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Abstract. Suppose s(x) : [a,∞) 7→ R is locally integrable with respect to
a Radon measure µ on [a,∞). The mean of s(x) with respect to µ is defined
to be

τ(t) =
1

F (t)

t
∫

a

s(x)µ(dx),

where F (x) = µ(a, x]. A scallar l is called the statistical limit of s(x) as
x → ∞ if for every ε > 0,

lim
b→∞

1

b− a
|{x ∈ (a, b) : |s(x)− l| > ε}| = 0.

This is denoted by st-lim
x→∞

s(x) = l. The following Tauberian theorems are

proved under mild assymptotic conditions on F (t) and assuming that s(x)
is slowly decreasing with respect to F (t).
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1. If lim
t→∞

τ(t) = l, then lim
x→∞

s(x) = l.

2. If st-lim
x→∞

s(x) = l, then lim
x→∞

s(x) = l.

3. If st-lim
t→∞

τ(t) = l, then lim
x→∞

s(x) = l.

This work extends results obtained by F. Móricz and Z. Németh in [3] and
[4] for the case F (t) = log(t).

1. Introduction.

Definition 1.1. A number l ∈ R, is called the statistical limit of s(x) :
[a,∞) 7→ R at infinity if for any ε > 0,

(1.1) lim
b→∞

1

b− a
|{x ∈ (a, b) : |s(x)− l| > ε}| = 0,

where |A| is the Lebesgue measure of the set A. We write this as:

st-lim
x→∞

s(x) = l.

It is easy to work out a relationship between the ordinary limit and the
statistical limit. We omit the easy proof. The converse is not true in general.

Proposition 1.1. If lim
x→∞

s(x) = l, then st-lim
x→∞

s(x) = l.

The converse of Proposition 1.1 is not true in general.

Definition 1.2. Let µ be a Radon measure on [a,∞) with µ[a,∞) = ∞,

and let

F (t) := µ(a, t]

be its cumulative distribution function. For any s(x) : [a,∞) 7→ R, locally inte-

grable with respect to µ, define the mean of s(x) with respect to µ to be

(1.2) τ(t) =
1

F (t)

t
∫

a

s(x)µ(dx), for t > a.

The following proposition and its proof are standard.

Proposition 1.2. If lim
x→∞

s(x) = l, then lim
t→∞

τ(t) = l.
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The converse of Proposition 1.2 is not always true, unless one imposes
additional conditions on the function s(x). Such conditions are called Tauberian

conditions, after the work of Tauber [1]. Sufficient conditions for the converse are
given in Theorem 2.1, which is the first main result of this work. We extend the
slowly decreasing condition proposed by F. Móricz in [3] to fit the definition of
the mean of s(x) with respect to µ.

Definition 1.3. A function s(x) : [a,∞) 7→ R is said to be slowly de-

creasing with respect to F (t), if

lim
λ→1+

lim inf
x→∞

inf
F (x)6F (t)6λF (x)

(s(t)− s(x)) > 0.

We keep the term ‘slowly decreasing’ even though it is somewhat mislead-
ing since every increasing function s(x) satisfies Definition 1.3. More appropriate
description would be to say that s(x) is not quickly decreasing. We do not use
this definition directly but instead the equivalent characterization given below.
We include the proof for completeness.

Proposition 1.3. A function s(x) : [a,∞) 7→ R is slowly decreasing with

respect to F (t) if and only if for every ε > 0, there exist λ0 > 1, such that for all

λ ∈ (1, λ0), there exists an x0 > a, such that

(1.3) s(t)− s(x) > −ε,

whenever x and t satisfy F (x0) 6 F (x) 6 F (t) 6 λF (x).

P r o o f. Let

a(λ) := lim inf
x→∞

inf
F (x)6F (t)6λF (x)

(s(t)− s(x)).

It is easy to see that a(λ) is a non-increasing function on (1,∞). Indeed, for any
1 < λ1 < λ2 and a fixed x, we have

{t : F (x) 6 F (t) 6 λ1F (x)} ⊆ {t : F (x) 6 F (t) 6 λ2F (x)},

implying that

inf
F (x)6F (t)6λ1F (x)

(s(t)− s(x)) > inf
F (x)6F (t)6λ2F (x)

(s(t)− s(x)).

Therefore,

a(λ1) = lim inf
x→∞

inf
F (x)6F (t)6λ1F (x)

(s(t)− s(x))
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> lim inf
x→∞

inf
F (x)6F (t)6λ2F (x)

(s(t)− s(x)) = a(λ2),

which shows that a(λ) is decreasing.
Next, s(x) is slowly decreasing if and only if

lim
λ→1+

a(λ) > 0.

This means, for every ε > 0, there exists λ0 > 1, such that for all λ ∈ (1, λ0),

a(λ) > −ε

2
.

For each fixed λ > 1, define

h(λ, x) := inf
F (x)6F (t)6λF (x)

(s(t)− s(x)),

and
h̄(λ, x) := inf{h(λ, y) : y ∈ [x,∞)}.

Then, by the definition of limit infimum, we have

a(λ) = lim
x→∞

h̄(λ, x)

for all λ > 1. Thus, s(x) is slowly decreasing if and only if for every ε > 0, there
exists λ0 > 1, such that for all λ ∈ (1, λ0), there is x0, such that

h̄(λ, x) > −ε

2
(1.4)

holds for all x ≥ x0. But (1.4) is equivalent to h(λ, x) > −ε/2 and the result
follows from here. ✷

2. Main results. Recall that the function F : [a,∞) 7→ R is non-
decreasing, right-continuous, and satisfies F (a) = 0 and

lim
x→∞

F (x) = ∞.

It is a standard practice to denote by F (x−) the left limit of F at x. The main
results require that we impose one or both of the following two conditions on F (t).

F.1) lim
x→∞

F (x)/F (x−) = 1.
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F.2) lim sup
x→∞

F (λx)/F (x) ≤ λ for all λ > 1 sufficiently close to 1.

These conditions are met for broad classes of functions. It is clear that
if F (t) is a continuous function, then F.1) holds. Condition F.1) is equivalent to
lim
x→∞

F (x−)/F (x) = 1 or to

lim
x→∞

F (x)− F (x−)

F (x)
= 0.

The last limit says that the jumps of the function F (x) increase at a slower rate
than F (x). In particular, if F (t) has bounded jumps, then F.1) holds.

Proposition 2.1. Condition F.2) holds, whenever F (x) is concave.

P r o o f. The concavity of F implies that for any x > a, there is a number
dx, called subgradient of F at x, such that

F (y) ≤ F (x) + dx(y − x) for all y ≥ a.

The number dx may not be unique, but any choice x 7→ dx gives a non-increasing,
function, see [5]. The fact that F (t) is non-decreasing implies that dx > 0. Thus,
for any λ > 1, one has

lim sup
x→∞

F (λx)

F (x)
6 lim sup

x→∞

F (x) + dx(λ− 1)x

F (x)
= lim sup

x→∞

(

1 +
dx(λ− 1)x

F (x)

)

6 lim sup
x→∞

(

1 +
dx(λ− 1)x

F (a) + dx(x− a)

)

= lim sup
x→∞

(

1 +
(λ− 1)x

x− a

)

= λ,

where we used that F (a) = 0. ✷

Examples of functions that satisfy the two conditions are tr for r ∈ (0, 1],
log(t), and log(log(t)). A function F (t) does not need to be continuous to satisfy
the two conditions, see Subsection 3.4 for such an example.

Proposition 2.2. Suppose s(x) is slowly decreasing with respect to F (t).
If F (t) satisfies condition F.2), then s(x) is slowly decreasing with respect to t.

P r o o f. Fix ǫ > 0. Since s(x) is slowly decreasing with respect to F (t),
there exists λ0 > 1 such that for any λ ∈ (1, λ0) there is an x0, such that

s(t)− s(x) > −ε,(2.1)
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whenever F (x0) 6 F (x) 6 F (t) 6 λF (x).
Fix λ ∈ (1, λ0) and let η > 0 be such that λ + η ∈ (1, λ0). Choose x0

so that (2.1) holds, whenever F (x0) 6 F (x) 6 F (t) 6 (λ + η)F (x). Choose x0
larger, if necessary, so that, by condition F.2) we have F (λx) 6 (λ + η)F (x) for
all x > x0.

Now, if x and t satisfy x0 6 x 6 t 6 λx, then F (x0) 6 F (x) 6 F (t) 6

F (λx) 6 (λ + η)F (x), so (2.1) holds. That is, s(x) is slowly decreasing with
respect to t. ✷

The next theorem gives a sufficient condition for the converse of Propo-
sition 1.2.

Theorem 2.1. Suppose s(x) : [a,∞) 7→ R is locally integrable with respect

to µ and slowly decreasing with respect to F (t). If F (t) satisfies conditions F.1)
and

lim
t→∞

τ(t) = l,

then

lim
x→∞

s(x) = l.

The next theorem gives a sufficient condition for the converse of Propo-
sition 1.1.

Theorem 2.2. Suppose s(x) : [a,∞) 7→ R is slowly decreasing with re-

spect to t. If

st-lim
x→∞

s(x) = l,

then

lim
x→∞

s(x) = l.

Combining Theorem 2.2 with Proposition 2.2 gives the following corollary,
which extends Theorem 1 from [4]. (Recall, that F (t) = log(t) satisfies condition
F.2).)

Corollary 2.1. Suppose s(x) : [a,∞) 7→ R is slowly decreasing with

respect to F (t). If F (t) satisfies conditions F.2) and

st-lim
x→∞

s(x) = l,

then

lim
x→∞

s(x) = l.
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Theorem 2.3. Suppose s(x) : [a,∞) 7→ R is locally integrable with respect

to µ and slowly decreasing with respect to F (t). If F (t) satisfies conditions F.1)
and F.2), then τ(t) is slowly decreasing with respect to F (t).

In the last theorem, one may also conclude that τ(t) is slowly decreasing
with respect to t, invoking Proposition 2.2.

Corollary 2.2. Suppose s(x) : [a,∞) 7→ R is locally integrable with re-

spect to µ and slowly decreasing with respect to F (t). If F (t) satisfies conditions

F.1) and F.2) and

st-lim
t→∞

τ(t) = l,

then

lim
x→∞

s(x) = l.

P r o o f. By Theorem 2.3, τ(t) is slowly decreasing with respect to F (t),
and hence with respect to t, by Proposition 2.2. Thus, by Theorem 2.2, we have
lim
t→∞

τ(t) = l. Finally, Theorem 2.1 implies lim
x→∞

s(x) = l. ✷

3. Examples.

3.1. (C, 1) summability. This is the case when F (t) = t for t > 0.
Then we have

τ(t) =
1

t

∫ t

0
s(x)dx.

Since F (t) satisfies conditions F.1) and F.2), the three theorems apply.

3.2. (L, 1) summability. Summability (L, 1) is the case when F (t) =
log(t) for t > 1. Then we have

τ(t) =
1

log(t)

∫ t

1

s(x)

x
dx.

Since F (t) is continuous and concave, conditions F.1) and F.2) hold. The three
theorems apply.

This particular case of Theorem 2.1 is given in [3, Corollary 1] and in this
particular case Theorem 2.2 and Corollary 2.2 are given in [4, Theorems 1 and
3].
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3.3. (L, 2) summability. Summability (L, 2) is the case when F (t) =
log(log(t)) for t > e. Then, we have

τ(t) =
1

log(log(t))

∫ t

e

s(x)

x log x
dx.

Since F (t) is continuous and concave, conditions F.1) and F.2) hold. The three
theorems apply.

3.4. (L, 1) summability of numerical sequences. Consider a numer-
ical sequence {sn}∞n=1 and the function s(x) : [1,∞) → R defined by s(x) := s[x].
For t ≥ 1, let

F (t) =

[t]
∑

k=1

1

k
,

then

τ(t) =
1

F (t)

[t]
∑

k=1

s(k)

k
.

Function F (t) satisfies condition F.1), since its jumps are all less than or equal
to 1. So Theorem 2.1 holds. This case was considered in [3, Corollary 3]. Using
the fact that

log([t] + 1) 6 F (t) 6 log([t]) + 1

one can show that condition F.2) also holds. Thus, all three theorems apply.

3.5. Stolz’ theorem. The classical Stolz’ theorem is a discrete version
of the L’Hospital’s rule. Let {an}∞n=1 and {bn}∞n=1 be sequences of real numbers
such that {bn}∞n=1 is strictly increasing and converging to infinity. If

lim
n→∞

an − an−1

bn − bn−1
= l,

where l ∈ R, then

lim
n→∞

an
bn

= l.

This theorem is a special case of Proposition 1.2 if we set a0 = b0 := 0, define

s(x) =
a[x] − a[x]−1

b[x] − b[x]−1
, for x ≥ 1

and for t ≥ 0, define
F (t) = µ(0, t] = b[t].
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Indeed,

τ(t) =
1

b[t]

∫ t

1
s(x)µ(dx) =

1

b[t]

[t]
∑

k=1

ak − ak−1

bk − bk−1
(bk − bk−1) =

a[t]

b[t]
.

Condition F.1) is satisfied if and only if

lim
n→∞

bn−1

bn
= 1,

while for F.2), we have the following sufficient criteria.

Lemma 3.1. The function F (t) = b[t] satisfies condition F.2), whenever
for any integers k > m > 0, we have

lim sup
s→∞

bsk+k−1

bsm
≤ k

m
.

P r o o f. Observe that it suffices to prove the inequality

lim sup
n→∞

b[λn]

b[n]
6 λ

only for rational numbers λ > 1. (One can approximate an irrational λ with
rationals from above and use the fact that {bn} is increasing sequence.)

So let λ := k/m for some integers k > m > 0. Let n = ms + l, where
l ∈ {0, 1, . . . ,m− 1}. We have

lim sup
n→∞

b[kn/m]

b[n]
= lim sup

s→∞

b[ks+kl/m]

b[ms+l]
6 lim sup

s→∞

b[ks+k(m−1)/m]

b[ms]

6 lim sup
s→∞

bks+k−1

bms
.

This concludes the proof. ✷

In fact, we can say a little bit more.

Corollary 3.1. If the function F (t) = b[t] satisfies condition F.1), then
it satisfies condition F.2), whenever for any integers k > m > 0, we have

lim sup
s→∞

bsk
bsm

6
k

m
.
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Theorem 2.1, gives a converse of the Stolz’ theorem if s(x) is slowly de-
creasing and F (t) satisfies condition F.1). The slow decrease condition translates
into: for every ε > 0, there is a λ > 1 and N , such that

am − am−1

bm − bm−1
− an − an−1

bn − bn−1
> −ε,

holds, whenever bN 6 bn 6 bm 6 λbn.

3.6. L’Hospital’s theorem. Let f(x) and g(x) be differentiable func-
tions on [a,∞). The classical rule of L’Hospital states that if lim

x→∞

g(x) = ∞,

g′(x) 6= 0, and

lim
x→∞

f ′(x)

g′(x)
= l

then

lim
x→∞

f(x)

g(x)
= l.

Without loss of generality, assume that f(a) = g(a) = 0. If g(x) is non-decreasing,
then this theorem is a special case of Proposition 1.2. Indeed, define

s(x) =
f ′(x)

g′(x)
, for x ≥ a

and for t ≥ 0, define

F (t) = µ(0, t] = g(t),

then

τ(t) =
1

g(t)

∫ t

a
s(x)µ(dx) =

1

g(t)

∫ t

a
f ′(t)dt =

f(t)

g(t)
.

Condition F.1) is satisfied since F (t) is continuous. Theorem 2.1, gives a converse
of the L’Hospital theorem: if f ′(x)/g′(x) is slowly decreasing with respect to g(x),
if g(x) is non-decreasing, lim

x→∞

g(x) = ∞, g′(x) 6= 0, and if

lim
x→∞

f(x)

g(x)
= l,(3.1)

then

lim
x→∞

f ′(x)

g′(x)
= l.(3.2)
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Recall that if if f ′(x)/g′(x) is increasing, then it is slowly decreasing with respect
to any F (t). Thus, we get two particular cases.

Suppose that f(x) is non-decreasing and convex, while g(x) is non-decreasing
and concave. If lim

x→∞

g(x) = ∞, g′(x) 6= 0, and if (3.1) holds, then (3.2) holds.

Suppose that f(x) is non-increasing and convex, while g(x) is non-decreasing
and convex. If lim

x→∞

g(x) = ∞, g′(x) 6= 0, and if (3.1) holds, then (3.2) holds.

3.7. Slowly decreasing does not imply convergent. This example,
exhibits a continuous function s(x) that is slowing decreasing with respect to F (x)
but has no limit as x approaches infinity. Suppose F (x) = x and s : [1,∞) → R

be defined by

s(x) =







x

22n
− 1 if x ∈ (22n, 22n+1],

− x

22n+1
+ 2 if x ∈ (22n+1, 22n+2].

Fix ε ∈ (0, 1), let λ0 = 1 + ε/2 and x0 > 1. Fix λ ∈ (1, λ0) and let x, t
satisfy x0 < x < t 6 λx, then t ∈ (x, 3x/2).

If x ∈ (22n, 22n+1] and t ∈ (22n, 22n+1], then since s(x) is increasing in
(22n, 22n+1], we have s(t)− s(x) > 0 > −ε.

If x ∈ (22n, 22n+1] and t ∈ (22n+1, 22n+2], then

s(t)− s(x) = − t

22n+1
− x

22n
+ 3 > − 1

22n

(λ

2
+ 1

)

x+ 3 > −2
(λ

2
+ 1

)

+ 3

= 1− λ = −ε

2
> −ε.

If x ∈ (22n+1, 22n+2] and t ∈ (22n+1, 22n+2], then

s(t)− s(x) = − 1

22n+1
(t− x) > − 1

22n+1
(λx− x) > − x

22n+1

ε

2
> −ε.

If x ∈ (22n+1, 22n+2] and t ∈ (22n+2, 22n+3], then since s(x) is increasing
over the latter interval, we have

s(t)− s(x) > s(22n+2)− s(x) > −ε.

So, s(x) is slowing decreasing. However, it is clear that every point in
[0, 1] is a limit point of s(x) at infinity.
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4. Proofs of the main results.
P r o o f o f T h e o r em 2.1. Fix ε > 0. The proof consists of two analo-

gous parts.
First, choose λ > 1 so that Proposition 1.3 holds. By Lemma 5.1, part (2)

for any γ ∈ (1, λ) there exists x0 such that for all x > x0, there exists t > x
satisfying

γF (x) 6 F (t) 6 λF (x).

For λx := F (t)/F (x), we have 1 < γ 6 λx 6 λ and F (t) = λxF (x). Using Lemma
5.2, part (1) (with γ := λx, t := x, and t∗ := t), we have

lim sup
x→∞

(s(x)− τ(x)) 6 lim sup
x→∞

{ λx

λx − 1
(τ(t)− τ(x))

}

+ lim sup
x→∞

{ −1

(λx − 1)F (x)

∫ t

x
[s(u)− s(x)]µ(du)

}

.

Since

1 <
λx

λx − 1
6

γ

γ − 1
and lim

x→∞

(τ(t)− τ(x)) = 0

(recall that t > x depends on x), we have

lim sup
x→∞

{ λx

λx − 1
(τ(t)− τ(x))

}

= 0.

Focusing on the integral, when u ∈ (x, t], we have

F (x) 6 F (u) 6 F (t) = λxF (x) 6 λF (x).(4.1)

Hence, by Proposition 1.3, we have s(u)− s(x) > −ε. So,

lim sup
x→∞

(s(x)− τ(x)) 6 lim sup
x→∞

{ ε

(λx − 1)F (x)

∫ t

x
µ(du)

}

= lim sup
x→∞

{ ε

(λx − 1)F (x)
[F (t)− F (x)]

}

= ε,

where we used the equality in (4.1).
Second, choose 0 < λ < 1 so that Proposition 1.3 holds with 1/λ. By

Lemma 5.1, part (4) for any γ ∈ (λ, 1) there exists x0 such that for all x > x0,
there exists t < x satisfying

λF (x) 6 F (t) 6 γF (x)(4.2)
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Set λx = F (t)/F (x), then we have λ 6 λx 6 γ < 1 and F (t) = λxF (x). Using
Lemma 5.2 part (2) (with γ := λx, t := x, and t∗ := t), we have

lim inf
x→∞

(s(x)− τ(x)) > lim inf
x→∞

{ λx

1− λx
(τ(x)− τ(t))

}

+ lim inf
x→∞

{ 1

(1− λx)F (x)

∫ x

t
[s(x)− s(u)]µ(du)

}

.

Since

0 <
λx

1− λx
6

γ

1− γ
and lim

x→∞

(τ(x)− τ(t)) = 0

(recall that t < x depends on x, but since F (x) approaches infinity as x does,
inequality (4.2) shows that t approaches infinity in that case as well), we have

lim inf
x→∞

{ λx

1− λx
(τ(x)− τ(t))

}

= 0.

Considering the integral, when u ∈ (t, x], we have

λF (x) 6 λxF (x) = F (t) 6 F (u) 6 F (x) 6 (1/λ)F (u).(4.3)

So, by Proposition 1.3, we have s(x)− s(u) > −ε. Thus,

lim inf
t→∞

(s(x)− τ(x)) > lim inf
x→∞

{ −ε

(1− λx)F (x)

∫ x

t
µ(du)

}

= lim inf
x→∞

{ −ε

(1− λx)F (x)
[F (x)− F (t)]

}

= −ε,

where we used the equality in (4.3).
Both parts of the proof, together show that

lim
x→∞

(s(x)− τ(x)) = 0

and the result follows. ✷

P r o o f o f Th e o r em 2.2. Fix ε > 0. Choose λ > 1 and x0 > a so that
Proposition 1.3 holds for F (t) = t.

Define inductively an increasing sequence {bn}∞n=1 as follows. By the
definition of statistical limit we can find a b1 such that

|s(b1)− l| 6 ε.
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Suppose, b1, . . . , bn have been chosen. Select, bn+1 according to the following two
cases.

Case 1. If

|s(t)− l| 6 ε for some t ∈ (
√
λbn, λbn],

then let bn+1 be that t. (It does not matter which one if there is a choice.)
Case 2. Otherwise, we have

|s(t)− l| > ε for every t ∈ (
√
λbn, λbn](4.4)

and by the definition of statistical limit we can find a bn+1 > λbn for which

|s(bn+1)− l| 6 ε

holds.
By construction, we have

|s(bn)− l| 6 ε for all n = 1, 2, . . .(4.5)

Since bn+1 >
√
λbn for all n, and λ > 1, we have that the sequence {bn}∞n=1

increases to infinity.
Suppose that in the constriction of the sequence, case 2 has been applied

infinitely many times. That is, (4.4) holds for infinitely many n. Then

1

λbn − a
|{t ∈ (a, λbn) : |s(t)− l| > ε}| > λbn −

√
λbn

λbn − a
=

λ−
√
λ

λ− a/bn

>
1

2

λ−
√
λ

λ
> 0

is a contradiction with the fact that the statistical limit of s(x) is l. So, there is
an N , such that for all n > N , we have

bn+1 ∈ (
√
λbn, λbn].

Next, for any t ∈ (bn, bn+1], n > N , we have

bn 6 t 6 bn+1 6 λbn 6 λt.

Thus, by Proposition 1.3, bn 6 t 6 λbn implies s(t)− s(bn) > −ε, which together
with (4.5) gives

s(t)− l > s(t)− s(bn) + s(bn)− l > −2ε.
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Similarly, by Proposition 1.3, t 6 bn+1 6 λt implies s(bn+1) − s(t) > −ε, which
together with (4.5) gives

s(t)− l > s(t)− s(bn+1) + s(bn+1)− l 6 2ε.

So, |s(t) − l| 6 2ε for every t ∈
∞
⋃

n=N

(bn, bn+1], and using the fact that {bn}∞n=1

increases to infinity, concludes the proof. ✷

P r o o f o f T h e o r em 2.3. We prove that if s(x) is slowly decreasing,
then τ(t) is also slowly decreasing. For any x0 6 x 6 t, one estimates

τ(t)− τ(x) =
1

F (t)

∫ t

a
s(u)µ(du)− 1

F (x)

∫ x

a
s(u)µ(du)

= −
( 1

F (x)
− 1

F (t)

)

∫ x

a
s(u)µ(du) +

1

F (t)

∫ t

x
s(u)µ(du)

+
( 1

F (x)
− 1

F (t)

)

∫ x

a
s(x)µ(du)− 1

F (t)

∫ t

x
s(x)µ(du)

=
( 1

F (x)
− 1

F (t)

)

∫ x

a

(

s(x)− s(u)
)

µ(du)

+
1

F (t)

∫ t

x

(

s(u)− s(x)
)

µ(du)

=
( 1

F (x)
− 1

F (t)

)(

∫ x0

a
+

∫ x

x0

)

(

s(x)− s(u)
)

µ(du)

+
1

F (t)

∫ t

x

(

s(u)− s(x)
)

µ(du)

=
( 1

F (x)
− 1

F (t)

)

s(x)F (x0)

−
( 1

F (x)
− 1

F (t)

)

∫ x0

a
s(u)µ(du)

+
( 1

F (x)
− 1

F (t)

)

∫ x

x0

(

s(x)− s(u)
)

µ(du)

+
1

F (t)

∫ t

x

(

s(u)− s(x)
)

µ(du)

=: J1 + J2 + J3 + J4.

We consider each one of the expressions Ji, i = 1, 2, 3, 4, separately.
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Considering J1, we have

J1 =
( 1

F (x)
− 1

F (t)

)

xF (x0)
s(x)

x
.

so, by Lemma 5.3, keeping in mind that x ≤ t, we have

lim inf
x→∞

J1 > 0.

Considering J2, we have

|J2| =
( 1

F (x)
− 1

F (t)

)
∣

∣

∣

∫ x0

a
s(u)µ(du)

∣

∣

∣

6

( 1

F (x)
− 1

F (t)

)

∫ x0

a
|s(u)|µ(du).

Since the integral does not depend on x and t, we see that

lim
x→∞

J2 = 0.

Considering J3, fix ε > 0 and let λ0 > 1 and x0 be such that Proposition 1.3
holds. Decrease λ0 > 1, if necessary, so that Lemma 5.6 holds. That is, for any
λ ∈ (1, λ0) any γ ∈ (1/λ, 1) and any θ ∈ (γ, 1), there is an x0 such that for any
x and t satisfying

λF (x0) < F (x) ≤ F (t) ≤ λF (x),(4.6)

we have

J3 > −
( 1

F (x)
− 1

F (t)

)

F (x)
(

− 2γ

log(θ)
log(λ)− 2γ

log(θ)
+ 1− 1

λ

)

ε

= −
(

1− F (x)

F (t)

)(

− 2γ

log(θ)
log(λ)− 2γ

log(θ)
+ 1− 1

λ

)

ε

> −
(

1− 1

λ

)(

− 2γ

log(θ)
log(λ)− 2γ

log(θ)
+ 1− 1

λ

)

ε.

=
λ− 1

log(θ)

2γ

λ
(log(λ) + 1)ε −

(

1− 1

λ

)2
ε.(4.7)

Now, for any λ ∈ (1, λ0) let

γ :=
1 + 1/λ

2
=

λ+ 1

2λ
and θ :=

1 + γ

2
=

3λ+ 1

4λ
.
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It is trivial to check that γ ∈ (1/λ, 1) and θ ∈ (γ, 1), so there is an x0 such that
(4.7) holds, whenever x and t satisfy (4.6). Next, it is simple calculus verification
that the following inequality holds

θ =
3λ+ 1

4λ
6

( 9

10

)λ−1
for all λ ∈ [1, 2].

Thus, (λ− 1)/ log(θ) > 1/ log(0.9) for all λ ∈ [1, 2]. Substituting the expressions
for γ and θ into (4.7), we obtain

J3 >
1

log(0.9)

λ+ 1

λ2
(log(λ) + 1)ε −

(

1− 1

λ

)2
ε > −

(

− 2

log(0.9)
+ 1

)

ε

> −20ε,

using the fact that (λ + 1)(log(λ) + 1)/λ2 is a decreasing function in λ > 1 and
so it achieves its maximum at λ = 1.

To summarise, we showed that for every λ ∈ (1, λ0), there is a x0 such
that for any x, t satisfying (4.6), we have

J3 > −20ε.

Considering J4, let ε > 0, λ0 > 1, and x0 be chosen as in the previous
case and let x and t satisfy F (x0) 6 F (x) 6 F (t) 6 λF (x). For any u ∈ (x, t],
we have

F (x0) 6 F (x) 6 F (u) 6 F (t) 6 λF (x)

so Proposition 1.3 implies s(u)− s(x) > −ε. Hence,

J4 =
1

F (t)

∫ t

x

(

s(u)− s(x)
)

µ(du) > − ε

F (t)

∫ t

x
µ(du) = − ε

F (t)

(

F (t)− F (x)
)

= −
(

1− F (x)

F (t)

)

ε > −
(

1− 1

λ

)

ε > −ε.

In conclusion, for all x > x0, we have

τ(t)− τ(x) = J1 + J2 + J3 + J4 > −23ε,

whenever F (x0) 6 F (x) 6 F (t) 6 λF (x). This concludes the proof. ✷
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5. Appendix: Auxiliary results.

Lemma 5.1. Under the assumption lim
x→∞

F (x) = ∞, the following con-

ditions are equivalent.

1. lim
x→∞

F (x)/F (x−) = 1.

2. For all λ > 1 sufficiently close to one and any γ ∈ (1, λ), there exists x0, such
that for every x > x0, there exists t > x satisfying

γF (x) 6 F (t) 6 λF (x).

3. For all λ > 1 sufficiently close to one, there exists γ ∈ (1, λ] and x0, such that

for every x > x0, there exists t > x satisfying

γF (x) 6 F (t) 6 λF (x).

4. For all λ < 1 sufficiently close to one and any γ ∈ (λ, 1), there exists x0, such
that for every x > x0, there exists t < x satisfying

λF (x) 6 F (t) 6 γF (x).

5. For all λ < 1 sufficiently close to one, there exists γ ∈ [λ, 1) and x0, such that

for every x > x0, there exists t < x satisfying

λF (x) 6 F (t) 6 γF (x).

P r o o f. (1) ⇒ (2). Fix λ > 1, any γ ∈ (1, λ), and let ε := λ/γ − 1. Since
(1) is equivalent to

lim
x→∞

F (x)− F (x−)

F (x−)
= 0,

there exists x1, such that for all x > x1, we have F (x) − F (x−) 6 εF (x−). Let
x0 be so large that for all x > x0, we have

t := sup{y : F (y) 6 γF (x)} > x1.

(This is possible, since lim
x→∞

F (x) = ∞.) On the one hand, using the right-

continuity of F at t, we obtain F (t) > γF (x) > F (x). This implies that t > x,
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since F is non-decreasing. On the other hand, we have F (t−) 6 γF (x). Since
t > x1, we have F (t)− F (t−) 6 εF (t−). Hence,

F (t) 6 F (t−) + εF (t−) 6 (1 + ε)γF (x) = λF (x).

(2) ⇒ (3). Trivial.

(3) ⇒ (1). Suppose that for all λ > 1 sufficiently close to one, there exists
γ ∈ (1, λ] and x0, such that for every x > x0, there exists t > x satisfying

γF (x) 6 F (t) 6 λF (x).

We claim that for every x > x0, there is a t ≥ x such that

F (t) 6 λF (x−).(5.1)

Indeed, fix an x > x0. For all large enough n, there is a tn > x− 1/n such that

γF (x− 1/n) 6 F (tn) 6 λF (x− 1/n) 6 λF (x−).(5.2)

Since lim
x→∞

F (x) = ∞, the sequence {tn} is bounded. Hence, it has an accumu-

lation point, call it t∗. Without loss of generality, or else choose a subsequence,
assume {tn} converges to t∗. Clearly, t∗ ≥ x. Again, by choosing a subsequence,
we may assume that {tn} is a monotone sequence.

If {tn} is a decreasing sequence, then by the right-continuity of F , we
obtain

γF (x−) 6 F (t∗) 6 λF (x−)

and, taking t := t∗, we are done.

If {tn} is an increasing sequence, then taking the limit in all sides of (5.2),
we obtain

γF (x−) 6 F (t∗−) 6 λF (x−).

In this case, we must have t∗ > x, or else we reach a contradiction with γ > 1.
Now, simply take t ∈ (x, t∗) to obtain

F (t) 6 F (t∗−) 6 λF (x−)

concluding the proof of the claim.

Thus, for every x > x0, there is a t ≥ x such that (5.1) holds, implying
that

F (x)− F (x−) 6 F (t)− F (x−) 6 (λ− 1)F (x−).
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Therefore,

0 6 lim inf
x→∞

F (x)− F (x−)

F (x−)
6 lim sup

x→∞

F (x)− F (x−)

F (x−)
6 λ− 1.

Letting λ approach one, one obtains (1).
(1) ⇒ (4). Fix λ ∈ (0, 1), any γ ∈ (λ, 1), and let ε = γ − λ. Since (1) is

equivalent to

lim
x→∞

F (x)− F (x−)

F (x)
= 0,

there exists x1, such that for all x > x1, we have F (x)−F (x−) 6 εF (x). Let x0
be so large that for all x > x0, we have

t := sup{y : F (y) 6 λF (x)} > x1.

(This is possible, since lim
x→∞

F (x) = ∞.) Then, we have F (t) > λF (x) and

F (t−) 6 λF (x) < F (x). The latter implies that x > t and hence F (t) 6 F (x).
Combining everything, leads to

F (t)− F (t−) 6 εF (t) 6 (γ − λ)F (x).

Thus,
F (t) 6 γF (x) + F (t−)− λF (x) 6 γF (x) < F (x),

and so t < x.
(4) ⇒ (5). Trivial.
(5) ⇒ (1). For all λ < 1 sufficiently close to one, there exists γ ∈ [λ, 1)

and x0, such that for every x > x0, there exists t < x satisfying

λF (x) 6 F (t) 6 γF (x).

Since F (t) 6 F (x−), we obtain

F (x)− F (x−) 6 F (x)− F (t) 6 (1− λ)F (x).

Dividing by F (x) leads to

0 6 lim inf
x→∞

F (x)− F (x−)

F (x)
6 lim sup

x→∞

F (x)− F (x−)

F (x)
6 1− λ.

Letting λ approach one, we get lim
x→∞

(F (x) − F (x−))/F (x) = 0, which is easily

seen to be equivalent to (1). ✷



Tauberian theorems for the mean of Lebesgue-Stieltjes integrals 313

Lemma 5.2. Let s(x) and τ(t) be as in Definition 1.2.

1. Suppose for t > a and γ > 1, there exists t∗ with the property F (t∗) = γF (t).
Then, we have

(5.3) s(t)− τ(t) =
γ

γ − 1
(τ(t∗)− τ(t))− 1

(γ − 1)F (t)

∫ t∗

t
[s(u)− s(t)]µ(du).

2. Suppose for t > a and 0 < γ < 1, there exists t∗ with the property F (t∗) =
γF (t). Then, we have

(5.4) s(t)− τ(t) =
γ

1− γ
(τ(t) − τ(t∗)) +

1

(1− γ)F (t)

∫ t

t∗
[s(t)− s(u)]µ(du).

P r o o f. We prove the first part only since the proof of the second one is
similar.

Note that t > a, γ > 1 and F (t∗) = γF (t), imply t∗ > t. Then, we have

γ

γ − 1
(τ(t∗)− τ(t)) =

γ

γ − 1

{ 1

F (t∗)

∫ t∗

a
s(u)µ(du)− 1

F (t)

∫ t

a
s(u)µ(du)

}

=
γ

γ − 1

{ 1

γF (t)

∫ t∗

a
s(u)µ(du) − γ

γF (t)

∫ t

a
s(u)µ(du)

}

=
1

γ − 1

{1− γ

F (t)

∫ t

a
s(u)µ(du) +

1

F (t)

∫ t∗

t
s(u)µ(du)

}

= −τ(t) +
1

(γ − 1)F (t)

∫ t∗

t
s(u)µ(du)

= −τ(t) +
1

(γ − 1)F (t)

∫ t∗

t
[s(u)− s(t)]µ(du)

+
s(t)

(γ − 1)F (t)

∫ t∗

t
µ(du)

= s(t)− τ(t) +
1

(γ − 1)F (t)

∫ t∗

t
[s(u)− s(t)]µ(du).

So, Equation (5.3) holds. ✷

Lemma 5.3. Suppose s(x) is slowly decreasing with respect to F (t). If

F (t) satisfies conditions F.1) and F.2), then

lim inf
x→∞

s(x)

x
> 0.
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P r o o f. Let ε := 1 and fix λ0 > 1 and x0 > a whose existence is guar-
anteed by Proposition 1.3. Decrease λ0 > 1, if necessary, so that condition F.2)
holds for all λ ∈ (1, λ0). Decrease λ0 > 1 even further, if necessary, so that
Lemma 5.1, part (2), holds for every λ ∈ (1, λ0) and every γ ∈ (1, λ). Fix such
a λ and γ. Increase x0 so that the conclusion of Lemma 5.1, part (2), holds.
Fix an η ∈ (0, λ − γ) and increase x0 so that by condition F.2) (applied with
λ := γ − η ∈ (1, λ0)) wet have

γF (x) = ((γ − η) + η)F (x) > F ((γ − η)x)(5.5)

for every x > x0.

We construct an increasing sequence {bn} starting with any b0 > x0.
Suppose b0, . . . , bn have been constructed, then by Lemma 5.1, part (2), since
bn > x0, there is a bn+1 > bn such that

γF (bn) 6 F (bn+1) 6 λF (bn).

Thus we have

F (x0) 6 F (bn) 6 F (bn+1) 6 λF (bn) for all n = 0, 1, 2, . . .

and Proposition 1.3 guarantees that

s(bn)− s(b0) = (s(bn)− s(bn−1)) + (s(bn−1)− s(bn−2))

+ · · ·+ (s(b1)− s(b0)) > −n.

So,
s(bn)

bn
>

s(b0)

bn
− n

bn
.

Observing that F (bn) > γF (bn−1) > · · · > γnF (b0), we have

F (bn) > γnF (b0) = γn−1
(

γF (b0)
)

> γn−1F ((γ − η)b0)

= γn−2
(

γF ((γ − η)b0)
)

> γn−2F ((γ − η)2b0) > · · · > F ((γ − η)nb0).

This shows that bn > (γ − η)nb0 and in particular that the sequence {bn} ap-
proaches infinity exponentially. Hence, we can estimate

lim
n→∞

n

bn
6 lim

n→∞

n

(γ − η)nb0
= 0.
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So,

lim inf
n→∞

s(bn)

bn
> lim

n→∞

(s(b0)

bn
− n

bn

)

= 0.

Suppose {xn} is an increasing sequence, approaching infinity, such that

lim
n→∞

s(xn)

xn
= L.

We show that L > 0 by constructing appropriate subsequences of {bn} and {xn},
inductively, as follows.

Let p1 be the index such that bp1 < x1 6 bp1+1, set n1 = 1. Assume that
indices p1, . . . , pk−1 and n1, . . . , nk−1 have been chosen. Let nk be the first index
such that xnk

/∈ (bpk−1
, bpk−1+1] and let pk be the index such that bpk < xnk

6

bpk+1.
For the so-chosen subsequences {bpk} and {xnk

}, we have

F (bpk) 6 F (xnk
) 6 F (bpk+1) 6 λF (bpk).

Thus, s(xnk
)− s(bpk) > −1 and

s(xnk
)

xnk

>
s(bpk)

xnk

− 1

xnk

>
s(b0)− pk

xnk

− 1

xnk

>
s(b0)

xnk

− pk
bpk

− 1

xnk

.

Since bpk > (γ − η)pkb0, we have

0 6
pk
bpk

6
pk

(γ − η)pkb0
,

where the last ratio converges to zero as k approaches infinity. So,

L = lim
k→∞

s(xnk
)

xnk

> lim
k→∞

(s(x0)

xnk

− pk
bpk

− 1

xnk

)

= 0.

This concludes the proof of the lemma. ✷

Lemma 5.4. Suppose s(x) is slowly decreasing with respect to F (x) and
suppose F (x) satisfies condition F.1). Then, for every ε > 0, there is a γ0 < 1,
such that for any γ ∈ (γ0, 1) and any θ ∈ (γ, 1) there exists an x0, such that

(5.6) s(t)− s(x) >
2ε

log(θ)
log

( F (t)

F (x)

)

holds, whenever x and t satisfy F (x0) 6 F (x) < γF (t).
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P r o o f. Fix ε > 0. Let γ0 < 1 be such that Proposition 1.3 holds (with
λ0 := 1/γ0). Increase γ0 < 1, if necessary, so that Lemma 5.1, part (4) holds
(with λ := γ0). Note that, by increasing γ0, Proposition 1.3 continues to hold.

Now, choose any γ ∈ (γ0, 1) and any θ ∈ (γ, 1) and choose x0 large enough
so that both the condition in Proposition 1.3 (with λ := 1/γ) and the condition
in Lemma 5.1, part (4), (with λ := γ and γ := θ) hold.

Fix x > x0 and t satisfying

F (x0) 6 F (x) < γF (t)(5.7)

and note that x0 6 x < t. We want to show that (5.6) holds.

Define a decreasing sequence {tn}∞n=0 inductively as follows. Let t0 := t
and suppose tn < · · · < t0 = t have been defined. Lemma 5.1, part (4) (applied
with λ := γ, γ := θ, x := tn) says that if x0 < tn, then there exists a tn+1 < tn,
such that

γF (tn) 6 F (tn+1) 6 θF (tn).(5.8)

Since, F (tn+1) 6 θn+1F (t0) and θ < 1, there is an index m such that

tm+1 6 x < tm.

That is, n := m is the largest index for which (5.8) is guaranteed to hold. We
have

F (x) 6 F (tm) 6 (1/γ)F (tm+1) 6 (1/γ)F (x), and(5.9)

F (tn+1) 6 F (tn) 6 (1/γ)F (tn+1) for all n = 0, 1, . . . ,m.(5.10)

Proposition 1.3, together with (5.9), implies

s(tm)− s(x) > −ε,

while Proposition 1.3, together with (5.10), implies

s(tn)− s(tn+1) > −ε for all n = 0, 1, . . . ,m.

Hence,

s(t)− s(x) =
m−1
∑

n=0

(s(tn)− s(tn+1)) + s(tm)− s(x) > −(m+ 1)ε.(5.11)
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Next, since F (x) 6 F (tm) 6 θmF (t0) = θmF (t), one obtains

m 6 − 1

log(θ)
log

( F (t)

F (x)

)

.

Inequality (5.7) implies that log(1/γ) < log(F (t)/F (x)), and so

1 <
1

log(1/γ)
log

( F (t)

F (x)

)

< − 1

log(θ)
log

( F (t)

F (x)

)

,

where γ < θ < 1 was also used. Therefore, we have

m+ 1 < − 2

log(θ)
log

( F (t)

F (x)

)

.

Substituting in (5.11), completes the proof of (5.6). ✷

For the next lemma we need some technical preparations about the Lebegue-
Stieltjes integral. For the right-continuous, increasing function F (x), define its
generalized inverse by

F−1(y) := sup{x : F (x) < y}

for all y ∈ (0,∞). If F (x) is the cumulative distribution function of a probability
measure, then F−1(y) is also known as the quantile function. It is not difficult to
show that

F (F−1(y)) ≥ y for all y ∈ (0,∞).(5.12)

The following lemma is proved in [2, Lemma 2.2].

Lemma 5.5. Any non-decreasing, right-continuous functions F (x) and

G(x) satisfy
∫ b

a
G(x)dF (x) =

∫ F (b)

F (a)
G(F−1(y))dy.

Lemma 5.6. Suppose s(x) is slowly decreasing with respect to F (x) and
suppose F (x) satisfies condition F.1). Then, for every ε > 0, there is a λ0 > 1,
such that for any λ ∈ (1, λ0) any γ ∈ (1/λ, 1) and any θ ∈ (γ, 1), there is an x0,
such that

(5.13)
1

F (t)

∫ t

x0

[s(t)− s(x)]µ(dx) > −
(

− 2γ

log(θ)
log(λ)− 2γ

log(θ)
+ 1− 1

λ

)

ε,

whenever F (t) > λF (x0).
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P r o o f. Fix ε > 0. Let γ0 < 1 be such that Lemma 5.4 holds. Choose,
λ0 > 1 such that Proposition 1.3 holds. Decrease λ0 > 1, if necessary, so that
γ0 < 1/λ0; and Lemma 5.1, part (4) holds (with λ := 1/λ0). Note that by
decreasing λ0 > 1 Proposition 1.3 continues to hold.

Now fix any λ ∈ (1, λ0), any γ ∈ (1/λ, 1), and any θ ∈ (γ, 1). Note that
Proposition 1.3 continues to hold for the chosen λ. Since γ0 < 1/λ0 < 1/λ < γ <
1, we have that γ ∈ (γ0, 1), so Lemma 5.4 holds for the chosen γ and θ. Finally,
since 1/λ ∈ (1/λ0, 1) and γ ∈ (1/λ, 1), Lemma 5.1, part (4) with 1/λ < 1 and γ.

Thus, one can choose x0 large enough, so that all three results hold for
that x0 and their respective parameters.

Next, fix t satisfying

F (t) > λF (x0)

and note that t > x0.
By Lemma 5.1, part (4), there exists t∗ < t, such that

F (x0) < (1/λ)F (t) 6 F (t∗) 6 γF (t).(5.14)

This implies x0 < t∗ < t, and we have

∫ t

x0

[s(t)− s(x)]µ(dx) =
(

∫ t∗

x0

+

∫ t

t∗

)

[s(t)− s(x)]µ(dx) =: I1 + I2.

Considering I2, for any x ∈ [t∗, t], we have

(1/λ)F (t) 6 F (t∗) 6 F (x) 6 F (t) 6 λF (t∗) 6 λF (x).

Thus, by Proposition 1.3, we have s(t)− s(x) > −ε and so,

1

ε
I2 > −

∫ t

t∗
µ(dx) = −F (t) + F (t∗) > −F (t)

(

1 +
1

λ

)

.(5.15)

Considering I1, for any x ∈ [x0, t
∗], we have

F (x0) 6 F (x) 6 F (t∗) 6 γF (t),

where in the last inequality we used (5.14). By Lemma 5.4, and using the defini-
tion µ(dx) = dF (x), we obtain

1

ε
I1 >

2

log(θ)

∫ t∗

x0

log
( F (t)

F (x)

)

dF (x)
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=
2

log(θ)
log(F (t))

∫ t∗

x0

µ(dx)− 2

log(θ)

∫ t∗

x0

log(F (x))dF (x)

=
2

log(θ)
log(F (t))[F (t∗)− F (x0)]−

2

log(θ)

∫ t∗

x0

log(F (x))dF (x)

Consider the last integral separately. By Lemma 5.5 and inequality (5.12), we
have

∫ t∗

x0

log(F (x))dF (x) =

∫ F (t∗)

F (x0)
log(F (F−1(y)))dy >

∫ F (t∗)

F (x0)
log(y)dy

= F (t∗) log(F (t∗))− F (x0) log(F (x0))−
∫ F (t∗)

F (x0)
1dy

= F (t∗) log(F (t∗))− F (x0) log(F (x0))− F (t∗) + F (x0).

Using (5.14), we continue

∫ t∗

x0

log(F (x))dF (x)

> F (t∗) log(F (t)/λ) − F (x0) log(F (x0))− γF (t) + F (x0)

= F (t∗) log(F (t)) − F (t∗) log(λ)− F (x0) log(F (x0))

− γF (t) + F (x0)

> F (t∗) log(F (t)) − γF (t) log(λ)− F (x0) log(F (x0))

− γF (t) + F (x0).

Putting everything together, we obtain the following bound. We use the fact that
log(θ) < 0 and (5.14).

1

ε
I1 >

2

log(θ)

(

γF (t) log(λ) + F (x0) log(F (x0))

+ γF (t)− F (x0)− F (x0) log(F (t))
)

>
2

log(θ)

(

γF (t) log(λ) + F (x0) log(F (x0))

+ γF (t)− F (x0)− F (x0) log(λF (x0))
)

>
2

log(θ)

(

γF (t) log(λ) + γF (t)− F (x0)− F (x0) log(λ)
)

> −F (t)
(

− 2γ

log(θ)
log(λ)− 2γ

log(θ)

)

.
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Combining with (5.15) one obtains (5.13). ✷
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