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Abstract. Conditions for existence an almost η-Ricci soliton in an ori-
entable hypersurface M which is isometrically embedded in an Euclidian
space are determined and in the existence case, under certain conditions,
conclusions on the principal curvatures are formulated. Some rigidity re-
sults in the compact case are also obtained.

1. Introduction. Let g be a Riemannian metric on the n-dimensional
manifold M , Ric its Ricci curvature tensor field, £V the Lie derivative in the
direction of the vector field V , η a 1-form and λ and µ are smooth functions on
M . Then the data (V, λ, µ) which satisfy the equation

(1)
1

2
£V g +Ric = λg + µη ⊗ η

is said to be an almost η-Ricci soliton on (M,g) [1]; in particular, if λ and µ are
constants, then (V, λ, µ) is an η-Ricci soliton [4], if µ = 0, (V, λ) is an almost
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Ricci soliton [7], respectively a Ricci soliton [6] if λ is a function, respectively
a constant. The soliton is called shrinking, steady or expanding according as λ

is positive, zero or negative, respectively [5]. If the potential vector field V is
of gradient type, V = grad(f), for f a smooth function on M , then (V, λ, µ) is
called gradient almost η-Ricci soliton.

2. Almost η-Ricci solitons on hypersurfaces of (Rn

, g). Let
M →֒ R

n be an orientable hypersurface isometrically immersed into (Rn, g).
Denote by ϕ : M → R

n the immersion and by N the unit normal vector field to
M . Therefore, we can express ϕ (the position vector field of a point of M in R

n)
as ϕ = T + ρN , where T ∈ X(M) and ρ = g(ϕ,N) is the support function of the
hypersurface M .

Denoting also by g the Riemannian metric induced on M , by ∇M and
∇ the Levi-Civita connections on (M,g) and (Rn, g) respectively, the Gauss and
Weingarten formulas corresponding to M are given by:

(2) ∇XY = ∇M
X Y + h(X,Y ),

(3) ∇XN = −ANX,

where h is the (symmetric) second fundamental tensor corresponding to N and
AN is the shape operator (or the Weingarten map) in the direction of the normal
vector field N defined by g(ANX,Y ) = g(h(X,Y ), N), for X, Y ∈ X(M).

Similarly to [8], we will provide a necessary and sufficient condition to ex-
ist an almost η-Ricci soliton on an orientable hypersurface isometrically immersed
into (Rn, g).

Theorem 2.1. Let M be an orientable hypersurface isometrically im-
mersed into (Rn, g), V a vector field on M and η the g-dual of V . If η is closed
(in particular, if V is a gradient vector field), then M admits an almost η-Ricci
soliton with the potential vector field V if and only if there exist two smooth
functions λ and µ on M such that:

(4) A2
N − (n − 1)αAN −∇MV + λIX(M) + µη ⊗ V = 0,

where α is the mean curvature function.

P r o o f. From (2), taking into account that the Ricci curvature of Rn is
zero, we obtain the Ricci curvature tensor field of M given by:

(5) RicM (X,Y ) = trace(AN )g(ANX,Y )− g(A2
NX,Y ),
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for any X, Y ∈ X(M).
Also, from dη = 0 we get g(∇XV, Y ) = g(∇Y V,X), for anyX, Y ∈ X(M),

hence
1

2
£V g(X,Y ) = g(∇M

X V, Y ),

for any X, Y ∈ X(M).
We conclude that on M there exists an almost η-Ricci soliton with the

potential vector field V and η the g-dual of V if there exist two smooth functions
λ and µ on M such that:

1

2
£V g(X,Y ) + RicM (X,Y )− λg(X,Y )− µη(X)η(Y ) = 0,

for any X, Y ∈ X(M), which is equivalent to

g(∇M
X V + (n− 1)αANX −A2

NX − λX − µη(X)V, Y ) = 0,

for any X, Y ∈ X(M) from where we get the conclusion. ✷

Corollary 2.2. Let M be an orientable hypersurface isometrically im-
mersed into (Rn, g), V a vector field on M and η the g-dual of V . If V is a
concircular vector field on M (i.e. ∇MV = aIX(M), for a ∈ C∞(M)), then M

admits an almost η-Ricci soliton with the potential vector field V if and only if
there exist two smooth functions λ and µ on M such that:

(6) A2
N − (n− 1)αAN − (a− λ)IX(M) + µη ⊗ V = 0.

Also from Theorem 2.1 we deduce:

Corollary 2.3. If M is an orientable hypersurface isometrically im-
mersed into (Rn, g) admitting an almost η-Ricci soliton (V, λ, µ) with V = grad(f),
for f ∈ C∞(M) and η the g-dual of V , then:

(7) trace(A2
N )− (n− 1)2α2 = ∆(f)− (n− 1)λ− µ| grad(f)|2.

Proposition 2.4. Let M be an orientable hypersurface isometrically im-
mersed into (Rn, g), V a vector field on M and η the g-dual of V . If V = grad(ρ)
with respect to the induced metric on M , then M admits an almost η-Ricci soliton
with the potential vector field V if and only if there exist two smooth functions λ

and µ on M such that:

(8) (∇M
X AN )T + (ρ+1)A2

NX + [1− (n− 1)α]ANX + λX + µX(ρ) grad(ρ) = 0,

for any X ∈ X(M).
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P r o o f. Since

1

2
(£V g)(X,Y ) = Hess(ρ)(X,Y ) := g(∇M

X grad(ρ), Y ) = −g(∇M
X (ANT ), Y ) =

= −g((∇M
X AN )T +AN (∇M

X T ), Y ) = −g((∇M
X AN )T +ANX + ρA2

NX,Y ),

using (5) we deduce that there exists an almost η-Ricci soliton on M given by
(V, λ, µ) if and only if (8) holds. ✷

Assume now that U is a concircular vector field on R
n i.e. ∇U = aIX(Rn),

for a ∈ C∞(Rn) (in particular, if a = 1, we call U concurrent vector field). Then
for any X ∈ X(M):

aX = ∇X(UT + U⊥) = ∇M
X UT − g(UT , N)ANX + h(X,UT ) +X(g(UT , N))N

which implies

(9) ∇M
X UT = aX + g(UT , N)ANX,

for any X ∈ X(M).
A similar result as in the Ricci soliton case [2], [3] can be proved for almost

η-Ricci solitons.

Proposition 2.5. Let M be an orientable hypersurface isometrically im-
mersed into (Rn, g). If U is a concircular vector field on R

n with ∇U = aIX(Rn),
for a ∈ C∞(Rn), then M admits an almost η-Ricci soliton with the potential
vector field UT , for η the g-dual of UT , if and only if there exist two smooth
functions λ and µ on M such that:

(10) RicM (X,Y ) = −(a− λ)g(X,Y ) + µg(X,UT )g(Y,UT )

− g(U⊥, N)g(ANX,Y ),

for any X, Y ∈ X(M).

P r o o f. Computing
1

2
(£UT g)(X,Y ) =

1

2
[g(∇M

X UT , Y ) + g(∇M
Y UT ,X)]

and using (9) we deduce that there exists an almost η-Ricci soliton on M given
by (UT , λ, µ) if and only if (10) holds. ✷

From (5) and Proposition 2.5 we conclude:

Corollary 2.6. Under the hypotheses of Proposition 2.5, M admits an
almost η-Ricci soliton with the potential vector field UT , for η the g-dual of UT ,
if and only if there exist two smooth functions λ and µ on M such that:

(11) A2
NX − [(n− 1)α+ g(U⊥, N)]ANX − (a− λ)X + µg(X,UT )UT = 0,

for any X ∈ X(M).
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Theorem 2.7. Let M be an orientable hypersurface isometrically im-
mersed into (Rn, g) and U a concircular vector field on R

n with ∇U = aIX(Rn),

for a ∈ C∞(Rn). Assume that M admits an almost η-Ricci soliton (UT , λ, µ),
for η a 1-form on M . If there exists i0 ∈ {1, . . . , n− 1} such that:

(12) λ+ µη(ei0) <
[(n− 1)α + g(U,N)]2

4
+ a,

for {e1, . . . , en−1} a local orthonormal frame field on M , N the unit normal vector
field to M and α the mean curvature function, then M has exactly two distinct
principal curvatures given by:

(13) k1,2=
(n− 1)α + g(U,N)±

√

[(n − 1)α + g(U,N)]2 + 4[a− λ− µ(η(ei0))
2]

2
.

P r o o f. Writing the Gauss-Codazzi equation

g(RM (X,Y )Z,W ) = g(R(X,Y )Z,W )+g(h(X,W ), h(Y,Z))−g(h(X,Z), h(Y,W ))

for X := ej and W := ej with {e1, . . . , en−1} a local orthonormal frame field on
M and summing over j we get:

RicM (Y,Z) = (n− 1)αg(h(Y,Z), N) −
n−1
∑

j=1

g(h(ej , Y ), h(ej , Z)),

where
1

n− 1

n−1
∑

j=1

h(ej , ej) = αN with α the mean curvature function. Denoting

by ki the eigenvalues of AN corresponding to ei, by replacing RicM from the
previous relation into the soliton equation computed in (ei, ei), we obtain:

k2i − (n− 1)αki + λ+ µ(η(ei))
2 − g(∇eiU

T , ei) = 0

and using the Gauss andWeingarten formulas (2) and (3) we get that the principal
curvatures satisfy the equation:

k2i − [(n− 1)α+ g(U,N)]ki − a+ λ+ µ(η(ei))
2 = 0. ✷

Remark 2.8. If M is an orientable hypersurface isometrically immersed

into (Rn, g), V a conformal Killing vector field on M (i.e.
1

2
£V g = fg, for f

a smooth function on M) and η the g-dual of V , then M admits an almost η-
Ricci soliton with the potential vector field V if and only if M is quasi-Einstein
manifold.



366 A. M. Blaga

3. The compact case. If M is a compact orientable hypersurface
isometrically immersed into (Rn, g), from Hodge decomposition theorem we know
that any vector field V on M can be decomposed into a gradient vector field and
a divergence-free vector field i.e.

V = grad(f) + V0,

with f a smooth function on M and V0 ∈ X(M) with div(V0) = 0.

Theorem 3.1. Let M be a compact orientable hypersurface isometrically
immersed into (Rn, g), n ≥ 3, and (V, λ, µ) an almost η-Ricci soliton on M with
V = grad(f) + V0, div(V0) = 0 and η = df the g-dual of grad(f). Then:

(14)

∫

M

α2 ≥
1

n− 2

∫

M

λ+
1

(n− 2)(n − 1)

∫

M

µ| grad(f)|2,

where α is the mean curvature function.

P r o o f. In this case, the soliton equation for (V, λ, µ) is equivalent to:

(15) Hess(f)(X,Y ) +
1

2
[g(∇M

X V0, Y ) + g(∇M
Y V0,X)]

+ RicM (X,Y )− λg(X,Y )− µη(X)η(Y ) = 0,

for any X, Y ∈ X(M) which by taking the trace gives:

(16) ∆(f) + scalM −(n− 1)λ− µ

n−1
∑

i=1

(η(ei))
2 = 0,

for {e1, . . . , en−1} a local orthonormal frame field on M . Since

scalM = (n − 1)2α2 − |AN |2

in the case when η = df is the g-dual of grad(f), (16) becomes:

(17) ∆(f) + (n− 1)2α2 − |AN |2 − (n− 1)λ− µ| grad(f)|2 = 0

and by Schwarz inequality |AN |2 ≥ (n− 1)α2:

∆(f) + (n− 2)(n − 1)α2 ≥ (n− 1)λ+ µ| grad(f)|2

which by integrating on M gives:
∫

M

α2 ≥
1

n− 2

∫

M

λ+
1

(n− 2)(n − 1)

∫

M

µ| grad(f)|2. ✷
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Remark 3.2. i) If α and | grad(f)| =: k are constant, for the η-Ricci
soliton case we get the inequality:

α2 ≥
1

n− 2

(

λ+
k2µ

n− 1

)

which for the steady η-Ricci soliton becomes:

µ ≤
(n− 2)(n − 1)

k2
α2.

ii) If M is totally geodesic submanifold, from (17) we get the Poisson
equation:

∆(f) = (n− 1)λ+ µ| grad(f)|2

which by integration gives:
∫

M

µ| grad(f)|2 = −(n− 1)

∫

M

λ

and we conclude that there are no steady almost η-Ricci soliton.

Example 3.3. Let M be the sphere Sn−1(1) isometrically immersed into

R
n by ϕ : Sn−1(1) → R

n. Taking f :=
1

2
|ϕ|2 and V := grad(f), the data (V, 0, µ)

with µ = n− 2 defines a steady η-Ricci soliton on Sn−1(1), where η = df .
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