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Abstract. The notions of extensional (and other kinds) 3-precontact and
3-contact spaces are introduced. Using them, new representation theorems
for precontact and contact algebras, satisfying some additional axioms, are
proved. They incorporate and strengthen both the discrete and topological
representation theorems from [11, 6, 7, 12, 22]. It is shown that there are
bijective correspondences between such kinds of algebras and such kinds of
spaces. In particular, such a bijective correspondence for the RCC systems
of [19] is obtained, strengthening in this way the previous representation
theorems from [12, 6]. As applications of the obtained results, we prove
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T0-extensions of compact Hausdorff extremally disconnected spaces. Also,
for every compact Hausdorff space X , we construct a compact semireg-
ular T0-extension (κX,κ) of X which is characterized as the unique, up
to equivalence, C-semiregular extension (cX, c) of X such that c(X) is 2-
combinatorially embedded in cX ; moreover, κX contains as a dense sub-
space the absolute EX of X .

1. Introduction. In this paper, as well as in its first part [9], we give the
proofs of the results announced in our paper [8] and obtain many new additional
results and some new applications (for example, all results from the last section
of this paper were not announced in [8]). We present a common approach both
to the discrete and to the non-discrete region-based theory of space. The paper
is a continuation of the investigations started in [22] and continued in [6, 7, 12].

In the first part [9] of this paper, we extended to precontact algebras the
representation techniques developed in [6, 7] and proved that each precontact al-
gebra can be embedded in a special topological object, called 2-precontact space.
In [9] we also established a bijective correspondence between precontact algebras
and 2-precontact spaces. Introducing the notion of 2-contact space as a special-
ization of that of 2-precontact space, we showed in [9] that there is a bijective
correspondence between contact algebras and 2-contact spaces. In this paper,
we show that similar representation theorems hold also for precontact and con-
tact algebras satisfying some additional axioms, namely, for extensional (resp.,
N-regular; regular; normal) precontact and contact algebras. The topological ob-
jects that correspond to these algebras are introduced here under the names of
extensional (resp., N-regular; regular; normal) 3-precontact and 3-contact spaces.
It is shown that there are bijective correspondences between such kinds of alge-
bras and such kinds of spaces. In particular, such a bijective correspondence
for the RCC systems of [19] is obtained, strengthening in this way the previous
representation theorems from [12, 6]. As applications of the obtained results,
we prove several Smirnov-type theorems for different kinds of compact semireg-
ular T0-extensions of compact Hausdorff extremally disconnected spaces. Also,
for every compact Hausdorff space X we construct a compact semiregular T0-
extension (κX,κ) of X which is characterized as the unique, up to equivalence,
C-semiregular extension (cX, c) of X such that c(X) is 2-combinatorially embed-
ded (in the sense of [3]) in cX; moreover, κX contains as a dense subspace the
absolute EX of X (see, e.g., [18] for absolutes). Recall that the notion of C-
semiregular space was introduced in [6]; every C-semiregular space is a compact
semiregular T0-space ([6]).
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The paper is organized as follows. In the preliminary Section 2 we recall
some basic facts from the first part of this paper; they are indispensable for our
further exposition.

In Sections 3 and 4 we introduce the axiom of extensionality for precontact
algebras which generalizes the well-known axiom of extensionality for contact
algebras. With its help, we introduce the class of extensional precontact algebras
which contains as subclasses some well-known systems as, for example, RCC
systems from [19]. We modify our representation constructions used in the first
part of this paper in order to obtain topological representation theorems for
extensional precontact algebras. The notions of extensional 3-precontact space
and extensional 3-contact space are introduced here and it is proved that there
exists a bijective correspondence between the class of all, up to isomorphism,
extensional precontact algebras (resp., extensional contact algebras) and the class
of all, up to isomorphism, extensional 3-precontact spaces (resp., extensional
3-contact spaces). This is a generalization of a similar result about complete
extensional contact algebras obtained in [6].

In Sections 5 and 6 we introduce the notions of N-regular (resp., regular;
normal) precontact algebra and extend the results obtained in the previous two
sections to these kinds of precontact and contact algebras.

The technique developed in the Sections 3,4,5,6 permits us to obtain some
results about the extensions of topological spaces which were not presented in the
paper [8]. As it is well known, the classical Compactification Theorem of Ju. M.
Smirnov [20] says that there exists an isomorphism between the ordered set of
all, up to equivalence, Hausdorff compactifications of a Tychonoff space X, and
the ordered set of all proximities on the space X. Now, in Section 7, we obtain
several Smirnov-type theorems with which we describe different kinds of compact
semiregular T0-extensions of compact Hausdorff extremally disconnected spaces.
These new theorems are the Theorems 7.7, 7.9, 7.11, 7.13. For proving them we
use a new result about the structure of C-semiregular spaces (see Theorem 7.15).
We also construct here the extension (κX,κ) mentioned above (see Corollary
7.16); a similar extension, denoted again by (κX,κ), is constructed not only
for compact Hausdorff spaces but also for C-weakly regular spaces, CN-regular
spaces and C-regular spaces (all these notions were introduced in [6]); in these
cases the characterization of the extension (κX,κ) is slightly changed: we now
use the notion of “open combinatorial embedding” (in the sense of [17]) instead of
the notion of “2-combinatorial embedding” (see Theorem 7.15). Finally, taking
a compact Hausdorff extremally disconnected space Y , we describe all compact
Hausdorff spaces X for which Y = EX (see Proposition 7.14).
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Section 7 contains our concluding remarks.
We now fix the notations.
All lattices are with top (= unit) and bottom (= zero) elements, denoted

respectively by 1 and 0. We do not require the elements 0 and 1 to be distinct.
If (X, τ) is a topological space and M is a subset of X, we denote by

cl(X,τ)(M) (or simply by cl(M) or clX(M)) the closure of M in (X, τ) and by
int(X,τ)(M) (or briefly by int(M) or intX(M)) the interior of M in (X, τ).

If X is a topological space, we denote by CO(X) the set of all clopen (=
closed and open) subsets of X. Obviously, (CO(X),∪,∩, \, ∅,X) is a Boolean
algebra. Also, we denote by RC(X) the set of all regular closed subsets of X
(recall that a subset F of X is said to be regular closed if F = cl(int(F ))).

Recall that a topological space X is said to be: (a) semiregular if RC(X)
is a closed base for X, (b) connected if the only clopen subsets of X are X and
the empty set, (c) extremally disconnected if the closure of every open subset of
X is open.

The closed maps between topological spaces are assumed to be continuous
but are not assumed to be onto. Recall that a map is perfect if it is compact (i.e.
point inverses are compact sets) and closed. A continuous map f : X −→ Y is
irreducible if f(X) = Y and for each proper closed subset A of X, f(A) 6= Y .

As usual, by a Stone space, we mean a compact Hausdorff zero-dimensional
space.

If X is a topological space, then by a closed relation on X we mean a
relation on X which is a closed subset of the space X ×X.

Recall as well the following definition: if (A,≤) is a poset and B ⊆ A then
B is said to be a dense subset of A if for any a ∈ A \ {0} there exists b ∈ B \ {0}
such that b ≤ a; when (B,≤1) is a poset and f : A −→ B is a map, then we will
say that f is a dense map if f(A) is a dense subset of (B,≤1).

The set of all ultrafilters of a Boolean algebra B will be denoted by Ult(B).
If X is a set, we denote by 2X the power set of X.
The main reference book for all undefined here topological notions is [13].

2. Preliminaries. As it was already mentioned in the Introduction, in
this section we recall some definitions and results from the first part [9] of this
paper; they are indispensable for our further exposition.

Definition 2.1. An algebraic system B = (B,C) is called a precontact
algebra ([11]) (abbreviated as PCA) if the following holds:

• B = (B, 0, 1,+, ·, ∗) is a Boolean algebra (where the complement is denoted
by “∗”);
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• C is a binary relation on B (called a precontact relation) satisfying the
following axioms:

(C0) If aCb then a 6= 0 and b 6= 0;

(C+) aC(b+ c) iff aCb or aCc; (a+ b)Cc iff aCc or bCc.

A precontact algebra (B,C) is said to be complete if the Boolean algebra B is
complete. Two precontact algebras B = (B,C) and B1 = (B1, C1) are said to
be PCA-isomorphic (or, simply, isomorphic) if there exists a PCA-isomorphism
between them, i.e., a Boolean isomorphism ϕ : B −→ B1 such that, for every
a, b ∈ B, aCb iff ϕ(a)C1ϕ(b).

The complement of the relation C is denoted by (−C).
For any PCA (B,C), we define a binary relation “ ≪C” on B (called

non-tangential inclusion) by

a≪C b↔ a(−C)b∗.

Sometimes we will write simply “ ≪” instead of “ ≪C”.
We will also consider precontact algebras satisfying some additional ax-

ioms:

(Cref) If a 6= 0 then aCa (reflexivity axiom);

(Csym) If aCb then bCa (symmetry axiom);

(Ctr) If a≪C c then (∃b)(a≪C b≪C c) (transitivity axiom);

(Ccon) If a 6= 0, 1 then aCa∗ or a∗Ca (connectedness axiom).

A precontact algebra (B,C) is called a contact algebra ([6]) (and C is
called a contact relation) if it satisfies the axioms (Cref) and (Csym). We say
that two contact algebras are CA-isomorphic if they are PCA-isomorphic; also, a
PCA-isomorphism between two contact algebras will be called a CA-isomorphism.

A precontact algebra (B,C) is called connected if it satisfies the axiom
(Ccon).

The following lemma says that in every precontact algebra we can define
a contact relation.

Lemma 2.2 ([8]). Let (B,C) be a precontact algebra. Define

aC#b ⇐⇒ ((aCb) ∨ (bCa) ∨ (a · b 6= 0)).

Then C# is a contact relation on B and hence (B,C#) is a contact algebra.
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Remark 2.3 ([8]). We will also consider precontact algebras satisfying
the following variant of the transitivity axiom (Ctr):

(Ctr#) If a≪C# c then (∃b)(a≪C# b≪C# c).

The axiom (Ctr#) is known as the “Interpolation axiom”.

A contact algebra (B,C) is called a normal contact algebra ([4, 14]) if it
satisfies the axiom (Ctr#) and the following one:

(C6) If a 6= 1 then there exists b 6= 0 such that b(−C)a.

The notion of a normal contact algebra was introduced by Fedorchuk [14] (under
the name of “Boolean δ-algebra”) as an equivalent expression of the notion of a
compingent Boolean algebra of de Vries [4] (see its definition below). We call such
algebras “normal contact algebras” because they form a subclass of the class of
contact algebras and naturally arise in normal Hausdorff spaces.

The relations C and ≪ are inter-definable. For example, normal contact
algebras could be equivalently defined (and exactly in this way they were intro-
duced (under the name of compingent Boolean algebras) by de Vries in [4]) as
a pair of a Boolean algebra B = (B, 0, 1,+, ·, ∗) and a binary relation ≪ on B

subject to the following axioms:

(≪1) a≪ b implies a ≤ b;
(≪2) 0 ≪ 0;
(≪3) a ≤ b≪ c ≤ t implies a≪ t;
(≪4) (a≪ b and a≪ c) implies a≪ b · c;
(≪5) If a≪ c then a≪ b≪ c for some b ∈ B;
(≪6) If a 6= 0 then there exists b 6= 0 such that b≪ a;
(≪7) a≪ b implies b∗ ≪ a∗.

Note that if 0 6= 1 then the axiom (≪2) follows from the axioms (≪3),
(≪4), (≪6) and (≪7).

Obviously, contact algebras could be equivalently defined as a pair of a
Boolean algebra B and a binary relation ≪ on B subject to the axioms (≪1)-
(≪4) and (≪7); then, clearly, the relation ≪ satisfies also the axioms

(≪2’) 1 ≪ 1;
(≪4’) (a≪ c and b≪ c) implies (a+ b) ≪ c.

It is not difficult to see that precontact algebras could be equivalently
defined as a pair of a Boolean algebra B and a binary relation ≪ on B subject
to the axioms (≪2), (≪2’), (≪3), (≪4) and (≪4’).

It is easy to see that axiom (C6) can be stated equivalently in the form
of (≪6).
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We will recall that every topological space generates canonically a contact
algebra.

Let X be a topological space and let us equip RC(X) with the following
Boolean operations and contact relation CX :

• F +G = F ∪G;

• F ∗ = cl(X \ F );

• F ·G = cl(int(F ∩G))(= (F ∗ ∪G∗)∗);

• 0 = ∅, 1 = X;

• FCXG iff F ∩G 6= ∅.

It is a well-known fact that if X is a topological space, then

(RC(X), CX ) = (RC(X), 0, 1,+, ·, ∗, CX )

is a contact algebra (see [4]).
The contact algebras of the type (RC(X), CX), where X is a topological

space, are called standard contact algebras.
We will use the following notation.

Notation 2.4. Let (X,T) be a topological space, X0 be a subspace of X,
x ∈ X and B be a subalgebra of the Boolean algebra (RC(X),+, ·, ∗, ∅,X). We
put

(1) σBx = {F ∈ B | x ∈ F}; Γx,X0 = {F ∈ CO(X0) | x ∈ clX(F )}.

When B = RC(X), we will often write simply σx instead of σBx ; in this
case we will sometimes use the notation σXx as well.

Recall that the Stone space S(A) of a Boolean algebra A is the set X =
Ult(A) endowed with a topology T having as a closed base the family {sA(a) | a ∈
A}, where

(2) sA(a) = {u ∈ X | a ∈ u},

for every a ∈ A; then

(3) S(A) = (X,T)

is a compact Hausdorff zero-dimensional space, sA(A) = CO(X) and the Stone
map

(4) sA : A −→ CO(X), a 7→ sA(a),
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is a Boolean isomorphism; also, the family {sA(a) | a ∈ A} is an open base for
(X,T). Further, for every Stone space X and for every x ∈ X, we set

(5) ux = {P ∈ CO(X) | x ∈ P}

(sometimes we will also write uXx instead of ux). Then ux ∈ Ult(CO(X)) and the
map

f : X −→ S(CO(X)), x 7→ ux,

is a homeomorphism.

Definition 2.5 ([8]). Let B = (B,C) be a precontact algebra. A non-
empty subset Γ of B is called a clan if it satisfies the following conditions:

(Clan1) 0 6∈ Γ;

(Clan2) If a ∈ Γ and a ≤ b then b ∈ Γ;

(Clan3) If a+ b ∈ Γ then a ∈ Γ or b ∈ Γ;

(Clan4) If a, b ∈ Γ then aC#b.

A clan Γ in B is called a maximal clan in B if it is maximal among all
clans in B with respect to set-inclusion.

The set of all clans (resp., maximal clans) of a precontact algebra B is
denoted by Clans(B) (resp., MClans(B)).

The following lemma is obvious:

Lemma 2.6 ([6, 8]). Let B = (B,C) be a precontact algebra. Each
ultrafilter of B is a clan in B and hence Ult(B) ⊆ Clans(B).

As it was proved in [6], for every topological space X and every x ∈ X, σx
is a clan in (RC(X), CX). Also, a clan σ in (RC(X), CX) is called a point-clan
([6]) if there exists x ∈ X such that σ = σx.

Let us recall that by an adjacency space (see [15] and [11]) we mean a
relational system (W,R), where W is a non-empty set whose elements are called
cells, and R is a binary relation on W called the adjacency relation; the subsets
of W are called regions.

The reflexive and symmetric closure R♭ of R is defined as follows:

(6) xR♭y ⇐⇒ ((xRy) ∨ (yRx) ∨ (x = y)).

A precontact relation CR between the regions of an adjacency space (W,R)
is defined as follows: for every M,N ⊆W ,

(7) MCRN iff (∃x ∈M)(∃y ∈ N)(xRy).
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Proposition 2.7 ([11]). Let (W,R) be an adjacency space and let 2W

be the Boolean algebra of all subsets of W . Then:

(a) (2W , CR) is a precontact algebra;

(b) (2W , CR) is a contact algebra iff R is a reflexive and symmetric relation
on W . If R is a reflexive and symmetric relation on W then CR coincides
with (CR)

# and CR♭ ;

(c) CR satisfies the axiom (Ctr) iff R is a transitive relation on W ;

(d) CR satisfies the axiom (Ccon) iff R is a connected relation on W (which
means that if x, y ∈ W and x 6= y then there is an R-path from x to y or
from y to x).

Clearly, Proposition 2.7(a) implies that if B is a Boolean subalgebra of
the Boolean algebra 2W , then (B,CR) is also a precontact algebra (here (and
further on), for simplicity, we denote again by CR the restriction of the relation
CR to B).

Definition 2.8 ([8]). Let X be a non-empty topological space and R be a
binary relation on X. Then the pair (CO(X), CR) (see (7) for CR) is a precontact
algebra (by Proposition 2.7(a)), called the canonical precontact algebra of the
relational system (X,R).

Definition 2.9 ([8]). Let B = (B,C) be a precontact algebra and let
U1, U2 be ultrafilters of B. We set

(8) U1RBU2 iff (∀a ∈ U1)(∀b ∈ U2)(aCb) (i.e., iff U1 × U2 ⊆ C).

The relational system (Ult(B), RB) is called the canonical adjacency space
of B.

We say that U1, U2 are connected iff U1(RB)
♭U2 (see (6) for the notation

R♭).

The next lemma is obvious.

Lemma 2.10 ([8]). Let B = (B,C) be a precontact algebra and let I be

a set of connected ultrafilters. Then the union Γ =
⋃

{U | U ∈ I} is a clan.

Lemma 2.11 (Ultrafilter and clan characterizations of precontact and
contact relations. [6, 11]). Let B = (B,C) be a precontact algebra and (Ult(B), RB)
be the canonical adjacency space of B. Then the following is true for any a, b ∈ B:

(a) aCb iff (∃U1, U2 ∈ Ult(B))((a ∈ U1) ∧ (b ∈ U2) ∧ (U1RBU2));
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(b) aC#b iff (∃U1, U2 ∈ Ult(B))((a ∈ U1) ∧ (b ∈ U2) ∧ (U1R
♭
(B,C)U2));

(c) aC#b iff (∃Γ ∈ Clans(B))(a, b ∈ Γ) iff (∃Γ ∈ MClans(B))(a, b ∈ Γ);

(d) RB is a reflexive relation iff B satisfies the axiom (Cref);

(e) RB is a symmetric relation iff B satisfies the axiom (Csym);

(f) RB is a transitive relation iff B satisfies the axiom (Ctr).

Definition 2.12 ([8]). An adjacency space (X,R) is called a topological
adjacency space (abbreviated as TAS) if X is a topological space and R is a closed
relation onX. WhenX is a compact Hausdorff zero-dimensional space (i.e., when
X is a Stone space), we say that the topological adjacency space (X,R) is a Stone
adjacency space.

Two topological adjacency spaces (X,R) and (X1, R1) are said to be TAS-
isomorphic if there exists a homeomorphism f : X −→ X1 such that, for every
x, y ∈ X, xRy iff f(x)R1f(y).

When B = (B,C) is a precontact algebra, the pair (S(B), RB) is said to
be the canonical Stone adjacency space of B.

Theorem 2.13 ([8]). (a) Each PCA B = (B,C) is isomorphic to the
canonical precontact algebra (CO(X,T), CRB

) of the Stone adjacency space
((X,T), RB), where (X,T) = S(B) and for every u, v ∈ X, uRBv ⇐⇒ u×v ⊆ C;
the isomorphism between them is just the Stone map sB : B −→ CO(X,T), i.e.

(9) s(B,C) : (B,C) −→ (CO(X,T), CRB
), b 7→ sB(b), is a PCA-isomorphism.

Moreover, the relation C satisfies the axiom (Cref) (resp., (Csym); (Ctr)) iff the
relation RB is reflexive (resp., symmetric; transitive).

(b) There exists a bijective correspondence between the class of all, up to PCA-
isomorphism, precontact algebras and the class of all, up to TAS-isomorphism,
Stone adjacency spaces (X,R); namely, for each precontact algebra B = (B,C),
the PCA-isomorphism class [B] of B corresponds to the TAS-isomorphism class
of the canonical Stone adjacency space (S(B), RB) of B, and for each Stone ad-
jacency space (X,R), the TAS-isomorphism class [(X,R)] of (X,R) corresponds
to the PCA-isomorphism class of the canonical precontact algebra (CO(X), CR)
of (X,R) (see (7) for CR).

Definition 2.14 ([8]). (a) Let X be a topological space and X0 be a dense
subspace of X. Then the pair (X,X0) is called a topological pair.

(b) Let (X,X0) be a topological pair. Then we set

(10) RC(X,X0) = {clX(A) | A ∈ CO(X0)}.
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Lemma 2.15 ([8]). Let (X,X0) be a topological pair. Then:

(a) RC(X,X0) ⊆ RC(X);

(b) The set RC(X,X0) with the standard Boolean operations on the regular closed
subsets of X is a Boolean subalgebra of RC(X);

(c) RC(X,X0) is isomorphic to the Boolean algebra CO(X0);

(d) the sets RC(X) and RC(X,X0) coincide iff X0 is an extremally disconnected
space.

(e) If C(X,X0) is the restriction of the contact relation CX to RC(X,X0), then

(RC(X,X0), C(X,X0))

is a contact subalgebra of (RC(X), CX).

Definition 2.16 (2-Precontact spaces [8]). A triple X = (X,X0, R) is
called a 2-precontact space (abbreviated as PCS) if the following conditions are
satisfied:

(PCS1) (X,X0) is a topological pair and X is a T0-space;

(PCS2) (X0, R) is a Stone adjacency space;

(PCS3) RC(X,X0) is a closed base for X;

(PCS4) For every F,G ∈ CO(X0), clX(F )∩clX(G) 6= ∅ implies that F (CR)
#G

(see (7) for CR);

(PCS5) If Γ ∈ Clans(CO(X0), CR) then there exists a point x ∈ X such that
Γ = Γx,X0 (see (1) for Γx,X0).

Definition 2.17 ([8]). Let X = (X,X0, R) be a 2-precontact space. De-
fine, for every F,G ∈ RC(X,X0),

F CX G ⇐⇒ ((∃x ∈ F ∩X0)(∃y ∈ G ∩X0)(xRy)).

Then the precontact algebra

B(X) = (RC(X,X0), CX)

is said to be the canonical precontact algebra of X.

Definition 2.18 ([8]). A 2-precontact space X = (X,X0, R) is called
reflexive (resp., symmetric; transitive) if the relation R is reflexive (resp., sym-
metric; transitive); X is called connected if the space X is connected.
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Definition 2.19 ([8]). Let X = (X,X0, R) and X̂ = (X̂, X̂0, R̂) be two
2-precontact spaces. We say that X and X̂ are PCS-isomorphic (or, simply,
isomorphic) if there exists a homeomorphism f : X −→ X̂ such that:

(ISO1) f(X0) = X̂0; and

(ISO2) (∀x, y ∈ X0)(xRy ↔ f(x)R̂f(y)).

Proposition 2.20 ([8]). (a) Let (X,X0, R) be a 2-precontact space. Then
X is a semiregular space and, for every F,G ∈ CO(X0),

(11) clX(F ) ∩ clX(G) 6= ∅ iff F (CR)
#G.

(b) Let X = (X,X0, R) and X̂ = (X̂, X̂0, R̂) be two isomorphic 2-precontact
spaces. Then the corresponding canonical precontact algebras B(X) and B(X̂)
are PCA-isomorphic.

Definition 2.21 ([8]). Let B = (B,C) be a precontact algebra. We
associate with B a 2-precontact space

X(B) = (X,X0, R),

called the canonical 2-precontact space of B, as follows:

• X = Clans(B) and X0 = Ult(B);

• The topology T on the set X is defined in the following way: the family

{gB(a) | a ∈ B},

where, for any a ∈ B,

(12) gB(a) = {Γ ∈ X | a ∈ Γ},

is a closed base for T. The topology on X0 is the subspace topology induced
by (X,T).

• R = RB (see (8) for the notation RB), i.e. (X0, R) is the canonical adjacency
space of B.

Remark 2.22 ([9]). Note that, in the notation of Definition 2.21, setting,
for every a ∈ B,

gB0 (a) = gB(a) ∩X0,

we obtain that the family {gB0 (a) | a ∈ B} is a closed base for X0 and

gB0 (a) = sB(a),

where sB : B −→ CO(X0) is the Stone map.
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As it is shown in [9], if B = (B,C) is a precontact algebra and if X(B) =
(X,X0, R) is the canonical 2-precontact space of B then, for every a ∈ B, we
have that

(13) gB(a) = clX(gB0 (a));

also, (9) implies that

(14) s(B,C) : (B,C) −→ (CO(X0), CR), b 7→ sB(b), is a PCA-isomorphism.

Proposition 2.23 ([9]). Let B = (B,C) be a precontact algebra. Then
the canonical 2-precontact space X(B) = (X,X0, R) of B defined above is indeed
a 2-precontact space.

Theorem 2.24 (Representation theorem for precontact algebras). [8], [9,
Theorem 6.1]

(a) Let B = (B,C) be a precontact algebra and let X(B) = (X,X0, R) be the
canonical 2-precontact space of B. Then the function gB : (B,C) −→ 2X ,
defined in (12), is a PCA-isomorphism between (B,C) and the canonical
precontact algebra (RC(X,X0), CX(B)) of X(B). The same function gB

is a PCA-isomorphism between contact algebras (B,C#) and (RC(X,X0),
C(X,X0)) (see Lemma 2.15(e) for C(X,X0)). The sets RC(X) and RC(X,X0)
coincide iff the precontact algebra B is complete. The algebra B satisfies
the axiom (Cref) (resp., (Csym); (Ctr)) iff the 2-precontact space X(B)
is reflexive (resp., symmetric; transitive). The algebra B is connected iff
X(B) is connected.

(b) There exists a bijective correspondence Φ2 between the class of all, up to
PCA-isomorphism, (connected) precontact algebras and the class of all, up
to PCS-isomorphism, (connected) 2-precontact spaces; namely, for every
precontact algebra B, the PCA-isomorphism class [B] of B corresponds to
the PCS-isomorphism class

Φ2([B]) = [X(B)]

of the canonical 2-precontact space X(B) of B. Also, setting Ψ2 = (Φ2)
−1,

we have that for every 2-precontact space X, the PCS-isomorphism class
[X] of X corresponds to the PCA-isomorphism class

Ψ2([X ]) = [B(X)]

of the canonical precontact algebra B(X) of X.
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Proposition 2.25 ([8]). Let X0 be a subspace of a topological space X.
For every F,G ∈ CO(X0), set

(15) Fδ(X,X0)G iff clX(F ) ∩ clX(G) 6= ∅.

Then (CO(X0), δ(X,X0)) is a contact algebra.

Definition 2.26 (2-Contact spaces [8]). A topological pair (X,X0) is
called a 2-contact space (abbreviated as CS) if the following conditions are satis-
fied:

(CS1) X is a T0-space;

(CS2) X0 is a compact Hausdorff zero-dimensional space;

(CS3) RC(X,X0) is a closed base for X;

(CS4) If Γ ∈ Clans(CO(X0), δ(X,X0)) (see (15) for the notation δ(X,X0)) then
there exists a point x ∈ X such that Γ = Γx,X0 (see (1) for Γx,X0).

A 2-contact space (X,X0) is called connected if the space X is connected.

Definition 2.27 ([8]). Let (X,X0) be a 2-contact space. Then the contact
algebra

Bc(X,X0) = (RC(X,X0), C(X,X0))

(see Lemma 2.15(a) for the notation C(X,X0)) is said to be the canonical contact
algebra of the 2-contact space (X,X0).

Definition 2.28 ([8]). Let B = (B,C) be a contact algebra, X = Clans(B,
C), X0 = Ult(B) and T be the topology on X described in Definition 2.21. Take
the subspace topology on X0. Then the pair

Xc(B) = (X,X0)

is called the canonical 2-contact space of the contact algebra (B,C).

Definition 2.29 ([8]). Let (X,X0) and (X̂, X̂0) be two 2-contact spaces.
We say that (X,X0) and (X̂, X̂0) are CS-isomorphic (or, simply, isomorphic) if
there exists a homeomorphism f : X −→ X̂ such that f(X0) = X̂0.

Lemma 2.30 ([9]). For every 2-contact space (X,X0) there exists a
unique reflexive and symmetric binary relation R on X0 such that (X,X0, R)
is a 2-precontact space. The relation R is defined by the formula

(16) xRy ⇐⇒ ((∀F ∈ ux)(∀G ∈ uy)(clX(F ) ∩ clX(G) 6= ∅)),
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where x, y ∈ X0. Also, for every F,G ∈ CO(X0),

(17) clX(F ) ∩ clX(G) 6= ∅ ⇐⇒ FCRG.

Theorem 2.31 (New representation theorem for CAs [8]).

(a) Let (B,C) be a contact algebra and let (X,X0) be the canonical 2-contact
space of (B,C) (see Definition 2.28). Then the function gB : B −→
2X , defined in (12), is a CA-isomorphism between the algebra (B,C) and
the canonical contact algebra (RC(X,X0), C(X,X0)) of (X,X0). The sets
RC(X,X0) and RC(X) coincide iff the contact algebra (B,C) is complete.
The contact algebra (B,C) is connected iff the 2-contact space (X,X0) is
connected.

(b) There exists a bijective correspondence between the class of all, up to CA-
isomorphism, (connected) contact algebras and the class of all, up to CS-
isomorphism, (connected) 2-contact spaces; namely, for every CA B, the
CA-isomorphism class [B] of B corresponds to the CS-isomorphism class
[Xc(B)] of the canonical 2-contact space Xc(B) of B, and for every 2-
contact space (X,X0), the CS-isomorphism class [(X,X0)] of (X,X0) cor-
responds to the CA-isomorphism class [Bc(X,X0)] of the canonical contact
algebra Bc(X,X0) of (X,X0).

Definition 2.32 ([6]). A semiregular T0-space (X,T) is said to be C-
semiregular if for every clan Γ in (RC(X), CX ) there exists a point x ∈ X such
that Γ = σx (see (1) for σx), i.e., if every clan in (RC(X), CX) is a point-clan.

The next assertion was stated in [6] but it was left without proof there.
It was proved in [9].

Proposition 2.33 ([6, Fact 4.1]). Every C-semiregular space X is a com-
pact space.

Lemma 2.34 ([9]). If (X,X0) is a 2-contact space and X0 is extremally
disconnected, then X is C-semiregular.

3. Precontact algebras with the axiom of extensionality. Let
us start with recalling the following well known statement (see, e.g., [2, p. 271]).

Lemma 3.1. Let X be a dense subspace of a topological space Y . Then
the functions

rX,Y : RC(Y ) −→ RC(X), F 7→ F ∩X,
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and
eX,Y : RC(X) −→ RC(Y ), G 7→ clY (G),

are Boolean isomorphisms between Boolean algebras RC(X) and RC(Y ), and
eX,Y ◦ rX,Y = idRC(Y ), rX,Y ◦ eX,Y = idRC(X). (If X and Y are clear from the
context, we will sometimes write r (resp., e) instead of rX,Y (resp., eX,Y ).)

Definition 3.2. (a) Let X be a topological space and X0,X1 be dense
subspaces of X. Then the triple (X,X0,X1) is called a topological triple.

(b) Let (X,X0,X1) be a topological triple. Then we set

(18) RC(X,X0,X1) = {X1 ∩ clX(A) | A ∈ CO(X0)}.

Lemma 3.3. Let (X,X0,X1) be a topological triple. Then:

(a) RC(X,X0,X1) ⊆ RC(X1);

(b) the set RC(X,X0,X1) with the standard Boolean operations on the regular
closed subsets of X1 is a Boolean subalgebra of the Boolean algebra RC(X1);

(c) the Boolean algebra CO(X0) is isomorphic to RC(X,X0,X1);

(d) the sets RC(X,X0,X1) and RC(X1) coincide iff X0 is an extremally discon-
nected space.

(e) Let us denote by
C(X,X0,X1)

the restriction of the contact relation CX1 to RC(X,X0,X1). Then

(RC(X,X0,X1), C(X,X0,X1))

is a contact subalgebra of (RC(X1), CX1).

P r o o f. Let us denote by T the topology of the space X. Using Lemma
3.1 and its notation, we obtain that

rX1,X(RC(X,X0)) = RC(X,X0,X1)

and (rX1,X)|RC(X,X0) : RC(X,X0) −→ RC(X,X0,X1) is a Boolean isomorphism.
The first three assertions follow from this fact. Also, it is easy to see that the sets
RC(X1) and RC(X,X0,X1) coincide iff X0 is an extremally disconnected space.

Now, it becomes obvious that (RC(X,X0,X1), C(X,X0,X1)) is a contact
subalgebra of (RC(X1), CX1). ✷

The axiom of extensionality is one of the most interesting axioms for
contact algebras. Since C# is a contact relation for every precontact relation C,
we formulate it for the relation C#:
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(∀c)(aC#c↔ bC#c) → (a = b).

The axiom of extensionality has several equivalent formulations (see, e.g.,
[6]); the shortest one is the following: (∀a 6= 1)(∃b 6= 0)(a(−C#)b), or, equiva-
lently,

(Cext) (∀a 6= 1)(∃b 6= 0)(a(−C)b and b(−C)a and a · b = 0).

Note that the class of extensional precontact algebras contains some well-
known systems as, for example, RCC system from [19].

In this section we will modify the representation theory for precontact
algebras developed in [8, 9] in order to obtain a similar theory for extensional
precontact algebras.

Definition 3.4. A precontact algebra (B,C) which satisfies the axiom
(Cext) is said to be an extensional precontact algebra (abbreviated as EPA). The
abbreviation for “extensional contact algebra” will be “ECA”.

The following notion was introduced by A. V. Arhangel’skĭı (and, inde-
pendently, in [5]): a topological space (X, τ) is said to be π-regular if for each
non-empty U ∈ τ there exists a non-empty V ∈ τ such that cl(V ) ⊆ U . The
semiregular π-regular spaces are called weakly regular ([12]).

Proposition 3.5 ([12]). If X is a weakly regular space, then (RC(X), CX )
is an ECA.

The next representation theorem for extensional contact algebras was
proved by I. Düntsch and M. Winter [12] (see also [6, Theorem 5.1(a)]):

Theorem 3.6 ([12]). For each extensional contact algebra B = (B,C)
there exists a dense embedding gB of B into a standard extensional contact al-
gebra (RC(X, τ), CX ), where (X, τ) is a compact weakly regular T1-space. The
algebra B is connected iff the space X is connected. When B is complete then
the embedding gB becomes an isomorphism between contact algebras (B,C) and
(RC(X), CX ).

Now we are going to strengthen Theorem 3.6 in two directions. The
first one is that we will prove a topological representation theorem not only for
ECAs but also for extensional precontact algebras. The second one is that in
both cases – for ECAs and for EPAs – we will not only find a topological object
in whose canonical algebra our algebras can be densely embedded (as it is for
ECAs in Theorem 3.6) but we will find topological objects which are in bijec-
tive correspondence (up to isomorphisms) with our algebras. Such topological
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representation theorems for PCAs and CAs were proved in [9]. There the cor-
responding topological objects were 2-precontact spaces and 2-contact spaces.
Since the class of EPAs (resp., ECAs) is a proper subclass of the class of PCAs
(resp., CAs), we have to find some subclasses of the classes of 2-precontact spaces
and 2-contact spaces in order to obtain a bijective correspondence between EPAs
(resp., ECAs) and the corresponding new topological objects. In this section we
will fulfill this plan for EPAs, and in the next one - for ECAs. Let us start with
the definition of 3-precontact spaces. They will be our topological objects which
will be in a bijective correspondence with EPAs.

Definition 3.7. A quadruple X = (X,X0,X1, R) is called an extensional
3-precontact space (abbreviated as EPS) if it satisfies the following conditions:

(EPS1) (X,X0, R) is a 2-precontact space;

(EPS2) X1 is a dense subspace of X;

(EPS3) X1 is a weakly regular T1-space;

(EPS4) If x ∈ X1 then the set Γx,X0 (see (1) for this notation) is a maximal
clan in the precontact algebra (CO(X0), CR) (see (7) for the notation CR);
conversely, for every maximal clan Γ in (CO(X0), CR) there exists a point
x ∈ X1 such that Γ = Γx,X0.

Definition 3.8. Let X = (X,X0,X1, R) be an extensional 3-precontact
space. Define, for every F,G ∈ RC(X,X0,X1),

FCXG iff there exist x ∈ clX(F ) ∩X0 and y ∈ clX(G) ∩X0 such that xRy.

Then the precontact algebra

B(X) = (RC(X,X0,X1), CX)

is called the canonical extensional precontact algebra of the extensional 3-precontact
space X.

Definition 3.9. An extensional 3-precontact space X = (X,X0,X1, R) is
called reflexive (resp., symmetric; transitive) if the relation R is reflexive (resp.,
symmetric; transitive); X is called connected if the space X1 is connected.

Definition 3.10. Let X = (X,X0,X1, R) and X̂ = (X̂, X̂0, X̂1, R̂) be
two extensional 3-precontact spaces. We say that X and X̂ are EPS-isomorphic
(or, simply, isomorphic) if there exists a homeomorphism f : X −→ X̂ such that:

(ISOE1) f(X0) = X̂0;
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(ISOE2) f(X1) = X̂1; and

(ISOE3) (∀x, y ∈ X0)(xRy ↔ f(x)R̂f(y)).

Remark 3.11. It is easy to see that the canonical extensional precontact
algebra of a 3-precontact space, defined in Definition 3.8, is indeed a precontact
algebra. The fact that it is an extensional precontact algebra will be established
below in Corollary 3.15.

Proposition 3.12. Let (X,X0,X1, R) be an extensional 3-precontact
space. Then, for every F,G ∈ CO(X0), we have that

(19) clX(F ) ∩ clX(G) 6= ∅ ⇐⇒ clX(F ) ∩ clX(G) ∩X1 6= ∅.

P r o o f. Let F,G ∈ CO(X0) and clX(F ) ∩ clX(G) 6= ∅. Then, by the
axioms (EPS1) and (PCS4), F (CR)

#G. Hence, by Proposition 2.11(c), there
exists a maximal clan Γ in (CO(X0), CR) such that F,G ∈ Γ. The axiom (EPS4)
implies that there exists x ∈ X1 such that Γ = Γx,X0 . Thus x ∈ clX(F )∩ clX(G).
Therefore, clX(F ) ∩ clX(G) ∩X1 6= ∅. The converse implication is obvious. ✷

We will need the following well-known fact:

Fact 3.13. Let U be an open subset of a topological space X and A be a
dense subset of X. Then clX(U) = clX(A ∩ clX(U)).

Proposition 3.14. Let X = (X,X0,X1, R) be an extensional 3-precontact
space. Then, for every F,G ∈ RC(X,X0,X1), we have that F (CX)#G ⇐⇒
F ∩ G 6= ∅ ⇐⇒ FCX1G; if F = X1 ∩ clX(A1) and G = X1 ∩ clX(A2), where
A1, A2 ∈ CO(X0), then FCXG ⇐⇒ A1CRA2.

P r o o f. Let F,G ∈ RC(X,X0,X1), F = X1 ∩ clX(A1) and G = X1 ∩
clX(A2), where A1, A2 ∈ CO(X0). Then, using Fact 3.13 and Lemma 3.1, we
obtain that X0 ∩ clX(F ) = X0 ∩ clX(X1 ∩ clX(A1)) = X0 ∩ clX(A1) = A1 and,
analogously, X0 ∩ clX(G) = A2. This implies that FCXG ⇐⇒ A1CRA2.
Further, by Lemma 3.3(c), we have that the function

r1 : CO(X0) −→ RC(X,X0,X1), A 7→ X1 ∩ clX(A),

is a Boolean isomorphism. Therefore, for every A′, A′′ ∈ CO(X0), we have that

A′ · A′′ 6= ∅ ⇐⇒ r1(A
′) · r1(A

′′) 6= ∅.

Thus we obtain that

(20) F (CX)#G ⇐⇒ A1(CR)
#A2.



50 G. Dimov, D. Vakarelov

Now, Proposition 2.20 and Proposition 3.12 imply that F (CX)#G ⇐⇒
A1(CR)

#A2 ⇐⇒ clX(A1)∩clX(A2) 6= ∅ ⇐⇒ X1∩clX(A1)∩clX(A2) 6= ∅ ⇐⇒
F ∩G 6= ∅ ⇐⇒ FCX1G. ✷

Corollary 3.15. The canonical extensional precontact algebra of an ex-
tensional 3-precontact space X = (X,X0,X1, R), defined in Definition 3.8, is in-
deed an extensional precontact algebra. Also, the Boolean algebra RC(X,X0,X1)
is a dense subset of the Boolean algebra RC(X1).

P r o o f. In Remark 3.11 we have already noted that the canonical ex-
tensional precontact algebra B(X) of X is a precontact algebra. We will now
show that it is an extensional precontact algebra. We only need to check that it
satisfies axiom (Cext). Let F ∈ RC(X,X0,X1) and F 6= X1. Then X1 \ F is a
non-empty open subset of X1. Since X1 is a weakly regular space, there exists
F1 ∈ RC(X1) such that F1 6= ∅ and F1 ⊆ X1 \F . Then the set A1 = clX(F1)∩X0

is a non-empty regular closed subset of X0 and clX(A1) = clX(F1) (see Fact 3.13).
Hence there exists a non-empty clopen subset A2 of X0 such that A2 ⊆ A1. Set
G = clX(A2)∩X1. Then G is a non-empty subset of F1 and G ∈ RC(X,X0,X1).
(Note that in such a way we have shown that RC(X,X0,X1) is a dense subset
of RC(X1).) Clearly, F ∩ G = ∅. Thus, by Proposition 3.14, we obtain that
F (−((CX)#))G. Therefore B(X) is an extensional precontact algebra. ✷

We will now associate with each extensional precontact algebra an exten-
sional 3-precontact space.

Definition 3.16. Let B = (B,C) be an extensional precontact algebra.
We associate with B an extensional 3-precontact space

X(B) = (X,X0,X1, R)

called the canonical extensional 3-precontact space of B, where (X,X0, R) is the
canonical 2-precontact space of the precontact algebra (B,C) (see Definition 2.21),
X1 = MClans(B,C) (thus X1 ⊆ X) and on X1 the subspace topology is taken.

We will need the following assertion which follows immediately from [6,
Proposition 3.5]:

Proposition 3.17. Let B = (B,C) be an extensional precontact algebra
and a ∈ B\{1}. Then there exists a maximal clan in B which does not contain a.

Proposition 3.18. Let B = (B,C) be an extensional precontact algebra.
Then the canonical extensional 3-precontact space X(B) = (X,X0,X1, R) of B
is indeed an extensional 3-precontact space.
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P r o o f. By Proposition 2.23, (X,X0, R) is a 2-precontact space. Hence,
the axiom (EPS1) is satisfied. Further, by Definition 2.21, the family {gB(a) | a ∈
B}, where gB(a) = {Γ ∈ X | a ∈ Γ}, is a closed base for a topology τ on X.
Hence the family {hB(a) | a ∈ B}, where hB(a) = X \ gB(a) = {Γ ∈ X | a 6∈ Γ},
is an open base for X. Let a ∈ B \ {1}. Then, by Proposition 3.17, there exists
x ∈ X1 such that a 6∈ x. We obtain that x ∈ hB(a) ∩ X1. Therefore, X1 is a
dense subspace of X. Hence, the axiom (EPS2) is satisfied.

We are now going to check the axiom (EPS3). Set, for every b ∈ B,

(21) gB1 (b) = gB(b) ∩X1.

Then {gB1 (a) | a ∈ B} is a closed base for the topology of X1 and, for every a ∈ B,
gB1 (a) = {Γ ∈ MClans(B,C#) | a ∈ Γ}. Note that, according to Definition 3.4,
the fact that B is an extensional precontact algebra implies that the contact
algebra (B,C#) is extensional. Hence, by the Representation Theorem of I.
Düntsch and M. Winter [12] (= Theorem 3.6 here) (see also [6, Theorem 5.1(i)
and Remark 5.2]) and its proof, the space X1 is a (compact) weakly regular
T1-space. Therefore, the axiom (EPS3) is satisfied.

Finally, we will check the axiom (EPS4). Recall that for every a ∈ B,
gB0 (a) = sB(a) (see Definition 2.21). Let x ∈ X1, i.e. x ∈ MClans(B,C). By
Definition 2.21, we have that R = RB ; hence, by Theorem 2.13 and Definition
2.21, sB(x) = {sB(a) | a ∈ x} is a maximal clan in the precontact algebra
(CO(X0), CR) (see (14)). We will show that sB(x) = Γx,X0. Indeed, using (13),
we obtain that sB(x) = {sB(a) | a ∈ x} = {sB(a) | a ∈ B,x ∈ gB(a)} =
{sB(a) | a ∈ B,x ∈ clX(sB(a))} = {F ∈ CO(X0) | x ∈ clX(F )} = Γx,X0 . Hence
Γx,X0 is a maximal clan in the precontact algebra (CO(X0), CR). So, the first
part of the axiom (EPS4) is established.

Let now Γ be a maximal clan in the precontact algebra (CO(X0), CR).
Set x = (sB)

−1(Γ), where sB : B −→ CO(X0) is the Stone map. Since, by
Theorem 2.13, the same map sB is an isomorphism between precontact algebras
(B,C) and (CO(X0), CR), we obtain that x ∈ MClans(B,C). Thus x ∈ X1

and sB(x) = Γ. Exactly as above, we obtain that sB(x) = Γx,X0 . Therefore,
Γ = Γx,X0 . Hence, the second part of the axiom (EPS4) is also established.

All this shows that (X,X0,X1, R) is an extensional 3-precontact space. ✷

Theorem 3.19 (Representation theorem for extensional precontact al-
gebras).

(a) Let B = (B,C) be an extensional precontact algebra and let

X(B) = (X,X0,X1, R)
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be the canonical extensional 3-precontact space of B. Then the function
gB1 , defined in (21), is a PCA-isomorphism between (B,C) and the canon-
ical extensional precontact algebra (RC(X,X0,X1), CX(B)) of X(B). The

same function gB1 is a CA-isomorphism between the CAs (RC(X,X0,X1),
C(X,X0,X1)) (see Lemma 3.3 for the notation C(X,X0,X1)) and (B,C#). The
algebra B is complete iff the sets RC(X,X0,X1) and RC(X1) coincide iff
the space X0 is extremally disconnected. The algebra B satisfies the axiom
(Cref) (resp., (Csym); (Ctr)) iff the extensional 3-precontact space X(B)
is reflexive (resp., symmetric; transitive). The algebra B is connected iff
X(B) is connected.

(b) There exists a bijective correspondence between the class of all, up to PCA-
isomorphism, (connected) extensional precontact algebras and the class of
all, up to EPS-isomorphism, (connected) extensional 3-precontact spaces.

P r o o f. (a) By Proposition 3.18, X(B) = (X,X0,X1, R) is an extensional
3-precontact space. By [6, Lemma 5.7(iii1)], the function gB1 : B −→ RC(X1)
is an injection and, for any a, b ∈ B, aC#b iff gB1 (a)CX1g

B
1 (b). Then [6, Lemma

5.3(vi)] implies that gB1 : B −→ RC(X1) is a dense Boolean embedding; moreover,
gB1 : B −→ RC(X1) becomes a Boolean isomorphism when B is complete. Hence,
gB1 : (B,C#) −→ (RC(X1), CX1) is a dense CA-embedding which becomes a CA-
isomorphism when B is complete. Using (13), we obtain that for every a ∈
B, gB1 (a) = X1 ∩ gB(a) = X1 ∩ clX(gB0 (a)) = X1 ∩ clX(X0 ∩ gB(a)) = X1 ∩
clX(sB(a)) (see (2) and Definition 2.21 for the notation sB and gB0 ). Hence,
gB1 (B) = RC(X,X0,X1). Therefore,

gB1 : (B,C#) −→ (RC(X,X0,X1), C(X,X0,X1))

is a (P)CA-isomorphism and, using Lemma 3.3, we obtain that the algebra B
is complete iff the sets RC(X,X0,X1) and RC(X1) coincide. Also, (14) and
Proposition 3.14 imply that

(22) gB1 : (B,C) −→ (RC(X,X0,X1), CX(B)) is a PCA-isomorphism.

Indeed, it is clear that gB1 = r1 ◦ s(B,C), where

s(B,C) : (B,C) −→ (CO(X0), CR), a 7→ sB(a),

and

(23) r1 : (CO(X0), CR) −→ (RC(X,X0,X1), CX(B)), A 7→ X1 ∩ clX(A);
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now we use the facts that, by (14), s(B,C) is a PCA-isomorphism, and by Propo-
sition 3.14 and Lemma 3.3(c), r1 is a PCA-isomorphism.

Further, the assertion about connectivity follows from [6, Lemma 5.7(iii3)]
(or Theorem 3.6 here) and all the rest of the assertions in (a) follows from The-
orem 2.24(a).

(b) Let us denote by EPA the set of all, up to PCA-isomorphism, extensional
precontact algebras and by EPS the set of all, up to EPS-isomorphism, extensional
3-precontact spaces. We will define two correspondences

Φ3 : EPA −→ EPS and Ψ3 : EPS −→ EPA

and we will show that their compositions Φ3 ◦ Ψ3 and Ψ3 ◦ Φ3 are equal to
the corresponding identities. We set, for every extensional precontact algebra
B = (B,C),

Φ3([B]) = [X(B)],

where X(B) is the canonical extensional 3-precontact space of B (see Definition
3.16), [B] is the class of all extensional precontact algebras which are PCA-
isomorphic to the extensional precontact algebra B, and, analogously, [X(B)] is
the class of all extensional 3-precontact spaces which are EPS-isomorphic to the
extensional 3-precontact space X(B). Further, for every extensional 3-precontact
space X = (X,X0,X1, R), we set

Ψ3([X ]) = [B(X)],

where B(X) is the canonical extensional precontact algebra of X (see Definition
3.8). It is easy to see that the correspondences Φ3 and Ψ3 are well-defined.

Using (22), we obtain that for every extensional precontact algebra B =
(B,C), Ψ3(Φ3([B])) = [B]. Thus we obtain that Ψ3 ◦Φ3 = idEPA.

We will now prove that Φ3 ◦ Ψ3 = idEPS. Let X = (X,X0,X1, R) be
an extensional 3-precontact space. Set (B,C) = (CO(X0), CR); then (B,C)
is PCA-isomorphic to the canonical extensional precontact algebra B(X) of X
(see Definition 3.8 and (23)). Let (X̂, X̂0, X̂1, R̂) be the canonical extensional
3-precontact space of (B,C) (see Definition 3.16). Then X̂ = Clans(B,C), X̂0 =
Ult(B), X̂1 = MClans(B,C) and R̂ = R(B,C). For every x ∈ X, set

f(x) = {a ∈ B | x ∈ clX(a)}(= Γx,X0).

Since (X,X0, R) is a 2-precontact space,

Ψ2([(X,X0, R)]) = [(B,C)] and Φ2([(B,C)]) = [(X̂, X̂0, R̂)],
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we obtain, by (the proof of) Theorem 2.24(b), that

f : (X,X0, R) −→ (X̂, X̂0, R̂), x 7→ f(x), is a PCS-isomorphism.

Hence, for showing that the same map f is an EPS-isomorphism between exten-
sional 3-precontact spaces X = (X,X0,X1, R) and (X̂, X̂0, X̂1, R̂), we need only
to show that f(X1) = X̂1.

Let x ∈ X1. Then f(x) = {F ∈ CO(X0) | x ∈ clX(F )} = Γx,X0 and

hence, by (EPCS4), f(x) ∈ X̂1. So, f(X1) ⊆ X̂1. Let Γ ∈ X̂1. Then, Γ ∈
MClans(CO(X0), CR) and hence, by (EPCS4), there exists x ∈ X1 such that
Γ = Γx,X0 , i.e. Γ = f(x). We have proved that f(X1) = X̂1. Therefore

f : (X,X0,X1, R) −→ (X̂, X̂0, X̂1, R̂) is an EPS-isomorphism.

Hence (Φ3 ◦Ψ3)([X ]) = [X ], i.e. Φ3 ◦Ψ3 = idEPS. Therefore,

(24) Φ3 : EPA −→ EPS is a bijection.

The statement for connected extensional precontact algebras follows from
(24) and (a). ✷

4. Extensional 3-contact spaces.

Definition 4.1 (Extensional 3-Contact spaces). A topological triple (X,
X0,X1) is called an extensional 3-contact space (abbreviated as 3ECS) if the
following conditions are satisfied:

(3ECS1) (X,X0) is a 2-contact space;

(3ECS2) X1 is a weakly regular T1-space;

(3ECS3) If x ∈ X1 then the set Γx,X0 (see (1)) is a maximal clan in the contact
algebra (CO(X0), δ(X,X0)) (see (15) for the notation δ(X,X0)); conversely,
for every maximal clan Γ in (CO(X0), δ(X,X0)) there exists a point x ∈ X1

such that Γ = Γx,X0.

An extensional 3-contact space (X,X0,X1) is called connected (resp., ex-
tremally disconnected) if the space X1 (resp., X0) is connected (resp., extremally
disconnected).

Definition 4.2. Let (X,X0,X1) be an extensional 3-contact space. Then
the contact algebra (RC(X,X0,X1), C(X,X0,X1)) (see Lemma 3.3 for the nota-
tion C(X,X0,X1)) is said to be the canonical extensional contact algebra of the
extensional 3-contact space (X,X0,X1).
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Definition 4.3. Let (B,C) be an extensional contact algebra and (X,X0)
be the canonical 2-contact space of (B,C). Set X1 = MClans(B,C). Then X1 ⊆
X. Take the subspace topology on X1. Then the triple (X,X0,X1) is called the
canonical extensional 3-contact space of the extensional contact algebra (B,C).

Definition 4.4. Let (X,X0,X1) and (X̂, X̂0, X̂1) be two extensional 3-
contact spaces. We say that (X,X0,X1) and (X̂, X̂0, X̂1) are 3ECS-isomorphic
(or, simply, isomorphic) if there exists a homeomorphism f : X −→ X̂ such that
f(X0) = X̂0 and f(X1) = X̂1.

Lemma 4.5. For every extensional 3-contact space (X,X0,X1) there ex-
ists a unique reflexive and symmetric binary relation R on X0 such that (X,X0,X1,

R) is an extensional 3-precontact space.

P r o o f. Let R be the reflexive and symmetric binary relation on X0

defined by (16) (see Lemma 2.30). Since (X,X0) is a 2-contact space, we have,
by Lemma 2.30 and (17), that (X,X0, R) is a 2-precontact space (and, thus, the
axiom (EPS1) is fulfilled) and for every F,G ∈ CO(X0), FCRG ⇐⇒ clX(F ) ∩
clX(G) 6= ∅; hence,

(25) FCRG ⇐⇒ Fδ(X,X0)G.

Therefore, the axiom (EPS4) follows from the axiom (3ECS3). Obviously, the
axioms (EPS2) and (EPS3) are fulfilled. Hence (X,X0,X1, R) is an extensional
3-precontact space. The proof of the uniqueness of the relation R is completely
analogous to that given in the proof of Lemma 2.30=[9, Lemma 7.5]. ✷

Corollary 4.6. Let (X,X0,X1) be an extensional 3-contact space. Then:

(a) for every F,G ∈ CO(X0), we have that (19) holds;

(b) the canonical extensional CA of the extensional 3-contact space (X,X0,X1) is
indeed an extensional contact algebra. Also, the Boolean algebra RC(X,X0,X1)
is a dense subset of the Boolean algebra RC(X1).

P r o o f. It follows from Lemma 4.5, Proposition 3.12, Proposition 3.14
and Corollary 3.15. Indeed, the assertion (a) follows immediately from Lemma
4.5 and Proposition 3.12. Further, if R is the unique reflexive and symmetric
binary relation onX0 such thatX = (X,X0,X1, R) is an extensional 3-precontact
space (see Lemma 4.5), then it is easy to see that CX ≡ (CX)# and thus CX ≡
C(X,X0,X1) (by Proposition 3.14). Now, the assertion (b) follows from Corollary
3.15. ✷
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Proposition 4.7. Let B = (B,C) be an extensional contact algebra.
Then the canonical extensional 3-contact space of B is indeed an extensional
3-contact space.

P r o o f. Let (X,X0,X1, R) be the canonical extensional 3-precontact
space of B. We will show that (X,X0,X1) is the canonical extensional 3-contact
space of B and that it is indeed an extensional 3-contact space. We have, by
Proposition 3.18, that (X,X0,X1, R) is an extensional 3-precontact space. Hence
(X,X0,X1) is a topological triple and also the axiom (3ECS2) is fulfilled. Fur-
ther, (X,X0, R) is the canonical 2-precontact space of B andX1 = MClans(B,C),
X1 ⊆ X and X1 is endowed with the subspace topology. By Lemma 2.11(d,e),
we have that R = RB is a reflexive and symmetric relation on X0. Thus, by
[9, Proposition 7.7], (X,X0) is a 2-contact space. Hence, the axiom (3ECS1)
is also fulfilled. For showing that axiom (3ECS3) takes place, it is enough to
prove that the relations CR and δ(X,X0) coincide. Note first that, by Proposition

2.7(b), CR ≡ (CR)
#. Now, using Proposition 3.14, (20) and (19), we obtain

that, for every F,G ∈ CO(X0), FCRG ⇐⇒ X1 ∩ clX(F ) ∩ clX(G) 6= ∅ ⇐⇒
clX(F ) ∩ clX(G) 6= ∅ ⇐⇒ Fδ(X,X0)G. So, we have proved that (X,X0,X1) is
an extensional 3-contact space. The fact that (X,X0,X1) is the canonical exten-
sional 3-contact space of B follows from Definition 4.3 and Definition 3.16. ✷

Theorem 4.8 (New representation theorem for extensional contact alge-
bras).

(a) Let (B,C) be an extensional contact algebra and let (X,X0,X1) be the
canonical extensional 3-contact space of (B,C) (see Definition 4.3). Then
the function gB1 , defined in (21), is a CA-isomorphism between (B,C)
and the canonical extensional contact algebra (RC(X,X0,X1), C(X,X0,X1))
of the extensional 3-contact space (X,X0,X1). The sets RC(X,X0,X1)
and RC(X1) coincide iff the algebra (B,C) is complete iff the space X0

is extremally disconnected. The contact algebra (B,C) is connected iff the
extensional 3-contact space (X,X0,X1) is connected.

(b) There exists a bijective correspondence Φc
3 between the class of all, up to

CA-isomorphism, (connected) extensional contact algebras and the class of
all, up to 3ECS-isomorphism, (connected) extensional 3-contact spaces. It
is defined by the formula

Φc
3([(B,C)]) = [(X,X0,X1)],

where (B,C) is an ECA and (X,X0,X1) is the canonical extensional 3-
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contact space of (B,C). Also, the correspondence

Ψc
3 = (Φc

3)
−1

is defined by the formula

Ψc
3([(X,X0,X1)]) = [(B,C)],

where (X,X0,X1) is an extensional 3-contact space and (B,C) is its canon-
ical extensional contact algebra (see Definition 4.2).

(c) There exists a bijective correspondence Φcc
3 between the class of all, up to

CA-isomorphism, (connected) complete extensional contact algebras and the
class of all, up to 3ECS-isomorphism, (connected) extremally disconnected
extensional 3-contact spaces. The correspondence Φcc

3 is just the restriction
of the correspondence Φc

3 defined in (b) here.

P r o o f. It follows from Lemma 4.5 and Theorem 3.19 (and is analogous
to the proof of Theorem 2.31=[9, Theorem 7.9]). ✷

We are now going to obtain an assertion from [6] (namely, Theorem
5.1(ii)(the case for complete extensional CAs) there) as a corollary of Theorem
4.8. This assertion concerns the class of C-weakly regular spaces introduced in
[6] (see Definition 4.9 below). We start with recalling and proving some prelim-
inary assertions. Then we derive [6, Theorem 5.1(ii)(for complete ECAs)] from
Theorem 4.8 (see Corollary 4.14 below).

Let X be a set and Γ be a family of subsets of X. Recall that the family

Γ is said to be fixed if
⋂

Γ 6= ∅.

Definition 4.9 ([6]). A weakly regular T1-space (X, τ) is said to be C-
weakly regular if every maximal clan Γ in (RC(X), CX) is fixed.

Since every clan is contained in a maximal clan (see [6, Fact 3.3(iii)]), we
obtain that a weakly regular T1-space (X, τ) is C-weakly regular iff every clan
in (RC(X), CX) is fixed. Using this fact and the proof of Proposition 2.33=[9,
Proposition 7.18], we obtain a proof of the following assertion which was stated
in [6] without proof.

Proposition 4.10 ([6, Fact 4.2]). Every C-weakly regular space X is a
compact space.

In [6, Proposition 4.4(i)], we have observed that if X is a topological
space then every fixed maximal clan in (RC(X), CX ) is a point-clan. Hence,
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a weakly regular T1-space (X, τ) is C-weakly regular iff every maximal clan in
(RC(X), CX ) is a point-clan.

Proposition 4.11. If (X,X0,X1) is an extremally disconnected exten-
sional 3-contact space, then the space X1 is C-weakly regular.

P r o o f. Since the spaceX0 is extremally disconnected, we obtain, by The-
orem 4.8, that (RC(X,X0,X1), C(X,X0,X1)) = (RC(X1), CX1). By Lemma 4.5,
there exists a unique reflexive and symmetric binary relations R on X0 such that
(X,X0,X1, R) is an extensional 3-precontact space. Then, by Proposition 2.7(b),
CR = (CR)

#. Now, applying (20), (11) and Proposition 3.14, we obtain that the
contact algebras (RC(X1), CX1) and (RC(X0), δ(X,X0)) are CA-isomorphic (note
that RC(X0) ≡ CO(X0) because the space X0 is extremally disconnected). De-
note by ϕ the isomorphism between them. Then, for every F ∈ RC(X1), we have
that ϕ(F ) = X0 ∩ clX(F ).

Let now Γ ∈ MClans(RC(X1), CX1). Then ϕ(Γ) ∈ MClans(CO(X0),
δ(X,X0)). By (3ECS3), there exists a point x ∈ X1 such that ϕ(Γ) = Γx,X0 . Since

ϕ−1(G) = X1∩ clX(G), for every G ∈ RC(X0), we obtain that Γ = ϕ−1(Γx,X0) =
{X1 ∩ clX(G) | G ∈ Γx,X0}. Obviously, x ∈ X1 ∩ clX(G) for every G ∈ Γx,X0 .

Thus,
⋂

Γ 6= ∅. Since, by (3ECS2), X1 is a weakly regular T1-space, we obtain

that X1 is a C-weakly regular space. ✷

The next assertion was, in fact, proved in [6], although it was not formu-
lated explicitly there:

Proposition 4.12. A weakly regular T1-space X is C-weakly regular iff
X is homeomorphic to the space (MClans(RC(X), CX), τ), where the topology
τ has as a closed base the family {gB1 (F ) = {Γ ∈ MClans(RC(X), CX) | F ∈
Γ} | F ∈ RC(X)}.

P r o o f. Use Proposition 3.5, [6, Proposition 3.5 and Definitions 4.3, 4.4]
and the proof of (II(ii)) given on page 239 of [6]. ✷

We will need the following assertion:

Proposition 4.13. If (X,X0,X1) and (X ′,X ′

0,X
′

1) are two extremally
disconnected extensional 3-contact spaces such that the spaces X1 and X ′

1 are
homeomorphic, then (X,X0,X1) and (X ′,X ′

0,X
′

1) are 3ECS-isomorphic.

P r o o f. Since X0 (resp., X ′

0) is extremally disconnected, we obtain, ar-
guing as in the beginning of the proof of Proposition 4.11, that the canonical
contact algebra of (X,X0,X1) (resp., (X ′,X ′

0,X
′

1)) is (B,C) = (RC(X1), CX1)
(resp., (B′, C ′) = (RC(X ′

1), CX′

1
)). Since the spaces X1 and X ′

1 are homeomor-



Topological representation of precontact algebras . . . – II 59

phic, we obtain that the contact algebras (B,C) and (B′, C ′) are CA-isomorphic.
By Theorem 4.8(c), we obtain that the space (X,X0,X1) (resp., (X

′,X ′

0,X
′

1)) is
isomorphic to the canonical 3-contact space of (B,C) (resp., (B′, C ′)). Thus, the
3-contact spaces (X,X0,X1) and (X ′,X ′

0,X
′

1) are 3ECS-isomorphic. ✷

Corollary 4.14 ([6]). There exists a bijective correspondence between the
class of all, up to PCA-isomorphism, (connected) complete extensional contact
algebras and the class of all, up to homeomorphism, (connected) C-weakly regular
spaces.

P r o o f. By Theorem 4.8(c), there exists a bijective correspondence be-
tween the class CECA of all, up to PCA-isomorphism, complete extensional con-
tact algebras and the class EDECS of all, up to 3ECS-isomorphism, extremally
disconnected extensional 3-contact spaces. We will show that there exists a bi-
jective correspondence between the class EDECS and the class CWRS of all, up
to homeomorphism, C-weakly regular spaces.

Let us put
Ψ′

3([(X,X0,X1)]) = [X1],

for every extremally disconnected extensional 3-contact space (X,X0,X1). Then,
by Proposition 4.11,

Ψ′

3 : EDECS −→ CWRS.

Using Proposition 4.13, we obtain that Ψ′

3 is an injection. For showing that Ψ′

3 is
a surjection, let X1 be a C-weakly regular space. Then (B,C) = (RC(X1), CX1)
is a complete extensional contact algebra. Let (X ′,X ′

0,X
′

1) be the canonical
extensional 3-contact space of (B,C) (see Definition 4.3). Then, by Theorem
4.8(a)(c) and its proof, (X ′,X ′

0,X
′

1) is an extremally disconnected extensional 3-
contact space. Further, Definition 4.3 and Proposition 4.12 show that the spaces
X1 and X ′

1 are homeomorphic. Thus Ψ′

3([(X
′,X ′

0,X
′

1)]) = [X1]. Therefore Ψ′

3 is
a surjection. All this shows that Ψ′

3 is a bijection.
The connected case follows now from Theorem 4.8(c). ✷

5. Extensional precontact algebras satisfying some addi-

tional axioms.

Definition 5.1 (Clusters and co-ends). Let B = (B,C) be a precontact
algebra.
• A clan Γ in B is called a cluster in B if it satisfies the following condition:

(Clust) If for every x ∈ Γ we have xC#y then y ∈ Γ.

• A clan Γ in B is called a co-end in B if it satisfies the following condition:
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(Coend) If x 6∈ Γ then there exists a y 6∈ Γ such that x(−C#)y∗.

The set of all clusters (resp., co-ends) in B is denoted by Clust(B) (resp.,
Coend(B)).

Definition 5.2 (Some new axioms for precontact algebras). Let (B,C) be
a precontact algebra. We will regard the following axioms for precontact algebras
whose analogues for contact algebras were defined in [6]:

N-regularity Axiom. If xC#y then there exists a cluster Γ containing x and y.

Regularity Axiom. If xC#y then there exists a co-end Γ containing x and y.

Definition 5.3. Let (B,C) be an extensional precontact algebra. It is
called an N-regular (resp., regular; normal) precontact algebra if it satisfies the
N-regularity axiom (resp., Regularity axiom; the axiom (Ctr#)).

Definition 5.4. A topological space (X, τ) is said to be strongly s-regular
([16]) if the family RC(X) is a network for (X, τ) (i.e., for every point x ∈ X and
every open neighborhood U of x there exists an F ∈ RC(X) such that x ∈ F ⊆ U).
A topological space (X, τ) is said to be N-regular ([6]) if it is semiregular and
strongly s-regular. (Note that when we have introduced in [6] the notion of “N-
regular space”, we were not aware that the notion of “strongly s-regular space”
was already introduced.)

Obviously, every regular space is N-regular and every N-regular space is
weakly regular.

The next representation theorems for N-regular (resp., regular; normal)
contact algebras were proved by us in [6, Theorem 5.3(a), Theorem 5.2(a)]:

Theorem 5.5 ([6]). For each N-regular (resp., regular) contact algebra
B = (B,C) there exists a dense embedding gB of B into a standard N-regular
(resp., regular) contact algebra (RC(X, τ), CX ), where (X, τ) is an N-regular T1-
space (resp., regular T2-space). When B is complete then: (a) the embedding gB
becomes an isomorphism between contact algebras (B,C) and (RC(X), CX), and
(b) the algebra B is connected iff the space X is connected.

Theorem 5.6 ([6]). For each normal contact algebra B = (B,C) there
exists a dense embedding gB of B into a standard normal contact algebra
(RC(X, τ), CX ), where (X, τ) is a compact T2-space. The algebra B is connected
iff the space X is connected. When B is complete then the embedding gB becomes
an isomorphism between contact algebras (B,C) and (RC(X), CX ).

Definition 5.7. A quadruple X = (X,X0,X1, R) is called an N-regular
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3-precontact space (abbreviated as NPS) (resp., regular 3-precontact space (ab-
breviated as RPS)) if it satisfies the following conditions:

(3PCS1) (X,X0, R) is a 2-precontact space;

(3PCS2) X1 is a dense subspace of X;

(3PCS3) X1 is an N-regular T1-space (resp., regular T2-space);

(3PCS4) If x ∈ X1 then the set Γx,X0 (see (1)) is a cluster (resp., co-end) in
the precontact algebra (CO(X0), CR); conversely, for every cluster (resp.,
co-end) Γ in (CO(X0), CR) there exists a point x ∈ X1 such that Γ = Γx,X0.

(3PCS5) For every F,G ∈ CO(X0), (19) holds.

A quadruple X = (X,X0,X1, R) is called a normal 3-precontact space if
it satisfies conditions (3PCS1), (3PCS2) and the following two conditions:

(3PCS3N) X1 is a compact T2-space;

(3PCS4N) If x ∈ X1 then the set Γx,X0 is a cluster in the precontact algebra
(CO(X0), CR); conversely, for every cluster Γ in (CO(X0), CR) there exists
a point x ∈ X1 such that Γ = Γx,X0.

Replacing in Definitions 3.8, 3.9 and 3.10 the word “extensional” with
the word “N-regular” (resp., “regular”, “normal”), we introduce the notions of
canonical N-regular (resp., regular; normal) precontact algebra B(X) of an N-
regular (resp., regular; normal) 3-precontact space X (using the same definition
of the relation CX), as well as the notions of reflexive (or symmetric; transitive;
connected) N-regular (resp., regular; normal) 3-precontact space, and the notions
of isomorphism between such spaces.

Remark 5.8. The axiom (3PCS5) is omitted in [8]; this is a misprint.

In what follows, we will need the following assertions from [6]:

Proposition 5.9. Let (B,C) be an N-regular (resp., regular) (pre)contact
algebra. Then for every b ∈ B \ {1} there exists a cluster (resp., co-end) Γ such
that b 6∈ Γ.

P r o o f. It is contained in the proof of [6, Lemma 5.7(iv1)]. For complete-
ness, we will give it here. Let b ∈ B \{1}. Then, by the Axiom of Extensionality,
there exists an a ∈ B \ {0} such that a(−C#)b. Since aC#a, the N-regularity
(resp., Regularity) Axiom implies that there exists a cluster (resp., a co-end) Γ
in (B,C) such that a ∈ Γ. Since a(−C#)b, we obtain that b 6∈ Γ. ✷
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Proposition 5.10 ([6, Proposition 3.1(i)(ii) and Corollary 3.4]). Let
(B,C) be a (pre)contact algebra which satisfies the Interpolation Axiom (Ctr#)).
Then:

(a) the notions of a maximal clan, cluster and co-end coincide in (B,C);

(b) for every a, b ∈ B such that aC#b, there exists a cluster Γ in (B,C) which
contains a and b.

Proposition 5.11. Let (B,C) be a normal (pre)contact algebra. Then
for every b ∈ B \ {1} there exists a cluster Γ such that b 6∈ Γ.

P r o o f. Using Proposition 5.10(b), we can argue as in the proof of Propo-
sition 5.9. ✷

Proposition 5.12. Let (X,X0,X1, R) be a normal 3-precontact space.
Then, for every F,G ∈ CO(X0), (19) holds.

P r o o f. Having in mind Proposition 5.10(a), we can repeat the proof of
Proposition 3.12 replacing in it the axiom (EPS4) by the axiom (3PCS4N). ✷

Proposition 5.13. Let X = (X,X0,X1, R) be an N-regular (resp., reg-
ular; normal) 3-precontact space. Then, for every F,G ∈ RC(X,X0,X1), we
have that F (CX)#G ⇐⇒ F ∩ G 6= ∅ ⇐⇒ FCX1G; if F = X1 ∩ clX(A1) and
G = X1 ∩ clX(A2), where A1, A2 ∈ CO(X0), then FCXG ⇐⇒ A1CRA2.

P r o o f. The only difference with the proof of Proposition 3.14 is that
in it we now replace Proposition 3.12 by the axiom (3PCS5) or by Proposition
5.12. ✷

Proposition 5.14. The canonical N-regular (resp., regular; normal) pre-
contact algebra of an N-regular (resp., regular; normal) 3-precontact space X =
(X,X0,X1, R), defined in Definition 5.7, is indeed an N-regular (resp., regular;
normal) precontact algebra. Also, the Boolean algebra RC(X,X0,X1) is a dense
subset of the Boolean algebra RC(X1).

P r o o f. Let X = (X,X0,X1, R) be an N-regular (resp., regular; normal)
3-precontact space. Since every N-regular (resp., regular; compact T2) space is
weakly regular, repeating the proof of Corollary 3.15 and replacing in it Proposi-
tion 3.14 with Proposition 5.13, we obtain that RC(X,X0,X1) is a dense subset
of the Boolean algebra RC(X1) and the canonical N-regular (resp., regular; nor-
mal) precontact algebra B(X) of X is an extensional precontact algebra. We will
show that it is an N-regular (resp., regular; normal) precontact algebra.

Let first X = (X,X0,X1, R) be an N-regular 3-precontact space. Let
F,G ∈ RC(X,X0,X1) and FCXG. Then F (CX)#G and hence, by Proposition
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5.13, we obtain that F ∩G 6= ∅. Let x ∈ F ∩G. Then x ∈ X1 and, by the axiom
(3PCS4), the set Γx,X0 is a cluster in the precontact algebra (CO(X0), CR). Using
Lemma 3.3(c) and Proposition 5.13, we obtain that the map

r1 : (CO(X0), CR) −→ (RC(X,X0,X1), CX), A 7→ X1 ∩ clX(A),

is a PCA-isomorphism. Hence, Γ = r1(Γx,X0) is a cluster in B(X). Since, obvi-
ously, F,G ∈ Γ, we obtain that the N-regularity axiom is fulfilled in B(X).

The proof of the case whenX is a regular 3-precontact space is completely
analogous.

Let now X = (X,X0,X1, R) be a normal 3-precontact space. Then, by
Proposition 5.13, we have that for every F,G ∈ RC(X,X0,X1), F (CX)#G ⇐⇒
FCX1G. The space X1 is compact Hausdorff and thus it is a normal space. Since,
for every F,G ∈ RC(X,X0,X1), we have that F ≪CX1

G ⇐⇒ F ⊆ intX1(G),
the normality of X1 implies readily that B(X) satisfies the axiom (Ctr#). Hence
B(X) is a normal PCA. ✷

Definition 5.15. Let B = (B,C) be an N-regular (resp., regular; normal)
precontact algebra. We associate with B an N-regular (resp., regular; normal)
3-precontact space X(B) = (X,X0,X1, R) called the canonical N-regular (resp.,
regular; normal) 3-precontact space of B. Namely, let (X,X0, R) be the canonical
2-precontact space of the precontact algebra (B,C); we set X1 = Clust(B,C)
(resp., X1 = Coend(B,C); X1 = Clust(B,C)); then X1 ⊆ X and we take the
subspace topology on X1. (See Definition 5.1 for the notation Clust(B,C) and
Coend(B,C).)

Proposition 5.16. Let B = (B,C) be an N-regular (resp., regular; nor-
mal) precontact algebra. Then the canonical N-regular (resp., regular; normal)
3-precontact space X(B) = (X,X0,X1, R) of B is indeed an N-regular (resp.,
regular; normal) 3-precontact space.

P r o o f. Let B = (B,C) be an N-regular precontact algebra. Then, by
Definition 5.15 and Proposition 2.23, the axiom (3PCS1) is satisfied. The proof
that the axiom (3PCS2) (resp., (3PCS3)) is satisfied is almost identical with
that one, given in the proof of Proposition 3.18, that the axiom (EPS2) (resp.,
(EPS3)) is satisfied. The only difference is that now we use Proposition 5.9 (resp.,
Theorem 5.5) instead of Proposition 3.17 (resp., Theorem 3.6). The situation is
the same with the axiom (3PCS4): the only difference is that now we speak about
clusters instead of maximal clans. So, it remains to prove the axiom (3PCS5).
Let F,G ∈ CO(X0) and clX(F )∩ clX(G) 6= ∅. Since (X,X0, R) is a 2-precontact
space, it satisfies the axiom (PCS4); therefore, we obtain that F (CR)

#G. There
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exist a, b ∈ B such that F = sB(a) and G = sB(b). Now, by Theorem 2.13(a),
we obtain that a(C#)b. Thus, by the N-regularity Axiom, there exists a cluster
Γ in (B,C) containing a and b. Then, obviously, Γ ∈ X1 ∩ gB(a) ∩ gB(b). Since
sB(c) = gB0 (c), for every c ∈ B (see Remark 2.22), using (13), we obtain that
X1 ∩ clX(F ) ∩ clX(G) 6= ∅. The converse implication is obvious. Hence, the
axiom (3PCS5) is satisfied as well. Therefore X(B) = (X,X0,X1, R) is indeed
an N-regular 3-precontact space.

The proof for the regular precontact algebras is analogous. The same is
true for the normal precontact algebras but in this case we have to use Proposition
5.11 and Theorem 5.6; also, we don’t need to check the axiom (3PCS5). ✷

Theorem 5.17 (Representation theorem for N-regular and regular pre-
contact algebras).

(a) Let B = (B,C) be an N-regular (resp., regular) precontact algebra and let

X(B) = (X,X0,X1, R)

be the canonical N-regular (resp., regular) 3-precontact space of B. Then
the function gB1 , defined in (21), is a PCA-isomorphism between (B,C) and
the canonical N-regular (resp., regular) precontact algebra

(RC(X,X0,X1), CX(B))

of X(B). The same function gB1 is a PCA-isomorphism between the contact
algebras (B,C#) and (RC(X,X0,X1), C(X,X0,X1)). The sets RC(X,X0,X1)
and RC(X1) coincide iff the algebra B is complete iff the space X0 is ex-
tremally disconnected. The algebra B satisfies the axiom (Cref) (resp.,
(Csym); (Ctr)) iff the N-regular (resp., regular) 3-precontact space X(B)
is reflexive (resp., symmetric; transitive). If the algebra B is complete then
it is connected iff X(B) is connected.

(b) There exists a bijective correspondence between the class of all, up to PCA-
isomorphism, N-regular (resp., regular) precontact algebras and the class of
all, up to respective isomorphism, N-regular (resp., regular) 3-precontact
spaces.

(c) There exists a bijective correspondence between the class of all, up to PCA-
isomorphism, (connected) complete N-regular (resp., regular) precontact al-
gebras and the class of all, up to respective isomorphism, (connected) ex-
tremally disconnected N-regular (resp., regular) 3-precontact spaces.
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P r o o f. The proof of this theorem is completely analogous to that of
Theorem 3.19. The only difference is that instead of Proposition 3.18, [6, Lemma
5.7(iii1)], Proposition 3.14, Theorem 3.6, we have now to use in it, respectively,
Proposition 5.16, [6, Lemma 5.7(iv1)] (resp., [6, Lemma 5.7(v1)]), Proposition
5.13, Theorem 5.5. ✷

Theorem 5.18 (Representation theorem for normal precontact alge-
bras).

(a) Let B = (B,C) be a normal precontact algebra and let

X(B) = (X,X0,X1, R)

be the canonical normal 3-precontact space of B. Then the function gB1 ,
defined in (21), is a PCA-isomorphism between (B,C) and the canonical
normal precontact algebra

(RC(X,X0,X1), CX(B))

of X(B). The same function gB1 is a PCA-isomorphism between the contact
algebras (B,C#) and (RC(X,X0,X1), C(X,X0,X1)). The sets RC(X,X0,X1)
and RC(X1) coincide iff the algebra B is complete iff the space X0 is ex-
tremally disconnected. The algebra B satisfies the axiom (Cref) (resp.,
(Csym); (Ctr)) iff the normal 3-precontact space X(B) is reflexive (resp.,
symmetric; transitive). The algebra B is connected iff X(B) is connected.

(b) There exists a bijective correspondence between the class of all, up to PCA-
isomorphism, (connected) normal precontact algebras and the class of all,
up to respective isomorphism, (connected) normal 3-precontact spaces.

P r o o f. The proof of this theorem is completely analogous to that of
Theorem 3.19. The only difference is that instead of Proposition 3.18, [6, Lemma
5.7(iii1)], Proposition 3.14, Theorem 3.6, we have now to use in it, respectively,
Proposition 5.16, Proposition 5.10(a), [6, Lemma 5.7(iii1)], Proposition 5.13, The-
orem 5.6. ✷

6. N-regular, regular and normal 3-contact spaces.

Definition 6.1 (N-regular, regular and normal 3-contact spaces). A topo-
logical triple (X,X0,X1) is called an N-regular (resp., regular) 3-contact space if
the following conditions are satisfied:

(3−1) (X,X0) is a 2-contact space;
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(3−2) X1 is an N-regular T1-space (resp., regular T2-space);

(3−3) If x ∈ X1 then the set Γx,X0 (see (1)) is a cluster (resp., co-end) in the
contact algebra (CO(X0), δ(X,X0)); conversely, for every cluster (resp., co-
end) Γ in (CO(X0), δ(X,X0)) there exists a point x ∈ X1 such that Γ = Γx,X0;

(3− 4) For every F,G ∈ CO(X0), (19) holds.

A topological triple (X,X0,X1) is called a normal 3-contact space if it
satisfies axiom (3−1) and the following two conditions:

(3−2N) X1 is a compact Hausdorff space;

(3−3N) If x ∈ X1 then the set Γx,X0 is a cluster in the CA (CO(X0), δ(X,X0));
conversely, for every cluster Γ in (CO(X0), δ(X,X0)) there exists a point
x ∈ X1 such that Γ = Γx,X0.

Replacing in Definitions 4.2, 4.3 and 4.4 the word “extensional” with
the word “N-regular” (resp., “regular”, “normal”), we introduce the notions of
canonical N-regular (resp., regular; normal) contact algebra of an N-regular
(resp., regular; normal) 3-contact space X, as well as the notions of canon-
ical N-regular (resp., regular; normal) 3-contact space of an N-regular (resp.,
regular; normal) contact algebra (B,C), and the notions of isomorphism between
such spaces. An N-regular (resp., regular; normal) 3-contact space (X,X0,X1)
is called connected (resp., extremally disconnected) if the space X1 is connected
(resp., the space X0 is extremally disconnected).

Lemma 6.2. For every N-regular (respectively, regular; normal) 3-contact
space (X,X0,X1) there exists a unique reflexive and symmetric binary relation
R on X0 such that (X,X0,X1, R) is an N-regular (resp., regular; normal) 3-
precontact space.

P r o o f. It is similar to the proof of Lemma 4.5. ✷

As in the case of extensional contact algebras, the above lemma implies
easily the following corollaries:

Corollary 6.3. Let (X,X0,X1) be a normal 3-contact space. Then, for
every F,G ∈ CO(X0), we have that (19) holds.

Corollary 6.4. Let (X,X0,X1) be an N-regular (respectively, regular;
normal) 3-contact space. Then the canonical N-regular (respectively, regular;
normal) contact algebra of the N-regular (respectively, regular; normal) 3-contact
space (X,X0,X1) is indeed an N-regular (respectively, regular; normal) contact
algebra. Also, the Boolean algebra RC(X,X0,X1) is a dense subset of the Boolean
algebra RC(X1).
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Proposition 6.5. Let B = (B,C) be an N-regular (respectively, regu-
lar; normal) CA. Then the canonical N-regular (respectively, regular; normal)
3-contact space (X,X0,X1) of B is indeed an N-regular (respectively, regular;
normal) 3-contact space.

P r o o f. It is similar to the proof of Proposition 4.7. ✷

Theorem 6.6 (New representation theorem for N-regular and regular
contact algebras).

(a) Let (B,C) be an N-regular (resp., regular) contact algebra and let (X,X0,

X1) be the canonical N-regular (resp., regular) 3-contact space of (B,C).
Then the function gB1 , defined in (21), is a CA-isomorphism between (B,C)
and the canonical N-regular (resp., regular) contact algebra (RC(X,X0,X1),
C(X,X0,X1)) of the N-regular (resp., regular) 3-contact space (X,X0,X1).
The sets RC(X1) and RC(X,X0,X1) coincide iff the algebra (B,C) is com-
plete iff the space X0 is extremally disconnected. If the N-regular (resp., reg-
ular) contact algebra (B,C) is complete, then it is connected iff its canonical
N-regular (resp., regular) 3-contact space (X,X0,X1) is connected.

(b) There exists a bijective correspondence between the class of all, up to CA-
isomorphism, N-regular (resp., regular) contact algebras and the class of all,
up to respective isomorphism, N-regular (resp., regular) 3-contact spaces.

(c) There exists a bijective correspondence between the class of all, up to CA-
isomorphism, (connected) complete N-regular (resp., regular) contact al-
gebras and the class of all, up to respective isomorphism, (connected) ex-
tremally disconnected N-regular (resp., regular) 3-contact spaces.

P r o o f. It follows from Lemma 6.2 and Theorem 5.17 (and is analogous
to the proof of Theorem 2.31=[9, Theorem 7.9]). ✷

Theorem 6.7 (New representation theorem for normal contact alge-
bras).

(a) Let (B,C) be a normal contact algebra and let (X,X0,X1) be the canonical
normal 3-contact space of (B,C). Then the function gB1 , defined in (21), is
a CA-isomorphism between (B,C) and the canonical normal contact alge-
bra (RC(X,X0,X1), C(X,X0,X1)) of the normal 3-contact space (X,X0,X1).
The sets RC(X,X0,X1) and RC(X1) coincide iff the algebra (B,C) is com-
plete iff the space X0 is extremally disconnected. The normal contact algebra
(B,C) is connected iff its canonical normal 3-contact space (X,X0,X1) is
connected.
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(b) There exists a bijective correspondence between the class of all, up to CA-
isomorphism, (connected) normal contact algebras and the class of all, up
to isomorphism, (connected) normal 3-contact spaces.

(c) There exists a bijective correspondence between the class of all, up to CA-
isomorphism, (connected) complete normal contact algebras and the class
of all, up to isomorphism, (connected) extremally disconnected normal 3-
contact spaces.

P r o o f. It follows from Lemma 6.2 and Theorem 5.18 (and is analogous
to the proof of Theorem 2.31=[9, Theorem 7.9]). ✷

Definition 6.8 ([6]). An N-regular space X is said to be CN-regular if
every cluster in (RC(X), CX) is fixed. A regular space (X, τ) is called C-regular
if every co-end in (RC(X), CX) is fixed.

Proposition 6.9. If (X,X0,X1) is an extremally disconnected N-regular
(resp., regular) 3-contact space, then the space X1 is CN-regular (resp., C-regular).

P r o o f. It is similar to the proof of Proposition 4.11. ✷

Proposition 6.10. An N-regular T1-space (resp., regular T2-space) X is
CN-regular (resp., C-regular) iff X is homeomorphic to the space (Clust(RC(X),
CX), τ) (resp., (Coend(RC(X), CX ), τ)), where the topology τ has as a closed
base the family

{g1(F ) = {Γ ∈ Clust(RC(X), CX) | F ∈ Γ} | F ∈ RC(X)}

(resp., {g2(F ) = {Γ ∈ Coend(RC(X), CX) | F ∈ Γ} | F ∈ RC(X)}).

P r o o f. See [6, Proposition 4.7 and the proof of I(ii) on page 241] for the
N-regular case. For the proof of the case of regular spaces see [6, Proposition
4.10, Theorem 4.2 and the proof of II(ii) on page 241]. ✷

Proposition 6.11. If (X,X0,X1) and (X ′,X ′

0,X
′

1) are two N-regular
(resp., regular; normal) extremally disconnected 3-contact spaces such that the
spaces X1 and X ′

1 are homeomorphic, then (X,X0,X1) and (X ′,X ′

0,X
′

1) are iso-
morphic.

P r o o f. It is similar to the proof of Proposition 4.13. The only difference
is that we now use Theorems 6.6(c) and 6.7(c) instead of Theorem 4.8(c). ✷

Corollary 6.12 ([6]). There exists a bijective correspondence between the
class of all, up to CA-isomorphism, N-regular (resp., regular; normal) (connected)



Topological representation of precontact algebras . . . – II 69

complete contact algebras and the class of all, up to homeomorphism, (connected)
CN-regular T1-spaces (resp., C-regular T2-spaces; compact T2-spaces).

P r o o f. Using Propositions 6.10 and 6.11, we can argue as in the proof
of Corollary 4.14. ✷

7. Some classes of compact T0-extensions.

Definition 7.1. An extension of a space X is a pair (Y, f), where Y is
a space and f : X −→ Y is a dense embedding of X into Y .

Two extensions (Yi, fi), i = 1, 2, of X are called isomorphic (or equiva-
lent) if there exists a homeomorphism ϕ : Y1 −→ Y2 such that ϕ◦f1 = f2. Clearly,
the relation of isomorphism is an equivalence in the class of all extensions of X;
the equivalence class of an extension (Y, f) of X will be denoted by [(Y, f)].

We write

(Y1, f1) ≤ (Y2, f2)

and say that the extension (Y2, f2) is projectively larger than the extension (Y1, f1)
if there exists a continuous mapping f : Y2 −→ Y1 such that f ◦ f2 = f1. This
relation is a preorder (i.e., it is reflexive and transitive). Setting for every two
extensions (Yi, fi), i = 1, 2, of a space X, [(Y1, f1)] ≤ [(Y2, f2)] iff (Y1, f1) ≤
(Y2, f2), we obtain a well-defined relation on the class of all, up to equivalence,
extensions of X; obviously, it is also a preorder (see, e.g., [1]).

We write

(Y1, f1) ≤in (Y2, f2)

and say that the extension (Y2, f2) is injectively larger than the extension (Y1, f1)
if there exists a continuous mapping f : Y1 −→ Y2 such that f ◦ f1 = f2 and
f is a homeomorphism from Y1 to the subspace f(Y1) of Y2. This relation is
a preorder. Setting for every two extensions (Yi, fi), i = 1, 2, of a space X,
[(Y1, f1)] ≤in [(Y2, f2)] iff (Y1, f1) ≤in (Y2, f2), we obtain a well-defined relation
on the class of all, up to equivalence, extensions of X; obviously, it is also a
preorder (see, e.g., [1]).

Notation 7.2. Let Y be a space. We will denote by C-semireg(Y ) (resp.,
by ConC-semireg(Y )) the class of all, up to equivalence, (connected) C-semiregular
extensions of Y .

If B is a Boolean algebra, then we denote by CRel(B) (resp., CCRel(B))
the set of all (connected) contact relations on B. We define a relation “≤” on
the set CRel(B) setting, for any C1, C2 ∈ CRel(B), C1 ≤ C2 ⇐⇒ C1 ⊇ C2. We
will denote again by “≤” the restriction of the relation “≤” to the set CCRel(B).
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The next theorem was proved in [9]. We will give here a sketch of its
proof because it and the functions defined in it will be used later on.

Theorem 7.3 ([9]). Let Y be an extremally disconnected compact Haus-
dorff space and B = RC(Y ). Then the ordered sets (CRel(B),≤) and
(C-semireg(Y ),≤), as well as the ordered sets (CRel(B),⊆) and (C-semireg(Y ),
≤in), are isomorphic (see Definition 7.1 for the relations “≤” and “≤in” on
C-semireg(Y )). Also, the ordered sets (CCRel(B),≤) and (ConC-semireg(Y ),≤),
as well as the ordered sets (CCRel(B),⊆) and (ConC-semireg(Y ),≤in), are iso-
morphic.

S k e t c h o f t h e p r o o f. Let (X, f) be a C-semiregular extensions of
Y . Set X ′ = f(Y ). Then, clearly, the map

e : (RC(X ′), δ(X,X′)) −→ (RC(X), CX), F 7→ clX(F ),

is a CA-isomorphism (note that RC(X ′) = CO(X ′)). For every F,G ∈ B, set

(26) FC(X,f)G ⇐⇒ clX(f(F )) ∩ clX(f(G)) 6= ∅,

i.e., FC(X,f)G ⇐⇒ f(F )δ(X,X′)f(G). Then, obviously, (B,C(X,f)) is a contact
algebra. Set

ϕ(X, f) = (B,C(X,f)).

Clearly, two equivalent extension of Y define two coinciding contact relations on
the Boolean algebra B. Thus we have that ϕ([(X, f)]) = (B,C(X,f)) and, for
simplicity, we will denote by the same letter ϕ the induced map on the set of
equivalence classes of the C-semiregular extensions of Y .

Conversely, let C be a contact relation on the Boolean algebra B and let
(X̂, X̂0) be the canonical 2-contact space of the complete contact algebra (B,C)
(see Definition 2.28). Then, by the definition of the space X̂0 and the Stone
Representation Theorem, we have that the map

f̂ : Y −→ X̂, y 7→ uy,

(see (5) for the notation uy) is a homeomorphic embedding and f̂(Y ) = X̂0.

Hence, (X̂, f̂) is an extension of the space Y . Using Lemma 2.34, we obtain that
X̂ is a C-semiregular space. So, (X̂, f̂) is a C-semiregular extension of the space
Y . Set

ψ(B,C) = (X̂, f̂).

Then

(27) ψ = ϕ−1,
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ϕ is an isomorphism between the ordered sets (C-semireg(Y ),≤) and
(CRel(B),≤), and also between the ordered sets (C-semireg(Y ),≤in) and
(CRel(B),⊆). Clearly, this implies that C-semireg(Y ) is a set and the preorders
“ ≤” and “ ≤in” on C-semireg(Y ), defined in Definition 7.1, are, in fact, orders.
Also,

Now, the assertions about connected contact relations on B follow imme-
diately. ✷

Recall that a subspace A of a topological space X is said to be 2-combina-
torially embedded in X ([3]) if the closures in X of any two disjoint closed in A
subsets of A are disjoint; also, a subspace A of a topological space X is said to
be open combinatorially embedded in X ([17]) if, for any two open in A subsets of
A, the disjointness of their closures in A implies the disjointness of their closures
in X.

Clearly, if A is 2-combinatorially embedded in X then A is open combi-
natorially embedded in X; also, if A is a normal subspace of X, then A is open
combinatorially embedded in X iff A is 2-combinatorially embedded in X. Using
Lemma 3.1, we obtain immediately the following assertion as well:

Fact 7.4. Let A be a dense subspace of a topological space X. Then
A is open combinatorially embedded in X if and only if the contact algebras
(RC(A), CA) and (RC(X), CX) are CA-isomorphic.

Recall that if (X,T) is a topological space and x ∈ X, then the point x
is said to be an u-point ([9]) if for every U, V ∈ T, x ∈ cl(U) ∩ cl(V ) implies that
x ∈ cl(U ∩ V ). In [9] we proved that the set of all u-points of a C-semiregular
space has very interesting and unexpected properties. In the next theorem, we
recall (without proof) our result from [9] and show that this set is connected not
only with our notion of 2-contact space but also with all kinds of 3-contact spaces
introduced here. Theorem 7.5 will be used later on in the proofs of our results
about extensions.

Theorem 7.5. Let (X,T) be a C-semiregular space. Then:

(a) ([9, Corollary 7.21]) The set

u(X) = {x ∈ X | x is an u-point of X}

endowed with its subspace topology is a dense extremally disconnected compact
Hausdorff subspace of (X,T); the pair (X,u(X)) is a 2-contact space; if X0 is a
dense extremally disconnected compact Hausdorff subspace of (X,T), then X0 ≡
u(X);



72 G. Dimov, D. Vakarelov

(b) if X1 is a dense C-weakly regular (resp., dense CN-regular; dense C-regular;
dense compact Hausdorff) subspace of X which is open combinatorially embedded
in X, then the triple (X,u(X),X1) is an extensional (resp., N-regular; regular;
normal) 3-contact space;

(c) if X1 and X ′

1 are two dense C-weakly regular (resp., dense CN-regular; dense
C-regular; dense compact Hausdorff) subspaces of X which are open combinato-
rially embedded in X, then X1 ≡ X ′

1.

P r o o f. (b) Let X1 be a dense C-weakly regular subspace of X which is
open combinatorially embedded in X. Set X0 = u(X). Then, by (a), the pair
(X,X0) is a 2-contact space. Obviously, the axiom (3ECS2) is fulfilled. So, it
remains only to prove that the axiom (3ECS3) is satisfied. First of all, since X1

is open combinatorially embedded in X, we obtain, using Fact 7.4, Lemma 3.1
and the definition of the relation δ(X,X0), that the function

(28) ir : (RC(X0), δ(X,X0)) −→ (RC(X1), CX1), F 7→ X1 ∩ clX(F ),

is a CA-isomorphism.
Let now Γ be a maximal clan in (RC(X0), δ(X,X0)). Then Γ′ = ir(Γ) is a

maximal clan in (RC(X1), CX1). Thus there exists x ∈ X1 such that Γ′ = σX1
x .

Then we have that, for any F ∈ RC(X0), F ∈ Γ ⇐⇒ x ∈ ir(F ) ⇐⇒ x ∈
X1 ∩ clX(F ) ⇐⇒ x ∈ clX(F ). Hence Γ ≡ Γx,X0 and x ∈ X1.

Conversely, let x ∈ X1. Then ir(Γx,X0) = {ir(F ) | F ∈ RC(X0), x ∈
clX(F )} = {ir(F ) | F ∈ RC(X0), x ∈ X1 ∩ clX(F )} = {ir(F ) | F ∈ RC(X0), x ∈
ir(F )} = σX1

x . By [6, Proposition 4.4(ii) and Definition 4.4], σX1
x is a maximal

clan in (RC(X1), CX1). Therefore Γx,X0 is a maximal clan in (RC(X0), δ(X,X0)).
All this shows that the triple (X,u(X),X1) is an extensional 3-contact

space.
The proof for the remaining three cases is analogous. The only difference

is that instead of [6, Proposition 4.4(ii) and Definition 4.4], we have to use [6,
Lemma 4.1] (respectively, [6, Lemma 4.2]; Proposition 5.10(a) and [6, Lemma
4.1]).

(c) Let X1 and X ′

1 be two dense C-weakly regular subspaces of X which are open
combinatorially embedded in X. Set X0 = u(X). In the proof of (b), we have
shown, in particular, that the function

ib : X1 −→ MClans(RC(X0), δ(X,X0)), x 7→ Γx,X0 ,

is a bijection. Hence, the function

i′b : X
′

1 −→ MClans(RC(X0), δ(X,X0)), x 7→ Γx,X0 ,
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is also a bijection. Thus, for proving that X1 ≡ X ′

1, it remains to show that if
x, y ∈ X, then Γx,X0 ≡ Γy,X0 iff x = y.

Let x, y ∈ X and Γx,X0 ≡ Γy,X0 . By Lemma 3.1, the map

e = eX0,X : RC(X0) −→ RC(X), F 7→ clX(F ),

is a Boolean isomorphism. Thus e(Γx,X0) = σXx and e(Γy,X0) = σXy . Hence

σXx ≡ σXy . Now, [6, Proposition 4.2(i)] implies that x = y.
The converse implication is clear. So, X1 ≡ X ′

1.
The proof for the remaining three cases is analogous. ✷

Notation 7.6. Let B be a Boolean algebra. We denote by ECRel(B)
(resp., by ECCRel(B)) the set of all (connected) extensional contact relations on
B. Clearly, the set ECRel(B) (resp., ECCRel(B)) is a subset of the set CRel(B)
(resp., CCRel(B)). The restriction of the relation “ ≤” (defined in 7.2 on the
set CRel(B) (resp., CCRel(B))) on the set ECRel(B) (resp., ECCRel(B)) will
be denoted again by “ ≤”.

Let Y be a compact Hausdorff extremally disconnected space. The class
of all, up to equivalence, C-semiregular extensions [(X, f)] of Y such that X
contains a dense (connected) C-weakly regular subspace X1 having the following
property:

(29) ∀F,G ∈ CO(Y ), clX(f(F )) ∩ clX(f(G)) 6= ∅

iff clX(f(F )) ∩ clX(f(G)) ∩X1 6= ∅,

will be denoted by EC-semireg(Y ) (resp., by EConC-semireg(Y )).
Note that the condition “X1 satisfies (29)” is equivalent to the follow-

ing one: “X1 is open combinatorially embedded in X”. Hence, using Theorem
7.5, we obtain that EC-semireg(Y ) ⊆ C-semireg(Y ) and EConC-semireg(Y ) ⊆
ConC-semireg(Y ) (see 7.2 for C-semireg(Y ) and ConC-semireg(Y )).

Theorem 7.7. Let Y be an extremally disconnected compact Hausdorff
space and B = CO(Y ). Then the ordered sets (ECRel(B),≤) and (EC-semireg(Y ),
≤), as well as the ordered sets (ECRel(B),⊆) and (EC-semireg(Y ),≤in), are iso-
morphic. Further, the ordered sets (ECCRel(B),≤) and (EConC-semireg(Y ),≤),
as well as the ordered sets (ECCRel(B),⊆) and (EConC-semireg(Y ),≤in), are
isomorphic. (See Definition 7.1 for the notation “≤” and “≤in” on the respective
extensions.)

P r o o f. Clearly, B is a complete Boolean algebra and B = RC(Y ). By
Theorem 7.3, we have that the ordered sets (CRel(B),≤) and (C-semireg(Y ),≤),
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as well as the ordered sets (CRel(B),⊆) and (C-semireg(Y ),≤in), are isomor-
phic. We will show that the restrictions of these isomorphisms to, respectively,
(ECRel(B),≤) and (ECRel(B),⊆) are the desired isomorphisms.

Let C be an extensional contact relation on B and (X,X0,X1) be the
canonical extensional 3-contact space of the complete contact algebra (B,C) (see
Definition 4.3). Then, by Definition 4.3, (X,X0) is the canonical 2-contact space
of the contact algebra (B,C). Hence ψ(B,C) = (X, f) (see the sketch of the
proof of Theorem 7.3 for ψ and f), (X, f) is a C-semiregular extension of Y and
X0 = f(Y ). Now Proposition 4.11, Lemma 4.5 and (19) show that [(X, f)] ∈
EC-semireg(Y ). Therefore, ψ(ECRel(B)) ⊆ EC-semireg(Y ). We will show that
ψ(ECRel(B)) = EC-semireg(Y ).

Let [(X, f)] ∈ EC-semireg(Y ) and X1 be a dense C-weakly regular sub-
set of X such that (29) is satisfied. We have that ϕ([(X, f)]) = (B,C(X,f)) (see
the sketch of the proof of Theorem 7.3 for ϕ and C(X,f)). Using twice Lemma
3.1, we obtain that the correspondence F 7→ X1 ∩ clX(f(F )) is a Boolean iso-
morphism between the Boolean algebras B and RC(X1). Further, (29) implies
that this isomorphism is in fact a CA-isomorphism between the contact algebras
(B,C(X,f)) and (RC(X1), CX1). Since X1 is a weakly regular space, we obtain, by
Proposition 3.5, that (B,C(X,f)) is an extensional contact algebra. Now, by (27),
ψ(B,C(X,f)) is equivalent to (X, f). Hence, ψ(ECRel(B)) = EC-semireg(Y ).
Thus, using the sketch of the proof of Theorem 7.3, we obtain that ψ is an iso-
morphism between the ordered sets (ECRel(B),≤) and (EC-semireg(Y ),≤), as
well as between the ordered sets (ECRel(B),⊆) and (EC-semireg(Y ),≤in).

Now, the last two assertions of our theorem follow easily. ✷

Notation 7.8. Let B be a Boolean algebra. We denote by NECRel(B)
(resp., by NECCRel(B)) the set of all (connected) extensional contact relations on
B satisfying N-regularity axiom. Clearly, the set NECRel(B) (resp., NECCRel(B))
is a subset of the set CRel(B) (resp., CCRel(B)). The restriction of the relation
“≤” (defined in 7.2 on the set CRel(B) (resp., CCRel(B))) on the set NECRel(B)
(resp., NECCRel(B)) will be denoted again by “≤”.

Let Y be a compact Hausdorff extremally disconnected space. The class of
all, up to equivalence, C-semiregular extensions [(X, f)] of Y such that X contains
a dense (connected) CN-regular T1-subspace X1 having the property (29), will be
denoted by NC-semireg(Y ) (resp., by NConC-semireg(Y )).

Note that the condition “X1 satisfies (29)” is equivalent to the follow-
ing one: “X1 is open combinatorially embedded in X”. Hence, using Theorem
7.5, we obtain that NC-semireg(Y ) ⊆ C-semireg(Y ) and NConC-semireg(Y ) ⊆
ConC-semireg(Y ) (see 7.2 for the notation C-semireg(Y ) and ConC-semireg(Y )).
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Theorem 7.9. Let Y be an extremally disconnected compact Hausdorff
space and B = CO(Y ). Then the ordered sets (NECRel(B),≤) and
(NC-semireg(Y ),≤), as well as the ordered sets (NECRel(B),⊆) and
(NC-semireg(Y ),≤in) are isomorphic. Also, the ordered sets (NECCRel(B),≤)
and (NConC-semireg(Y ),≤), as well as the ordered sets (NECCRel(B),⊆) and
(NConC-semireg(Y ),≤in), are isomorphic. (See Definition 7.1 for the notation
“≤” and “≤in” on the respective extensions.)

P r o o f. It is similar to the proof of Theorem 7.7. ✷

Notation 7.10. Let B be a Boolean algebra. We denote by RECRel(B)
(resp., by RECCRel(B)) the set of all (connected) extensional contact relations on
B satisfying Regularity axiom. Clearly, the set RECRel(B) (resp., RECCRel(B))
is a subset of the set CRel(B) (resp., CCRel(B)). The restriction of the relation
“≤” (defined in 7.2 on the set CRel(B) (resp., CCRel(B))) on the set RECRel(B)
(resp., RECCRel(B)) will be denoted again by “≤”.

Let Y be a compact Hausdorff extremally disconnected space. The class
of all, up to equivalence, C-semiregular extensions [(X, f)] of Y such that X
contains a dense (connected) C-regular T2-subspace X1 having the property (29),
will be denoted by RC-semireg(Y ) (resp., by RConC-semireg(Y )).

Note that the condition “X1 satisfies (29)” is equivalent to the follow-
ing one: “X1 is open combinatorially embedded in X”. Hence, using Theorem
7.5, we obtain that RC-semireg(Y ) ⊆ C-semireg(Y ) and RConC-semireg(Y ) ⊆
ConC-semireg(Y ) (see 7.2 for the notation C-semireg(Y ) and ConC-semireg(Y )).

Theorem 7.11. Let Y be an extremally disconnected compact Hausdorff
space and B = CO(Y ). Then the ordered sets (RECRel(B),≤) and
(RC-semireg(Y ),≤), as well as the ordered sets (RECRel(B),⊆) and
(RC-semireg(Y ),≤in) are isomorphic. Also, the ordered sets (RECCRel(B),≤)
and (RConC-semireg(Y ),≤), as well as the ordered sets (RECCRel(B),⊆) and
(RConC-semireg(Y ),≤in), are isomorphic. (See Definition 7.1 for the notation
“≤” and “≤in” on the respective extensions.)

P r o o f. It is similar to the proof of Theorem 7.7. ✷

Notation 7.12. Let B be a Boolean algebra. We denote by IECRel(B)
(resp., by IECCRel(B)) the set of all (connected) extensional contact relations on
B satisfying the Interpolation axiom ((Ctr#)). Clearly, the set IECRel(B) (resp.,
IECCRel(B)) is a subset of the set CRel(B) (resp., CCRel(B)). The restriction
of the relation “≤” (defined in (7.2) on the set CRel(B) (resp., CCRel(B))) on
the set IECRel(B) (resp., IECCRel(B)) will be denoted again by “≤”.
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Let Y be a compact Hausdorff extremally disconnected space. The class
of all, up to equivalence, C-semiregular extensions [(X, f)] of Y such that X
contains a dense (connected) compact T2-subspace X1 having the property (29),
will be denoted by IC-semireg(Y ) (resp., by IConC-semireg(Y )).

Note that the condition “X1 satisfies (29)” is equivalent to the follow-
ing one: “X1 is open combinatorially embedded in X”. Hence, using Theorem
7.5, we obtain that IC-semireg(Y ) ⊆ C-semireg(Y ) and IConC-semireg(Y ) ⊆
ConC-semireg(Y ) (see 7.2 for the notation C-semireg(Y ) and ConC-semireg(Y )).

Theorem 7.13. Let Y be an extremally disconnected compact Hausdorff
space and B = CO(Y ). Then the ordered sets (IECRel(B),≤) and (IC-semireg(Y ),
≤), as well as the ordered sets (IECRel(B),⊆) and (IC-semireg(Y ),≤in) are iso-
morphic. Also, the ordered sets (IECCRel(B),≤) and (IConC-semireg(Y ),≤),
as well as the ordered sets (IECCRel(B),⊆) and (IConC-semireg(Y ),≤in), are
isomorphic. (See Definition 7.1 for the notation “≤” and “≤in” on the respective
extensions.)

P r o o f. It is similar to the proof of Theorem 7.7. ✷

Recall that (see, e.g., [18]) if X is a regular space then a space EX is
called an absolute of X if there exists a perfect irreducible map πX : EX −→ X

and every perfect irreducible preimage of EX is homeomorphic to EX; it is well-
known that: a) the absolute is unique up to homeomorphism; b) a space Y is
an absolute of a regular space X iff Y is an extremally disconnected Tychonoff
space for which there exists a perfect irreducible map πX : Y −→ X; c) if X
is a compact Hausdorff space then EX = S(RC(X)), where S is the Stone
contravariant functor (see (3)).

Proposition 7.14. Let Y be a compact Hausdorff extremally disconnected
space and B = RC(Y )(= CO(Y )). Then there exists a bijective correspondence
between the set of all normal contact relations on B and the set of all, up to
homeomorphism, compact Hausdorff spaces X such that Y is homeomorphic to
EX.

P r o o f. It follows from Corollary 6.12, the Stone Duality Theorem and
(c) from the preceding paragraph. ✷

Theorem 7.15. Let Z be a C-weakly regular (resp., CN-regular; C-
regular; compact Hausdorff) space and (X,X0,X1) be the canonical extensional
(resp., N-regular; regular; normal) 3-contact space of the contact algebra
(RC(Z), CZ). Then the function

(30) κ : Z −→ X, z 7→ σZz ,
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is a dense homeomorphic embedding of Z in X. Set κZ = X. Then (κZ,κ)
is the unique, up to equivalence, C-semiregular extension of Z such that κ(Z) is
open combinatorially embedded in κZ.

P r o o f. Let Z be a C-weakly regular space and (X,X0,X1) be the canon-
ical extensional 3-contact space of the complete contact algebra (RC(Z), CZ).
Then, by [6, Proposition 4.4], we have that MClans(RC(Z), CZ) = {σZz | z ∈ Z}.
Now, Definition 4.3 and Proposition 4.12 (together with its proof) imply that the
spaces Z and κ(Z) ≡ X1 are homeomorphic. Since (X,X0,X1) is an extensional
3-contact space, we obtain that κ(Z) is a dense subspace of X. Using (19) and
Fact 7.4, we obtain that κ(Z) is open combinatorially embedded in X and, thus,
in κZ. By Lemma 2.34, the space X is C-semiregular. Let now (cZ, c) be a
C-semiregular extension of Z such that c(Z) is open combinatorially embedded
in cZ. Then, by Theorem 7.5(b), (cZ, u(cZ), c(Z)) is an extensional 3-contact
space. Set, for short, X ′ = cZ, X ′

0 = u(X ′), X ′

1 = c(Z), B = (RC(Z), CZ),
B1 = (RC(X ′

1), CX′

1
) and B′ = (RC(X ′

0), δ(X′,X′

0)
). Clearly, the map

ϕc : B −→ B1, F 7→ c(F ),

is a CA-isomorphism. Since X ′

1 is open combinatorially embedded in X ′, we
obtain, using Fact 7.4, that the map

ϕ1 : B1 −→ B′, F 7→ X ′

0 ∩ clX′(F ),

is a CA-isomorphism. Let ϕ = ϕ1 ◦ ϕc. Then

ϕ : B −→ B′

is a CA-isomorphism. Let (X̂ ′, X̂ ′

0, X̂
′

1) be the canonical extensional 3-contact
space of the complete contact algebra B′. Set

f1 : X
′ −→ X̂ ′, x 7→ Γx,X′

0
.

Then, by Theorem 4.8(c) (and its proof), we have that f1 is a homeomorphism.
Let

f0 : X −→ X̂ ′, Γ 7→ ϕ(Γ).

Then the fact that ϕ is a CA-isomorphism implies easily that f0 is a homeomor-
phism. Set f = (f1)

−1 ◦ f0. Then

f : X −→ X ′
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is a homeomorphism. Using the proof of Theorem 7.5, we obtain that, for every

x ∈ X ′

1, ϕ1(σ
X′

1
x ) = Γx,X′

0
. Now we obtain that, for every z ∈ Z,

f(κ(z)) = f(σZz ) = (f1)
−1(f0(σ

Z
z )) = (f1)

−1(ϕ(σZz )) = (f1)
−1(ϕ1(ϕc(σ

Z
z )))

= (f1)
−1(ϕ1(σ

X′

1

c(z))) = (f1)
−1(Γc(z),X′

0
) = c(z).

So, we have obtained that there exists a homeomorphism f : κZ −→ cZ such
that f ◦ κ = c. Therefore, the extensions (cZ, c) and (κZ,κ) are equivalent.

The remaining three cases can be proved analogously. ✷

Corollary 7.16. Let Z be a compact Hausdorff space. Then:

(a) (κZ,κ) is the unique, up to equivalence, C-semiregular extension of Z such
that κ(Z) is 2-combinatorially embedded in κZ;

(b) the absolute EZ of Z is a dense subspace of κZ and EZ ≡ u(κZ);

(c) the triple (κZ,EZ,κ(Z)) is the canonical normal 3-contact space of the con-
tact algebra (RC(Z), CZ).

P r o o f. It follows from Theorem 7.15 and the fact that Z is normal
(indeed, then κ(Z) is 2-combinatorially embedded in κZ iff κ(Z) is open com-
binatorially embedded in κZ). ✷

8. Conclusion. In this paper we supplied with proofs our representa-
tion theorems for extensional (and other kinds) (pre)contact algebras announced
in the 16-pages-long paper [8]. The writing of the full version of [8] was always
postponed because we knew that we had to write a very long paper and we had
no time for doing this having many new projects which had to be finished ur-
gently. Now, when we finally have completed the paper, we see that the work
on it is still not finished. For example, in [10] we extended to duality theorems
our representation theorems proved in [9]. Our next task is to extend to duality
theorems the representation theorems which we proved here.
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