value of R0
t are respectively

(44) T 0
A = A

1

2σ, R0
T 0
A
= 2A

1

2σ,

where σ :=
√
σ2.

However, since a and consequently σ are unknown and both T 0
A and R0

T 0
A

depend on a, the optimal predictor can not be used. Then we define the estimator
TA of the optimal time T 0

A as

(45) TA = inf{t ≥ tA : t ≥ A1/2σtA},

where tA := A1/2 ·log−1 A = o(A1/2). Here σt :=
√

σ2
t is the estimator of unknown

σ, where

(46) σ2
t =

1

2
θt · [λ2

t − 1]

and θt is the truncated estimator of θ = a−1 defined as follows

θt = a−1
t · χ[at ≤ − log−1 t], t > 0.

Estimators at, λt and σt, which are used in adaptive predictors, have the
properties given in Lemma 4.1 below which will be proved in Appendix.

Lemma 4.1. Assume the model (24). Then the estimators at, λt and
σt are strongly consistent. Moreover, for t− u > s0 := exp(2|a|) the following
properties hold

(47) E(at − a)2p ≤ C

tp
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and

(48) E(λt − λ)2p ≤ C

tp
, p ≥ 1,

(49) E(σ2
t − σ2)2p ≤ C log2p t

tp
, p ≥ 1.

Analogously to [22, 39] and [38], our purpose is to prove the asymptotic
equivalence of TA and T 0

A in the almost surely and mean senses and the optimality
of the presented adaptive prediction procedure in the sense of equivalence of R0

A

and the obviously modified risk

(50) RA = A · E 1

TA
e2(TA) + ETA.

Theorem 4.4. Assume the model (24) and tA that is defined in (45).
Let the predictors x̂t be defined by (42), the times T 0

A, TA and the risk functions
R0

t , RA defined by (44), (45) and (43), (50) respectively. Then for every a < 0

TA

T 0
A

−−−−→
A→∞

1 Pθ-a.s.,
ETA

T 0
A

−−−−→
A→∞

1,
RA

R0
A

−−−−→
A→∞

1.

Proof of Theorem 4.4 can be found in [7].

4.2.2. Prediction of the multivariate diffusion process. Consider the model
(26). The problem is to construct a predictor for x(t) defined in (26) by obser-
vations xt−u = (x(s))0≤s≤t−u which is optimal in the sense of the risk function
introduced below. Here u > 0 is a fixed time delay.

Using the solution of (26) we obtain the following representation

(51) x(t) = Bx(t− u) + ξt,t−u, t ≥ u,

where ξt,t−u =

t∫

t−u

eΛ(t−s)dWs, B = eΛu. Applying properties of the Ito integral

it is easy to verify that

Eξt,t−u = 0, σ2 := E‖ξt,t−u‖2 =
u∫

0

‖eΛs‖2ds.
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Optimal in the mean square sense predictor x0(t) for x(t) is the conditional
mathematical expectation of x(t) under the condition of xt−u which can be found
using (51)

x0(t) = Bx(t− u), t ≥ u.

Since the parameters Λ and B are unknown, we define the adaptive pre-
dictor

(52) x̂(t) = Bt−ux(t− u), t ≥ u,

where Bt−u is the estimator of B defined as follows

Bt = eΛtu,

where Λt = projΛ0
Λ̃t, Λ0 is a compact set from the stability region of the process

(26), Λ̃t is defined in (27).
Denote the prediction errors of x0t and x̂t as

e0(t) = x(t)− x0(t) = ξt,t−u,

e(t) = x(t)− x̂(t) = (B −Bt−u)x(t− u) + ξt,t−u, t ≥ u.

Now we define the loss function

Lt =
A

t
e2(t) + t, t ≥ u,

where

e2(t) =
1

t

∫ t

u
‖e(s)‖2ds

and the parameter A > 0 is the cost of prediction error.
We also define the risk function Rt = ELt which has the following form

Rt =
A

t
Ee2(t) + t

and consider optimization problem

Rt → min
t

.

For the optimal predictors x0(t) it is possible to optimize the correspond-
ing risk function

(53) R0
t = E

(
A

t
(e0(t))2 + t

)
=

Aσ2

t
+ t → min

t
,
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where (e0(t))2 =
1

t

t∫

u

(e0s)
2ds.

In this case the optimal duration of observations T 0
A and the corresponding

value of R0
t are respectively

(54) T 0
A = A

1

2σ, R0
T 0
A
= 2A

1

2σ,

where σ :=
√
σ2.

However, since Λ and consequently σ are unknown and both T 0
A and R0

T 0
A

depend on a, the optimal predictor can not be used in practice. We define the
estimator TA of the optimal time T 0

A as

(55) TA = inf{t ≥ tA : t ≥ A1/2σ̂tA},

where tA := A1/2 ·log−1 A = o(A1/2). Here σ̂t :=
√

σ2
t is the estimator of unknown

σ2, where

σ̂2
t =

u∫

0

‖eΛts‖2ds.

Estimators Λt, Bt and σ̂t that are used in the adaptive predictors have
the properties given in Lemma 4.2 below which will be proved in Appendix.

Lemma 4.2. Assume the model (26). Then the estimators Λt, Bt and
σ̂t are strongly consistent. Moreover, for t large enough the following properties
hold

(56) E‖Λt − Λ‖2p ≤ C

tp

and

(57) E‖Bt −B‖2p ≤ C

tp
, p ≥ 1,

(58) E(σ̂2
t − σ2)2p ≤ C log2p t

tp
, p ≥ 1.

Analogously to [22, 38, 39], our aim is to prove the asymptotic equivalence
of TA and T 0

A in the almost surely and mean senses and the optimality of the
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presented adaptive prediction procedure in the sense of equivalence of R0
A and

the obviously modified risk

(59) RA = A · E 1

TA
e2(TA) + ETA.

Theorem 4.5. Assume the model (26) and tA that is defined in (55).
Let the predictors x̂t be defined by (52), the times T 0

A, TA and the risk functions
R0

t , RA defined by (54), (55) and (53), (59) respectively. Then as for every a < 0

TA

T 0
A

−−−→
A→∞

1 Pθ-a.s.,
ETA

T 0
A

−−−→
A→∞

1,
RA

R0
A

−−−→
A→∞

1.

The proof of Theorem 4.5 is similar to that of Theorem 4.4.

4.2.3. One-parameter delay differential equation. Consider the model
(29). We construct optimal and adaptive predictors for the process (29). Optimal
in the mean square sense predictor is the conditional mathematical expectation

z
(k)
t (t− u) = E(xt|xt−u),

which satisfies the following equation

(60)

z
(k)
t (t− u) = xt−u + b

t−(u−r)∧t∫

t−u

xv−rdv + b

t∫

t−(u−r)∧t

z
(0)
v−krdv +

+ b

k−1∑

i=1

t−r∫

t

z
(i)
v−(k−i)rdv, kr < u ≤ (k + 1)r, t > u.

Here α ∧ β denotes the minimum between α and β.

Since the parameter b in the definition of the optimal predictors z
(k)
t (t−

u) is unknown, we define the adaptive predictor by formula (60) replacing the
unknown b with b̂t−u, where b̂t−u is the projection

b̂t−u = proj[−π/2r,0]bt−u

of the truncated estimator of the parameter b which is proposed in (30).

Define the numbers σ2
0 =

∞∫

r

x20(v)dv and s0 = max{r, exp(σ−2
0 )}.
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Denote the adaptive prediction error and rewrite it in the form

e
(k)
t (t− u) := xt − ẑ

(k)
t (t− u) = e0t + ê

(k)
t (t− u),

where e0t (t−u) = xt−E(xt|xt−u) and ê
(k)
t (t−u) = z

(k)
t (t−u)− ẑ

(k)
t (t−u). Then

for every fixed k ≥ 0 the following limit inequalities hold

lim
t→∞

t(E(e
(k)
t (t− u))2 − σ2

0) ≤ C.

If it is known that b ∈ [b0, b1], −π/2r < b0 < b1 < 0, then for t−u > s1 =
= max{r, exp(σ−2

1 )} , where σ2
1 = inf

b∈[b0,b1]
σ2
0 the non-asymptotic property is ful-

filled

E(e
(k)
t (t− u))2 − σ2

0 ≤ C

t
.

These properties mentioned in [6] can be used to prove optimality in the
sense of considered above risk functions.

4.2.4. Stable non-Gaussian Ornstein–Uhlenbeck process by discrete-time
observations. Results presented in Sections 3.2.4, 4.2.1 make it possible to solve
the prediction problem for the process defined in (32) in every point.

For some u ∈ (0, 1] define the numbers sk = (k − 1 + u)h, h = T/n. We
introduce the process

z = (zk)k≥0, z = x(sk).

Using the representation for the solution of the equation (32) we get the
equation for the observations (zk, yk)

(61) zk = bu · yk−1 + ηk,u, ηk,u =

∫ sk

tk−1

ea(sk−t)dξ(t),

bu = eauh, Eηk,u = 0, σ2
u = Eη2k,u =

1

2a
(ρ21 + λρ22)[b

2
u − 1].

The adaptive optimal prediction problem can be solved similarly to Sec-
tion 4.1.1 for predictors

ẑk = b̃u,k−1yk−1, b̃u,k−1 = b̂u,k−1 · χ
[

k∑

i=1

y2i−1 ≥ k log−1 k

]
,

where b̂u,k−1 is the LSE obtained from the equation (61).
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The risk function can be defined analogously to Section 4.1.1 with pre-
diction errors

ek = ẑk − zk.

Properties presented in Theorem 4.1 hold for the predictors ẑk as well.

Appendix.

P r o o f o f L emma 3.2 is similar to that of Lemma 3.1. For this reason
below we present those proof parts that are essentially different between the two.
See also [21] for the proof in scalar case.

For this proof we first need to establish the properties of Eθx(k)x
′(k).

Solving the equation (12) yields

x(k) =

k−1∑

i=0

i∏

j=1

Λk−jξ(k − i) +

k∏

j=1

Λk−jx(0)

and thus,

(62)

Eθx(k)x
′(k) = Eθ

k−1∑

i=0

i∏

j=1

Λk−jξ(k − i)ξ′(k − i)

1∏

j=i

Λ′
k−j +

+ Eθ

k∏

j=1

Λk−jx(0)x
′(0)

1∏

j=k

Λ′
k−j,

here products
∏

are ordered, i.e.

1∏

j=k

Λ′
k−j = Λ′

0 · Λ′
1 · . . . · Λ′

k−1 6=
k∏

j=1

Λ′
k−j.

To further break down the resulting expression we will use matrix vector-
ization operator vec[·], which has the following property (see, e.g., [32])

(63) vec[V Y Z] = (Z ′ ⊗ V ) vec[Y ].

Applying vec[·] and its property (63) to (62), one obtains

(64)

vec[Eθx(k)x
′(k)] =

k−1∑

i=0

Eθ

( i∏

j=1

Λk−j

)⊗2

vec[Σ] +

+ Eθ

( k∏

j=1

Λk−j

)⊗2

vec[Ex(0)x′(0)].
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Using the Kronecker product’s property (S ⊗ V ) · (Y ⊗ Z) = S · Y ⊗ V · Z we

have

( i∏

j=1

Λk−j

)⊗2

=
i∏

j=1

Λ⊗2
k−j and since η(k), k ≥ 1, are independent, then

Eθ

( i∏

j=1

Λk−j

)⊗2

=

i∏

j=1

EθΛ
⊗2
k−j = Λ

i
,

where Λ = EΛ⊗2
0 . Recall that Λ is stable (see conditions in 3.1.4). This allows us

to simplify (64) in the following manner

(65)
vec[Eθx(k)x

′(k)] =

k−1∑

i=0

Λ
i
vec[Σ] + Λ

k
vec[Ex(0)x′(0)] =

= (I − Λ)−1(I − Λ
k
) vec[Σ] + Λ

k
vec[Ex(0)x′(0)].

Letting k → ∞ we get

(66) vec[F ] = (I − Λ)−1 vec[Σ].

Using this equality as well as (65), it can be shown that

(67)

∞∑

k=0

‖Eθx(k)x
′(k)− F )‖2 ≤ C,

(68)
1

n

n∑

k=1

∣∣ tr(Ψ(Eθx(k − 1)x′(k − 1)− F ))
∣∣ = O(n−1), n → ∞.

Now we proceed to prove the first assertion (15) of Lemma 3.2. Denote
z1(k) = vec[x(k)x′(k)], k ≥ 1. From (12) and (63) it follows that the equation
for z1(k) can be written as

z1(k) = Λ⊗2
k−1z1(k − 1) + ǫ1(k),

ǫ1(k) = (ξ(k) ⊗ Λk−1)x(k − 1) + (Λk−1 ⊗ ξ(k))x(k − 1) + vec[ξ(k)ξ′(k)].

Examine ‖z1(k)‖1, where ‖a‖1 =

p∑

i=1

|ai|. The condition necessary for

sup
k≥1

Eθ‖z1(k)‖1 < ∞ is stability of the matrix EΛ⊗2
0 as well as finiteness of ξ(1)
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and x(0) (see (65)). If we then consider the process z2(k) = vec[z1(k)z
′
1(k)],

which satisfies the equation

z2(k) = Λ⊗4
k−1z2(k − 1) + ǫ2(k),

it turns out that sup
k≥1

Eθ‖z2(k)‖1 < ∞, if the matrix Λ⊗4
0 is stable and the fourth

moments of ξ(1), x(0) are finite. Continuing in this manner and using the fol-
lowing obvious inequality

sup
k≥1

Eθ‖x(k)‖2 ≤ sup
k≥1

Eθ‖ vec[x(k)x′(k)]‖1,

we find that conditions of the lemma guarantee

(69) sup
k≥0

Eθ‖x(k)‖4mp ≤ C, sup
k≥0

Eθ∆
2m
k ≤ C.

Using (69) one can verify the following inequality

(70) Eθ‖Λ̃k − Λ‖2m ≤ 1

H2m
k

Eθ‖ζkF
+
k ‖2m + ‖Λ‖2mPθ(∆k < Hk),

where
F

+
k = ∆kF

−1
k , k ≥ p,

ζk =
1

k

k∑

i=1

η(i− 1)x(i − 1)x′(i− 1) +
1

k

k∑

i=1

ξ(i)x′(i− 1).

Since x(i − 1) and η(i − 1) are mutually independent, the process (ζk)k≥1 is, in
fact, a sum of two martingales. Thus, analogously to (4.4) in [22], it can be shown
that Eθ‖ζk‖2mp ≤ C · k−mp. Then for k ≥ p the inequality

(71)
1

H2m
k

Eθ‖ζkF
+
k ‖2m ≤ C lnm k

km

follows from Hölder’s inequality, and hence (15) holds.
To tackle Eθ(∆k − ∆)2m, where ∆ = det(F ), one needs to determine

the properties of (F k − F ). We will use the following identity

(72) vec[F ] = (I − Λ⊗2)−1(vec[Σ] + η vec[F ]),

where η = Eη⊗2(0). To obtain it we use the representation (66) as follows

(I − Λ⊗2)−1(vec[Σ] + η vec[F ]) = (I − Λ⊗2)−1(vec[Σ] + η(I − Λ)−1 vec[Σ]) =

= (I − Λ⊗2)−1
(
(I − Λ)(I − Λ)−1 + η(I − Λ)−1

)
vec[Σ] =

= (I − Λ⊗2)−1
(
I − (Λ⊗2 + η) + η

)
(I − Λ)−1 vec[Σ] = (I − Λ)−1 vec[Σ] = vec[F ].
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Using the definition (14) of F k it can be shown that

(73) F k = ΛF kΛ
′ +Σ+

1

k

k∑

i=1

η(k−1)x(k−1)x′(k−1)η′(k−1) + Sk,

where

Sk =
1

k
(x(k)x′(k)− x(0)x′(0)) +m1,k +m2,k +m′

2,k,

m1,k =
1

k

k∑

i=1

(ξ(i)ξ′(i)− Σ), m2,k =
1

k

k∑

i=1

ξ(i)x′(i− 1)Λ′
k−1.

Note that Sk has a martingale structure. One can show, analogously to (4.4) in
[22], that

(74) Eθ‖Sk‖2m ≤ C · k−m.

Solving the equation (73) yields

F k =
∑

n≥0

Λn

(
Σ+

1

k

k∑

i=1

η(k−1)x(k−1)x′(k−1)η′(k−1) + Sk

)
(Λ′)n.

Applying vec[·] to both sides and taking into account its properties as well as the
identity (Λn)⊗2 = (Λ⊗2)n, one gets

vec[F k] =
∑

n≥0

(Λ⊗2)n vec

[
Σ+

1

k

k∑

i=1

η(k−1)x(k−1)x′(k−1)η′(k−1) + Sk

]
=

= (I − Λ⊗2)−1

(
vec[Σ] +

1

k

k∑

i=1

η⊗2(k − 1) vec[x(k−1)x′(k−1)] + vec[Sk]

)
.

From this representation and (72) it follows that

(75) vec[F k − F ] = (I − Λ⊗2)−1

(
1

k

k∑

i=1

(
η⊗2(k−1) vec[x(k−1)x′(k−1)] −

− η Eθ vec[x(k−1)x′(k−1)]
)
+

1

k

k∑

i=1

η vec[Eθx(k−1)x′(k−1)− F ] + vec[Sk]

)
.
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The first summand inside the parentheses is a normalized martingale, for which
the following holds, analogously to (74),

1

k2m
Eθ

( k∑

i=1

(
η⊗2(k − 1) vec[x(k − 1)x′(k − 1)] −

− Eθη
⊗2(k − 1) vec[x(k − 1)x′(k − 1)]

))2m

≤ C

km
.

The second summand is non-random. From (65)-(67) we get

1

k2m

( k∑

i=1

η vec[Eθx(k−1)x′(k−1)− F ]

)2m

≤ C

km
.

Then from (75) as well as (69) and (74) it follows that

(76) Eθ‖F k − F‖2m ≤ C

km
.

The second assertion of Lemma 3.2 follows from (70), (71), Chebyshev’s inequality
and (76). Lemma 3.2 is proven. �

P r o o f o f L emma 3.3 is similar to that of Lemma 3.1. For such k that
Gk is non-singular we can write

Λ̂k − Λ =
1

∆k

ζkG
+
k , k ≥ 2,

where

ζk =
1

k − 1

k∑

i=2

(
ξ(i) +Mξ(i − 1)

)
x′(i− 2), G

+
k = ∆kG

−1
k .

Hence

(77) Eθ‖Λ̃k − Λ‖2m ≤ 1

H2m
k

Eθ‖ζkG
+
k ‖2m + ‖Λ‖2mPθ(∆k < Hk).

The martingale structure of ζk allows one to prove

(78)
1

H2m
k

Eθ‖ζkF
+
k ‖2m ≤ C lnm k

km
,

and this together with (77) proves (20).
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To prove the second assertion (21) one needs to study the properties of
‖Gk −G‖. Using (17) we can write the equation for Gk as follows

Gk = ΛF k−1 +MΣ+ S1,k−1, F k =
∑

n≥0

Λn(Σ̃ + S2,k)(Λ
′)n,

where Σ̃ is defined in (19) and

S1,k =
1

k

k+1∑

i=2

ξ(i− 1)x′(i− 2) +
1

k

k+1∑

i=2

M
(
ξ(i− 2)x′(i− 2)− Σ

)
,

S2,k =
1

k

(
x(k)x′(k)− x(0)x′(0)

)
+m1,k +m′

1,k +m2,k +m′
2,k +m3,k,

m1,k =
1

k

k∑

i=1

(
Λx(i− 1) +Mξ(i− 1)

)
ξ′(i),

m2,k =
1

k

k∑

i=1

Λ
(
x(i− 1)ξ′(i− 1)− Σ

)
M′,

m3,k =
1

k

k∑

i=1

(
ξ(i)ξ′(i) − Σ

)
+

1

k

k∑

i=1

M
(
ξ(i− 1)ξ′(i− 1)− Σ

)
M′.

Then

Gk −G = Λ(F k−1 − F ) + S1,k−1 = Λ ·
∑

n≥0

ΛnS2,k−1(Λ
′)n + S1,k−1.

For ‖Sj,k‖, j = 1, 2, analogously to (74), it can be shown that
Eθ‖Sj,k‖2m ≤ C · k−m. Thus, since Λ is a stable matrix,

(79) Eθ‖Gk −G‖2m ≤ C

km

(∑

n≥0

‖Λn‖2
)2m

+
C

km
≤ C

km
.

Then (21) follows from (77)–(79).
In case the noise covariance matrix Σ is known and the matrix parameter

M is unknown, the estimators Λ̃k can be used to estimate it as follows

(80) M̃k =
(
Γ
′
1,k − Λ̃nΓ0,k

)
Σ−1,

where

Γ0,k =
1

k

k∑

i=1

x(i− 1)x′(i− 1), Γ1,k =
1

k

k∑

i=1

x(i− 1)x′(i).
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Lemma 3.3 is proven. �

P r o o f o f L emma 3.4. Using the definition (80) of M̃k we can write
its deviation as follows

M̃k −M =

(
1

k

k∑

i=1

(Λ− Λ̃k)x(i− 1)x′(i− 1) +
1

k
Mξ(0)x′(0) +

(81) +
1

k

k∑

i=1

ξ(i)x′(i− 1) +
1

k

k∑

i=2

Mξ(i− 1)x′(i− 2)Λ′ +

+
1

k

k∑

i=2

Mξ(i− 1)ξ′(i− 2)M′ +
M

k

k∑

i=1

(
ξ(i− 1)ξ′(i− 1)− Σ

))
Σ−1.

The last 4 summands in the parentheses (which we denote Sj,k, j = 1, 4) are
normalized martingales, for which the following can easily be shown Eθ‖Sj,k‖2m ≤

Ck−m. Observe also that by lemma’s conditions E

∥∥∥∥
1

k
Mξ(0)x′(0)

∥∥∥∥
2m

≤ Ck−2m.

For the first summand in (81), using Hölder’s inequality and properties
of the estimators Λ̃k, we obtain for k ≥ k0

Eθ

∥∥∥∥
1

k

k∑

i=1

(Λ− Λ̃k)x(i− 1)x′(i− 1)

∥∥∥∥
2m

≤

≤
(
Eθ‖Λ− Λ̃k‖2m

p+1

p

) p
p+1

·
(
Eθ

∥∥∥∥
1

k

k∑

i=1

x(i− 1)x′(i− 1)

∥∥∥∥
4m(p+1)) 1

p+1

≤ C lnm k

km
,

which implies the second assertion (23) of lemma. When 1 ≤ k < k0 the property
(20) ensures that the boundary in the above inequality is some constant C, hence
the first assertion (22) of lemma. Lemma 3.4 is proven. �

P r o o f o f t h e p r o p e r t y (28). Consider the deviation of the estima-
tor in the form

Λ̃
′

T − Λ
′

= (Λ̂
′

T − Λ
′

) · χ(gT ≥ H)− Λ
′ · χ(gT < H) =

= G
−1
T · ζT · χ(gT ≥ H)− Λ

′ · χ(gT < H) := I1 + I2,

where ζT =
1

T

∫ T

0
x(t)dW

′

(t).
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We estimate the mathematical expectation using the Cauchy-Bunyakov-
skii inequality and the properties of the Ito integral

E‖I1‖2p = E‖G+
T · ζT ‖2p · g−2p

T · χ(gT ≥ H) ≤ H−2p · E‖G+
T ‖2p · ‖ζT ‖2p ≤

≤ H−2p ·
√
E‖G+

T ‖4p · E‖ζT ‖4p ≤ C

T p
.

Similarly to [4, 12] we get

E‖I2‖2p = ‖Λ‖2p ·P (gT < H) ≤ ‖Λ‖2p ·P (|gT −g| > g−H) ≤ C ·E(gT −g)2p ≤ C

T p
.

Thus the property (28) is proven. �

P r o o f o f t h e p r o p e r t y (31). Denote

bt − b =




t∫

r

xsdws

/ t∫

r

x2sds


 · χ




t∫

r

x2sds ≥ t log−1 t


−

−b · χ




t∫

r

x2sds < t log−1 t


 := I1 + I2.

It is obvious that

E(bs − b)2m = EI2m1 + EI2m2 .

Consider each summand separately. Using Burckholder’s (see, e.g. [2])
and Hölder’s inequalities, we obtain

EI2m1 ≤ log2m t

t2m
E




t∫

r

xsdws




2m

≤ log2m t

t2m
E




t∫

r

x2sds




m

≤ C
log2m t

tm
.

For the second term, by Chebyshev’s inequality and for t > max(r, exp(σ
2
0)

m
2 ) we
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obtain

EI2m2 ≤ b2mP


1

t

t∫

r

x2sds < log−1 t




2m

=

= b2mP


σ2

0 −
1

t

t∫

r

x2sds > σ2
0 − log−1 t




2m

≤

≤ b2m

(σ2
0 − log−1 t)2m

E


1

t

t∫

r

x2sds− σ2
0




2m

≤ C

tm
.

The last inequality follows from formulae (5.9)–(5.11) in [19]. The prop-
erty (31) is proven. �

P r o o f o f T h e o r em 4.2 is similar to that of Theorem 4.1. Below are
those proof parts that are essentially different between the two. See also [21] for
the proof in scalar case.

From the conditions it follows that for θ ∈ Θ8p+4

sup
k≥0

Eθ‖x(k)‖8p+4 ≤ C.

We now prove the first assertion in (39). Rewrite the estimators σ̃2
n in the

following form

σ̃2
n =

1

n

n∑

k=1

(‖ξ(k)‖2 + ‖η(k − 1)x(k − 1)‖2) +Wn + νn,

where

Wn =
1

n

n∑

k=1

‖(Λ̃n − Λ)x(k − 1)‖2, νn =
2

n

n∑

k=1

ξ′(k)η(k − 1)x(k − 1)−

− 2

n

n∑

k=1

(ξ′(k) + x′(k − 1)η′(k − 1))(Λ̃n − Λ)x(k − 1).

Next we show that

(82) σ̃2
n −−−→

n→∞
σ2

Pθ-a.s.
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Using Chebyshev’s inequality and (16) we have for some 0 < β ≤ 4+2p−1

and every ǫ > 0

Pθ(‖Λ̃n − Λ‖ ≥ ǫ) ≤ 1

ǫ2+β
Eθ‖Λ̃n − Λ‖2+β ≤ C ln1+

β
2 n · n−(1+β

2
).

Therefore, the Borel-Cantelli lemma guarantees that the estimators Λ̃n are strongly

consistent. Together with (76) this yields the convergence Wn
Pθ-a.s.−−−−→
n→∞

0. Analo-

gously it can be shown that νn
Pθ-a.s.−−−−→
n→∞

0.

At the same time, from Kolmogorov’s strong law of large numbers, (67)
and the Borel-Cantelli lemma it follows that

1

n

n∑

k=1

(‖ξ(k)‖2 + ‖η(k − 1)x(k − 1)‖2) −−−→
n→∞

σ2
Pθ-a.s.

From this and from the convergencies of Wn and νn we have (82). Since, by

definition (38), TA
Pθ-a.s.−−−−→
A→∞

∞, and thus σ̃2
TA

Pθ-a.s.−−−−→
A→∞

σ2, then

TA

A1/2σ
−−−−→
A→∞

1 Pθ-a.s.,

the first assertion of the Theorem is proved.
The second and third assertions in (39) are proved analogously to those

of Theorem 4.1 with mn therein (see page 222 in [22]) having a different form,
namely

mn =
1

n

n∑

k=1

(‖ξ‖2 − σ2
ξ ) +

1

n

n∑

k=1

tr(η′(k − 1)η(k − 1)x(k − 1)x′(k − 1)−

−Eθη(k−1)η′(k−1)x(k−1)x′(k−1)) +
1

n

n∑

k=1

tr
(
Ψ(Eθx(k−1)x′(k−1)− F )

)
,

which is a sum of two normalized martingales and a non-random function of n,
decaying as O(n−1) (see (68)). The martingale nature of mn is what makes the
two proofs analogous. Theorem 4.2 is proven. �

P r o o f o f L emma 4.1. Properties (47),(48) are proved in [6].
Now we prove the assertion (49). To this end we consider the deviation

of the estimator (46)

|σ2
t − σ2| =

∣∣∣∣
1

2
θt · [λ2

t − 1]− 1

2
θ[λ2 − 1]

∣∣∣∣ =
∣∣∣∣
1

2
[θt − θ] · [λ2

t − 1] +
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+
1

2
θ[λ2

t − 1]− 1

2
θ[λ2 − 1]

∣∣∣∣ ≤
1

2
|θt − θ|+ 1

2
|θ‖λ2

t − λ2| ≤ 1

2
|θt − θ|+ |θ‖λt − λ| ≤

≤
∣∣∣∣
1

at
+

1

a

∣∣∣∣ · χ[at ≤ − log−1 t] +
1

|a| · χ[at > − log−1 t] + |θ‖λt − λ| = I1 + I2 + I3.

Considering each summand separately we obtain

|I1| =
∣∣∣∣
a− at
ata

∣∣∣∣ · χ[at ≤ − log−1 t] ≤ log t

|a| |a− at|.

Whence by property (47)

EI2p1 ≤ C log2p tE|a− at|2p ≤ C
log2p t

tp
.

By Chebyshev’s inequality, we get

EI2p2 ≤ C · P (at > − log−1 t) ≤ C · P (at − a > − log−1 t− a) ≤

≤ C · P (|at − a| > |a| − log−1 t) ≤ C · 1

(|a| − log−1 t)2p
E(at − a)2p ≤ C · log

2p t

tp
.

To finish the prove of Lemma 4.1 it is enough to apply (48) for estimation of
EI2p3 . �

P r o o f o f L emma 4.2. The property (56) is proved above. Let us
prove (57). Estimate the norm

‖Bt −B‖ = ‖eΛtu − eΛu‖ ≤ ‖eΛu‖ · ‖e(Λt−Λ)u − I‖ =

= ‖eΛu‖ · ‖
∞∑

k=1

uk

k!
(Λt − Λ)k‖ ≤ ‖eΛu‖ ·

∞∑

k=1

uk‖Λt − Λ‖k
k!

=

= ‖eΛu‖ · u · ‖Λt − Λ‖ ·
∑

k≥1

uk−1‖Λt − Λ‖k−1

(k − 1)! · k ≤

≤ ‖eΛu‖ · u · ‖Λt − Λ‖ · eu‖Λt−Λ‖ ≤ C · ‖Λ̃t − Λ‖.

Then the mathematical expectation

E‖Bt −B‖2p ≤ C · E‖Λ̃t − Λ‖2p ≤ C

tp
.
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We prove now the property (58). The deviation of the estimator has the form

σ̂2
t − σ2 =

∫ u

0

[
‖eΛts‖2 − ‖eΛs‖2

]
ds.

Consider the integrand

‖eΛts‖2 − ‖eΛs‖2 = tr
[
e(Λt+Λ̃

′

t)s − e(Λ+Λ
′

)s
]

= tr
{
e(Λ+Λ

′

)s ·
[
e(Λt−Λ)s+(Λ

′

t−Λ
′

)s − I
]}

.

Using the trace property tr(AB) ≤ ‖A‖ · ‖B‖ and by the definition of the matrix
exponent, we obtain

‖|eΛts‖2 − ‖eΛs‖2| ≤ ‖e(Λ+Λ
′

)s‖ · ‖e(Λt−Λ)s+(Λ
′

t−Λ
′

)s − I‖ ≤

≤ ‖e(Λ+Λ
′

)s‖ · ‖
∞∑

k=1

1

k!

[
(Λt − Λ) + (Λ

′

t − Λ
′

)
]k

sk‖ ≤

≤ ‖e(Λ+Λ
′

)s‖ ·
∞∑

k=1

1

k!
sk · ‖(Λt − Λ) + (Λ

′ − Λ
′

)‖k ≤

≤ ‖e(Λ+Λ
′

)s‖ · 2 · s · ‖Λt − Λ‖ ·
∞∑

k=1

sk−1 · 2k
(k − 1)!

· ‖(Λt − Λ‖k−1 ≤

≤ 4s · e2‖Λ‖s · ‖Λt − Λ‖ · e‖Λt−Λ‖ ≤ C · ‖Λt − Λ‖.
The last inequality uses boundedness of Λt. Thus, we obtain

E(σ̂2
t − σ2)2p ≤ C ·E‖Λt − Λ‖2p ≤ C

tp
.

Lemma 4.2 is proven. �
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