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Abstract. In this paper we prove that in the category of proper shape
over finite coverings from ShpF (X) = ShpF (X

′) and ShpF (Y ) = ShpF (Y
′)

it follows that ShpF (X × Y ) = ShpF (X
′ × Y ′). Also, we give an example

in which the product of two morphisms is not morphism in the category of
proper shape.

1. Introduction. The theory of shape provides a good tool for classi-
fication of compact metric spaces by considering their global properties. To get
a theory that describes global properties of locally-compact metric spaces that
are not compact, Ball and Sher at [2] define the proper shape. In [1] and [8] an
intrinsic approach to proper shape is given. In [7] is explained their equivalence
and the theory is explained in more details. In [6] it is shown that the approach
in [2] and the intrinsic approach to proper shape are equivalent. In this paper we
will follow the definition from [6] and [10].
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In [9], by using the intrinsic approach, authors obtain new category of
proper shape for spaces with compact spaces of quasicomponents. This category
is denoted by ShpF -proper shape over finite coverings. The advantage of using the
category ShpF lies in the fact that it allows us to work only with finite coverings.

In this paper we investigate the proper shape of product space in the
category of proper shape over finite coverings.

In [4], Kodama showed the following results about product of shapes:

– For X compact and X ′, Y, Y ′ locally-compact:

If Shp(X) = Shp(X
′) and Shp(Y ) = Shp(Y

′), then

Shp(X × Y ) = Shp(X
′ × Y ′).

In Borsuks book [3], two types of shape for non-compact spaces are con-
sidered: weak shape-ShW and (strong) shape-ShS. We have the following results
from [3] related to these categories:

– If ShW (X) = ShW (X ′) and ShW (Y ) = ShW (Y ′), then

ShW (X × Y ) = ShW (X ′ × Y ′).

– An example is given where:

ShS(X) = ShS(X
′), but ShS(X × Y ) 6= ShS(X

′ × Y ′).

In the Section 3, we prove the main result:

If ShpF (X) = ShpF (X
′) and ShpF (Y ) = ShpF (Y

′), then

ShpF (X × Y ) = ShpF (X
′ × Y ′),

where spaces are assumed to be locally-compact separable metrizable and with
compact spaces of quasicomponents.

The definition of proper shape over finite coverings is based on sequence
of (not necessarily continuous) functions (fn), each fn : X → Y continuous over
a covering Vn and coverings V1 ≻ V2 ≻ V3 ≻ · · · are cofinal among all coverings
of open sets with compact boundary.

First, we prove theorems about product of functions continuous over a
covering and product of proper functions. We also show that product of two
cofinal sequences over finite coverings fromX, Y gives a cofinal sequence inX×Y .

In the Section 4, we give an example to show that we could not always
form the product morphism in the category of proper shape.

2. Product of functions continuous over a covering. Product

of proper functions. First, we will prove theorems about functions continuous
over a covering.
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Definition 2.1. Suppose V is a covering of Y . A function f : X → Y is
V-continuous at point x, if there exists a neighborhood Ux of x, and V ∈ V such
that f (Ux) ⊆ V

A function f : X → Y is V-continuous, if it is V-continuous at every
point x ∈ X

Lemma 2.2. Let X,Y,Z be arbitrary topological spaces. If functions
f : Z → X, g : Z → Y are U , V-continuous, respectively, then the function
h : Z → X × Y defined by h(z) = (f(z), g(z)) is U × V-continuous.

P r o o f. Let z ∈ Z and let Dz, Gz be neighborhoods of z in Z such that
f (Dz) ⊆ U and g (Gz) ⊆ V for some U ∈ U , V ∈ V. The set Az = Dz ∩Gz , is a
neighborhood of z and also:

h(Az) = (f, g) (Az) ⊆ f(Az)× g(Az) ⊆
⊆ f(Dz)× g(Gz) ⊆ U × V .

From U × V ∈ U × V, it implies that h is U × V-continuous. ✷

Lemma 2.3. Let X,Y,X ′, Y ′ be arbitrary topological spaces. If functions
f : X → X ′ , g : Y → Y ′ are U ′,V ′-continuous, respectively, then the function
h : X × Y → X ′ × Y ′ defined by h(x, y) = (f(x), g(y)) is U ′ × V ′-continuous.

P r o o f. Let (x, y) ∈ X × Y and let Ux, Vy be neighborhoods of x, y in
X, Y , respectively, such that f (Ux) ⊆ U ′ and g (Vy) ⊆ V ′ for some U ′ ∈ U ′, V ′ ∈
V ′. The set Ux × Vy is a neighborhood of (x, y) in X × Y and:

h(Ux × Vy) = {h(a, b) |a ∈ Ux, b ∈ Vy } =

= {(f(a), g(b)) |a ∈ Ux, b ∈ Vy } = f(Ux)× g(Vy) ⊆ U ′ × V ′.

From U ′ × V ′ ∈ U ′ × V ′, it follows that h is U ′ × V ′-continuous. ✷

Lemma 2.4. Let X,Y,X ′, Y ′ be arbitrary topological spaces and I the
unit interval. If the functions f : X × I → X ′, g : Y × I → Y ′ are U ′,V ′-
continuous, respectively, then the function h : (X × Y )× I → X ′ × Y ′ defined by
h((x, y), s) = (f(x, s), g(y, s)) is U ′ × V ′-continuous.

P r o o f. Let ((x, y), s) ∈ (X × Y )× I and let Ux × Jx, Vy × Jy be neigh-
borhoods of (x, s), (y, s) in X×I, Y ×I, respectively, such that f (Ux × Jx) ⊆ U ′

and g (Vy × Jy) ⊆ V ′ for some U ′ ∈ U ′, V ′ ∈ V ′. The set (Ux × Vy)× (Jx ∩ Jy) is
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neighborhood of ((x, y), s) in (X × Y )× I and the following holds:

h((Ux × Vy)× (Jx ∩ Jy)) =

= {h((a, b), s) |a ∈ Ux, b ∈ Vy, s ∈ Jx ∩ Jy } =

= {(f(a, s), g(b, s)) |a ∈ Ux, b ∈ Vy, s ∈ (Jx ∩ Jy)} ⊆

⊆ f(Ux × (Jx ∩ Jy))× g(Vy × (Jx ∩ Jy)) ⊆ U ′ × V ′.

Since U ′ × V ′ ∈ U ′ × V ′, it follows that h is U ′ × V ′-continuous. ✷

Now, we define a proper (noncontinuous) function.

Definition 2.5. A function f : X → Y is proper if for every compact D
in Y there exists compact set C in X such that f (X\C) ⊆ Y \D.

Note that if the function is continuous then this notion of proper function,
coincides with the standard one.

Lemma 2.6. Let X, Y, Z be arbitrary topological spaces. If f : Z → X
and g : Z → Y are proper functions, then the function H : Z → X × Y defined
by H(z) = (f(z), g(z)) is proper.

P r o o f. Let K ⊆ X × Y be compact. Taking P = pX (K) and Q =
pY (K), yields K ⊆ P ×Q. The set P is compact in X, so there exists a compact
M ⊆ Z such that f (Z\M) ⊆ X\P .
Similarly, from compactness of Q in Y , there exists a compact set N ⊆ Z such
that:

g (Z\N) ⊆ Y \Q.

The set A = M ∪N is compact in Z. Now, by the fact that:

H (Z\A) ⊆ f (Z\A)× g (Z\A) ⊆

⊆ f (Z\M )× g (Z\N) ⊆ (X\P )× (Y \Q) .

and

(X\P )× (Y \Q) ⊆ (X × Y ) \ (P ×Q) ⊆ (X × Y ) \K.

we conclude that H (Z\A) ⊆ (X × Y ) \K . So, H is proper function. ✷

Lemma 2.7. Let X, Y , Z, V be arbitrary topological spaces. If f : X →
Z and g : Y → V are proper functions, then the function H : X × Y → Z × V
defined by H(x, y) = (f(x), g(y)) is proper.

P r o o f. Let K ⊆ Z × V be compact. Take P = pZ (K) and Q = pV (K),
then K ⊆ P × Q. From compactness of P in Z, there exists a compact set
CX ⊆ X such that

f (X\CX) ⊆ Z\P.
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Similarly, from compactness of Q in V , there exists a compact set CY ⊆ Y
such that:

g (Y \CY ) ⊆ V \Q.

Then:

H ((X × Y )\(CX × CY )) =

= H (X × (Y \CY )) ∪H ((X\CX )× Y ) =

= (f (X)× g (Y \CY )) ∪ (f (X\CX)× g (Y )) ⊆

⊆ (Z × (V \Q)) ∪ ((Z\P )× V ) = (Z × V )\(P ×Q)

from where we conclude that H is proper function. ✷

Lemma 2.8. Let X, Y , Z, V be arbitrary topological spaces and I the
unit interval. If f : X × I → Z and g : Y × I → V are proper functions, then the
function H : (X × Y ) × I → Z × V defined by H((x, y), s) = (f(x, s), g(y, s)) is
proper.

P r o o f. Let K ⊆ Z×V be compact. Take P = pZ (K) and Q = pV (K),
then K ⊆ P×Q. From compactness of P in Z, there exists compact set CX×I ⊆
X × I such that

f ((X × I) \ (CX × I)) ⊆ Z\P.

Similarly, from compactness of Q in V , there exists compact set CY × I ⊆ Y × I
such that:

g ((Y × I) \ (CY × I)) ⊆ V \Q.

Then:

H(((X × Y )× I)\((CX × CY )× I)) =

= H (((X\CX × Y ) ∪ (X × Y \CY ))× I) ⊆

⊆ (f(X\CX × I)× g(Y × I)) ∪ (f(X × I)× g(Y \CY × I)) ⊆

⊆ (Z × V )\(P ×Q)

from where we have that H is proper function. ✷

Lemma 2.9. Let f : X1 → Y , g : X2 → Y be proper functions, where
X1, X2 are closed in X. If f(x) = g(x) for x ∈ X1 ∩ X2, then the combined
function h : X1 ∪X2 → Y is proper.

P r o o f. Let K ⊆ Y be compact subset of Y . From the supposition there
exists compact subsets D1 ⊆ X1, D2 ⊆ X2 such that:

f (X1\D1) ⊆ Y \K and g (X2\D2) ⊆ Y \K.
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The set D = D1 ∪D2 is compact in X and also we have:

h (X\D) = h ((X1 ∪X2) \D) = h (X1\D) ∪ h (X2\D) ⊆

⊆ h (X1\D1) ∪ h (X2\D2) ⊆ Y \K.

Thus, we have proved that h is proper. ✷

Proposition 2.10. Let W = ((X\C)× Y ) ∪ (X × (Y \K)), where C, K
are compact subsets of the T2 spaces X, Y , respectively. Then the boundary ∂W
is compact.

P r o o f. From

((X\C)× Y ) ∪ (X × (Y \K)) = (X × Y ) \ (C ×K)

we have (X × Y )\W = C ×K.

On the other hand, from ∂W = ∂((X × Y )\W ), it implies that ∂W =
∂ (C ×K). The set C ×K is compact, so it is a closed subset of X × Y . From
∂ (C ×K) ⊆ C ×K, the set ∂ (C ×K) is compact as closed subset of compact
set. ✷

3. Product of equivalences of proper shape over finite cov-

erings. About the notion of space of quasicomponents, we refer to [9].

Now we will give a short description of the category of proper shape over
finite coverings from [9].

For arbitrary space W we denote by CovF (W ) the set of all finite open
coverings of W consisting of sets with compact boundary.

Definition 3.1. Proper functions f, g : X → Y are V-properly homo-
topic, if there exists a proper function F : X × I → Y such that:

1) F : X × I → Y is stV-continuous.
2) F : X × I → Y is V-continuous at all points of X × ∂I.

3) F (x, 0) = f(x), F (x, 1) = g(x). We denote this by f ∼pV g.

Definition 3.2. A sequence (fn) of proper functions fn : X → Y is
proper proximate sequence over finite coverings from X to Y , if there exists cofinal
sequence V1 ≻ V2 ≻ V3 ≻ · · · from CovF (Y ) such that for every m ≥ n, fn and
fm are Vn-properly homotopic. We say that (fn) is proper proximate sequence
over (Vn).

Definition 3.3. Two proximate sequences (fn), (gn) are homotopic if
there exists a cofinal sequence V1 ≻ V2 ≻ V3 ≻ · · · in CovF (Y ), such that
(fn), (gn) are proximate sequences over (Vn) and for all n ∈ N, fn and gn are
properly Vn-homotopic. We denote this by (fn) ∼pF (gn).



Product of proper shape equivalences 127

In the paper [9], it is proven that locally-compact separable metric spaces
with compact spaces of quasicomponents and homotopy classes of proximate se-
quences over finite coverings form a category of proper shape over finite coverings.

Two spaces X,Y have same proper shape over finite coverings if there ex-
ists a proper sequence over finite coverings (fn) : X → Y and a proper proximate
sequence (fn

∗) : Y → X such that:

(fn)(fn
∗)∼pF1Y , (fn

∗)(fn)∼pF1X .

We denote this by ShpF (X) = ShpF (Y ).
The following definitions are from [11].

Definition 3.4. A topological space X is clp-compact if every clopen
covering of X has a finite subcovering.

Definition 3.5. A product space X×Y is clp-rectangular if every clopen
set W in X × Y is the union of clopen rectangles.

We need the following theorem to prove the main result.

Theorem 3.6. Let X and Y be locally compact separable metric spaces
with compact spaces of quasicomponents. If W ∈ CovF (X ×Y ), then there exists
U ∈ CovF (X) and V ∈ CovF (Y ) such that U × V ≺ W.

P r o o f. Let W = {W1,W2, . . . ,Wn,W
∞
1 ,W∞

2 , . . . ,W∞
k } = W0 ∪ W∞

be a covering form CovF (X × Y ), where W0 = {W1,W2, . . . ,Wn} consists of
sets with compact closure and W∞ = {W∞

1 ,W∞
2 , . . . ,W∞

k } consists of sets with
compact boundary. From [9] we could assume that there exists compact sets
C ⊆ X, D ⊆ Y such that

(X × Y ) \ (C ×D) =

k
⋃

i=1

W∞
i , W∞

i ∩W∞
j = ∅ for i 6= j

and W∞
i is clopen in (X × Y ) \ (C ×D) for every i ∈ {1, 2, . . . , k}.
Take the coverings U = {U1} ∪ {X\C}, V = {V1} ∪ {Y \D} of X, Y ,

respectively, such that:

U1 is neighborhood of C , V1 is neighborhood of D.

The sets U1, V1 are open and with compact closure in spaces X,Y , respectively.
Since X and Y have compact spaces of quasicomponents it follows that

Q(X\U1), Q(Y \V1) are compact.
Now, taking into consideration the paper [5] the spaces

Q ((X\U1)× Y ) , Q (X × (Y \V1))

are compact, thus (X\U1)×Y , X× (Y \V1) are clp-compact [11], hence from [11]
(Proposition 2.5) they are also clp-rectangular.
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Take compact subsets C1 = U1 ⊆ X , D1 = V1 ⊆ Y .

Fix a point y ∈ Y \V1. If x ∈ X, then there exists a clopen neighborhood
Uy
x of x in X and a clopen neighborhood V y

x of y in Y \V1 such that (x, y) ∈
Uy
x × V y

x ⊆ W∞
i for some W∞

i ∈ W∞. From the compactness of Q(X), there
exists a finite subcovering U0

y of X from the covering {Uy
x |x ∈ X }. The set Vy =

⋂

U
y
x∈U

0
y

V y
x is clopen in Y \V1. The family of sets {Vy |y ∈ Y \V1 } is a covering for

Y \V1 consisting of clopen subsets of Y \V1, and hence it has a finite subcovering
{

Vy1 , Vy2 , . . . , Vyp

}

. Take V ′
yj

= Vyj ∩ Y \D1 for j ∈ {1, 2, 3, . . . , p}.

We obtained finite number of coverings U0
y1
,U0

y2
, . . . ,U0

yp such that for

every U ∈ U0
yi

and V ∈
{

Vy1 , Vy2 , . . . , Vyp

}

it follows that U × V ⊆ W∞
j for some

W∞
j ∈ W∞.

Similarly, we could find a finite covering {Ux1
, Ux2

, . . . , Uxs} of X\U1 con-
sisting of clopen subsets of X\U1 and a finite coverings V0

x1
,V0

x2
, . . . ,V0

xs
of Y

consisting of clopen subsets of Y .

Take U ′
xi

= Uxi
∩X\C1 for i ∈ {1, 2, 3, . . . , s}.

For the compact set C1 ×D1 there exists a covering U1 of C1 in X and
a covering V1 of D1 in Y such that U1 × V1 ≺ W and the sets of U1, V1 have
compact closure.

We can choose a covering U of X from CovF (X) and a covering V of Y
from CovF (Y ) such that:

U ≺ U0
y1
, . . . ,U ≺ U0

yp , U ≺
{

Ux1

′, Ux2

′, . . . , Uxs

′
}

∪ U1,

V ≺ V0
y1
, . . . ,V ≺ V0

xs
, V ≺

{

Vy1
′, Vy2

′, . . . , Vyp
′
}

∪ V1.

In this way we have constructed a covering U for X and V for Y consisting
of sets with compact boundary with the property U × V ≺ W. ✷

Theorem 3.7. Let X, Y be separable locally-compact (noncompact) met-
ric spaces with compact spaces of quasicomponents. If (fn : Z → X) and
(gn : Z → Y ) are two proper proximate sequences over finite coverings, then:

1) The sequence (hn = (fn, gn) : Z → X×Y ) is proper proximate sequence
over finite coverings and:

2) If (fn) ∼pF

(

fn
′
)

and (gn) ∼pF

(

gn
′
)

, then (fn, gn) ∼pF (fn, gn).

(We say that hn is diagonal product of fn and gn).

P r o o f. Let the assumptions of the theorem be fulfilled.

From Theorem 3.6 we have that for the covering W ∈ CovF (X×Y ), there
exists U ∈ CovF (X) and V ∈ CovF (Y ) such that U ×V ≺ W. Let (fn : Z → X),
(gn : Z → Y ) be proper proximate sequences over (Un), (Vn), respectively, and
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take a cofinal sequence W1 ≻ W2 ≻ W3 ≻ · · · in CovF (X × Y ). We could find a
subsequence (Unk

) from (Un) and a subsequence (Vnk
) from (Vn) with property

Un1
× Vn1

≻ Un2
× Vn2

≻ Un3
× Vn3

≻ · · · and Unk
× Vnk

≺ Wk for k ∈ N.

Now, define a sequence of coverings (W ′
n) by:

W ′
i = {X × Y }, for 1 ≤ i < n1,

W ′
i = W1, for n1 ≤ i < n2,

W ′
i = W2, for n2 ≤ i < n3,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

W ′
i = Wk, for nk ≤ i < nk+1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The sequence (W ′
n) is cofinal in CovF (X×Y ) and Un×Vn ≺ W ′

n for every
n ∈ N, so we could investigate the sequence of functions ((fn, gn) : Z → X × Y )
as a proper proximate sequence over (W ′

n). We will prove that (hn : Z → X × Y )
is proper proximate sequence over (W ′

n).

1) hn is proper function for every n ∈ N:

Proof of 1). From Lemma 2.6 hn is proper function for every n ∈ N.

2) hn is W ′
n-continuous for every n ∈ N:

Proof of 2). From Lemma 2.2 product of Un-continuous function with
Vn-continuous function is Un × Vn-continuous. From the construction of W ′

n, it
implies that hn is W ′

n-continuous for every n ∈ N.

3) If m ≥ n, then hn and hm are (W ′
n)-properly homotopic.

Proof of 3). We define function Hn,m : Z × I → X × Y by:

Hn,m(z, s) = (Fn,m(z, s), Gn,m(z, s))

where Fn,m(z, s) is a proper homotopy over Un which connects the functions fn
and fm (from m ≥ n) and Gn,m(z, s) is a proper homotopy over Vn connecting
the functions gn and gm (from m ≥ n).

The function Hn,m is proper homotopy over Un×Vn. From Un×Vn ≺ W ′
n

we have that Hn,m is W ′
n-homotopy connecting hn = (fn, gn) and hm = (fm, gm).

4) Let
(

hn
′ = (fn

′, gn
′) : Z → X × Y

)

n
be proper proximate sequence over

(W ′′
n), where W ′′

1 ≻ W ′′
2 ≻ W ′′

3 ≻ · · · is cofinal in CovF (X × Y ) and also:

(1)
[(

fn
′
)]

pF
= [(fn)]pF ,

[(

gn
′
)]

pF
= [(gn)]pF .

Then
[(

hn
′
)]

pF
= [(hn)]pF .
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Proof of 4). We have to show that there exists a cofinal sequence M1 ≻
M2 ≻ M3 ≻ · · · of coverings from CovF (X × Y ) such that (hn) and

(

hn
′
)

are
proximate sequences over (Mn) and for every n ∈ N it holds hn ∼Mn hn

′. (they
are Mn-properly homotopic.)

From (1) there exists a cofinal sequence F1 ≻ F2 ≻ F3 ≻ · · · in CovF (X)
and G1 ≻ G2 ≻ G3 ≻ · · · from CovF (Y ) such that:

fn ∼Fn fn
′ and gn ∼Gn gn

′ for every n ∈ N.

From Theorem 3.6 there exists a cofinal sequence B1 ≻ B2 ≻ B3 ≻ · · · in
CovF (X × Y ) such that Fn × Gn ≺ Bn for all n ∈ N.

We will prove that (hn) and
(

hn
′
)

are properly homotopic proximate
sequences over (Mn) where:

Mn = Bn ∪W ′
n ∪W ′′

n.

The sequence (Mn) is cofinal in CovF (X × Y ).
For every n ∈ N, we define function Hn : Z × I → X × Y by:

Hn(z, s) = (Fn(z, s), Gn(z, s)) ,

where Fn(z, s) is proper homotopy over Fn connecting fn and fn
′ and Gn(z, s)

is proper homotopy over Gn between gn and gn
′. Clearly, from Lemma 2.6 Hn is

proper function. From Fn × Gn ≺ Mn and considering the Lemma 2.2, we have
that Hn(z, s) is stMn-continuous in X × I and Mn-continuous in X × ∂I. Since

Hn(z, 0) = (Fn(z, 0), Gn(z, 0)) = (fn(z), gn(z)) ,

Hn(z, 1) = (Fn(z, 1), Gn(z, 1)) =
(

fn
′(z), gn

′(z)
)

,

it follows, the function Hn(z, s) is proper Mn-homotopy between (fn(z), gn(z))
and

(

fn
′(z), gn

′(z)
)

.
We proved that [((fn, gn))n]pF =

[((

fn
′, gn

′
))

n

]

pF
so

[(hn)n]pF =
[(

hn
′
)

n

]

pF
. ✷

Similarly as in Theorem 3.7, by taking in consideration Lemmas 2.3, 2.4,
2.7 and 2.8, we obtain the following theorem.

Theorem 3.8. Let X, Y , X ′, Y ′ be separable locally-compact (noncom-
pact) metric spaces with compact spaces of quasicomponents. If

(

fn : X → X ′
)

and
(

gn : Y → Y ′
)

are two proper proximate sequences over finite coverings, then:
1) The sequence (hn = fn × gn : X × Y → X ′ × Y ′) is proper proximate

sequence over finite coverings and:
2) If (fn) ∼pF

(

fn
′
)

and (gn) ∼pF

(

gn
′
)

, then (fn × gn) ∼pF (fn
′ × gn

′).
(We say that hn is product of fn and gn).
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P r o o f. Let (fn), (gn) be proper sequences over (U ′
n), (V

′
n), respec-

tively. From Theorem 3.6 there exists a cofinal sequence of coverings W ′
1 ≻

W ′
2 ≻ W ′

3 ≻ · · · of the space X ′ × Y ′ such that U ′
n × V ′

n ≺ W ′
n for all n ∈ N.

From Lemma 2.3 and Lemma 2.7 hn is a W ′
n-continuous proper function for

every n ∈ N. It suffices to show that hn is proper sequence over (W ′
n).

Let m ≥ n. We will prove that the functions hn, hm are W ′
n-properly

homotopic.
We define a function Hn,m : (X × Y )× I → X ′ × Y ′ by:

Hn,m((x, y), s) = (Fn,m(x, s), Gn,m(y, s)) ,

where Fn,m(x, s) is proper homotopy over U ′
n connecting the functions fn, fm

(from m ≥ n) and Gn,m(y, s) is proper homotopy over V ′
n connecting the func-

tions gn, gm (from m ≥ n). The function Hn,m is U ′
n × V ′

n-proper homotopy.
From U ′

n×V ′
n ≺ W ′

n, it implies that Hn,m is W ′
n-proper homotopy connecting

the functions hn = fn × gn and hm = fm × gm. Similarly as in the previous
theorem, by using Lemma 2.4 and Lemma 2.8, we could prove the uniqueness of
(hn). ✷

Theorem 3.9. Let X, Y , X ′, Y ′ be locally-compact (noncompact) sep-
arable metric spaces with compact spaces of quasicomponents and ShpF (X) =
ShpF (X

′), ShpF (Y ) = ShpF (Y
′). Then ShpF (X × Y ) = ShpF (X

′ × Y ′) for the
category of proper shape over finite coverings.

P r o o f. From ShpF (X) = ShpF (X
′): there exists a morphism

(

fn : X → X ′
)

over the sequence of coverings U ′
1 ≻ U ′

2 ≻ U ′
3 ≻ · · · and a

proper proximate sequence
(

fn
∗ : X ′ → X

)

over U1 ≻ U2 ≻ U3 ≻ · · · such that

(2)

(

fn
∗ : X ′ → X

)

◦
(

fn : X → X ′
)

∼pF1X by a proper homotopy Fn

and
(

fn : X → X ′
)

◦
(

fn
∗ : X ′ → X

)

∼pF1X′ by a proper homotopy Fn
∗.

On the other hand, from ShpF (Y ) = ShpF (Y
′), there exists proper proxi-

mate sequence
(

gn : Y → Y ′
)

over V ′
1 ≻ V ′

2 ≻ V ′
3 ≻ · · · and a proper proximate

sequence
(

gn
∗ : Y ′ → Y

)

over V1 ≻ V2 ≻ V3 ≻ · · · such that:

(3)

(

gn
∗ : Y ′ → Y

)

◦
(

gn : Y → Y ′
)

∼pF1Y by a proper homotopy Gn

and
(

gn : Y → Y ′
)

◦
(

gn
∗ : Y ′ → Y

)

∼pF1Y ′ by a proper homotopy Gn
∗

From Theorem 3.6 there exists a cofinal sequence of coverings W ′
1 ≻

W ′
2 ≻ W ′

3 ≻ · · · of the space X ′ × Y ′ such that U ′
n × V ′

n ≺ W ′
n for all n ∈ N.

Similarly, there exists a cofinal sequence W1 ≻ W2 ≻ W3 ≻ · · · of X × Y
such that Un × Vn ≺ Wn for all n ∈ N.
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From [5], the space Q(X × Y ) is compact, also X × Y is locally compact
separable metric space. Thus, we could define proper shape over finite coverings
for X × Y .

From Theorem 3.8 we could define:
1) proper proximate sequence

(

hn : X × Y → X ′ × Y ′
)

overW ′
1 ≻ W ′

2 ≻
W ′

3 ≻ · · · by

hn(x, y) = (fn(x), gn(y)) for every n ∈ N.

2) proper proximate sequence
(

hn
∗ : X ′ × Y ′ → X × Y

)

over W1 ≻ W2 ≻
W3 ≻ · · · by

hn
∗(x′, y′) =

(

fn
∗(x′), gn

∗(y′)
)

for every n ∈ N.

Hence:

hn
∗ ◦ hn(x, y) = (fn

∗ × gn
∗) ◦ (fn × gn) (x, y) =

= (fn
∗ (fn(x)) , gn

∗ (gn(y)))

It suffices to prove the following

(fn
∗ (fn(x)) , gn

∗ (gn(y)))∼pF1X×Y (x, y).

Using Lemma 2.4 and Lemma 2.8, we define the desired proper homotopy
by:

Kn((x, y), s) = (Fn(x, s), Gn(y, s)) .

In a similar way, we could show that
(

fn
(

fn
∗(x′)

)

, gn
(

gn
∗(y′)

))

∼pF1X′×Y ′(x′, y′)

by the proper homotopy Kn
∗((x′, y′), s) =

(

Fn
∗(x′, s), Gn

∗(y′, s)
)

.
Functions Fn, Gn, Fn

∗, Gn
∗ are taken from (2) and (3). ✷

4. Example in proper shape. At the end we will show that is not
possible to prove a result in proper shape theory, corresponding to the main result
in proper shape over finite coverings (proven above).

For arbitrary space W we denote by Cov (W ) the set of all open coverings
of W consisting of sets with compact closure.

Definition 4.1. A proper proximate net (fV : X → Y ) is a net of func-
tions fV : X → Y , fV is proper V-continuous function, indexed by all coverings
from Cov (Y ), such that if V ≺ W then fV and fW are W-properly homotopic.

We say (fV) is a proper proximate net.

Definition 4.2. Two proper proximate nets (fU ), (gV) : X → Y are
homotopic if for every U ∈ Cov(Y ), fU and gU are U-properly homotopic.

We denote this by (fU) ∼p (gV).
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Example. We will show that in the category of proper shape, product
of morphisms is not always a morphism.

P r o o f. Let X ′ = X = [0, 1], Y ′ = Y = [0, 1). We have that X ′, Y ′,X, Y
are separable, locally-compact metric spaces.

The set of all minimal finite coverings of X consisting of intervals is cofinal
in Cov(X). We denote this set by CovM (X).

We consider the proper proximate nets:

f = { fU | fU is U -continuous and U ∈ CovM (X)}: X ′ → X,

g = { gV | gV is V-continuous and V ∈ Cov(Y )}: Y ′ → Y .

defined as follows:

Fix U ∈ CovM(X). There exists an integer nU with the property: if

1/2 ∈ U ∈ U , then
1

2
+

1

nU

∈ U .

For arbitrary U ∈ CovM (X) define the function fU : [0, 1] → [0, 1] such
that:

fU(x) = x if x 6=
1

2
and fU(

1

2
) =

1

2
+

1

nU

.

Fix V ∈ Cov(Y ). We define gV : [0, 1) → [0, 1) by gV(y) = y.

Clearly, the function gV is continuous for every V ∈ Cov [0, 1) and function

fU is continuous in all points from [0, 1]\{
1

2
}, where U ∈ Cov [0, 1]. For the point

x =
1

2
, if we take a set U ∈ U that contains

1

2
, then we have that fU(U) ⊆ U .

So, fU is U -continuous. It is also clear that functions fU , gV are proper.

Let U1 ≺ U2. We will prove that fU1
and fU2

are U2-properly homotopic.
From [1] (Lemma 3.2) it is enough to prove that fU1

and fU2
are U2-near.

Let x ∈ [0, 1]. If x 6= 1/2, then fU1
(x) = x = fU2

(x). Now, take x = 1/2.

Let U1 ∈ U1 such that 1/2 ∈ U1. Hence fU1
(
1

2
) =

1

2
+

1

nU1

. We could find U2 ∈ U2

such that U1 ⊆ U2. From the fact fU1
(
1

2
) ∈ U1, it implies that fU1

(
1

2
) ∈ U2. On

the other hand, from 1/2 ∈ U2 we have fU2
(
1

2
) ∈ U2. Consequently, fU1

and fU2

are U2-near.

Similarly, gV1
,gV2

are V2-near for V1 ≺ V2.

We proved that f = { fU | U ∈ CovM (X)}, g = { fV | V ∈ Cov(Y )} are
proper proximate nets. Their product is defined as:

h = {fU × gV | U ∈ CovM (X),V ∈ Cov(Y )} : X ′ × Y ′ → X × Y.
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We will show that this net is not a proper proximate net.

Take a covering W ∈ Cov (X × Y ) = Cov ([0, 1] × [0, 1)) defined by:

W = { Wn| n ∈ N} ∪ { Tn| n ∈ N} where:

W1 =

[

0,
1

2
+

1

3

)

×

[

0,
1

2

)

,

W2 =

[

0,
1

2
+

1

4

)

×

(

1

4
,
1

2
+

1

4

)

,

W3 =

[

0,
1

2
+

1

5

)

×

(

1

2
+

1

8
,
1

2
+

1

4
+

1

8

)

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Wn =

[

0,
1

2
+

1

n+ 2

)

×

(

1

2
+ · · ·+

1

2n−2
+

1

2n
,
1

2
+ · · · +

1

2n−1
+

1

2n

)

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On the other side:

T1 =

(

1

2
, 1

]

×

[

0,
1

2

)

,

T2 =

(

1

2
, 1

]

×

(

1

4
,
1

2
+

1

4

)

,

T3 =

(

1

2
, 1

]

×

(

1

2
+

1

8
,
1

2
+

1

4
+

1

8

)

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tn =

(

1

2
, 1

]

×

(

1

2
+ · · ·+

1

2n−2
+

1

2n
,
1

2
+ · · ·+

1

2n−1
+

1

2n

)

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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If we suppose that h = {fU × gV | U ∈ CovM (X), V ∈ Cov(Y )} is a
proximate net, then there must be a member fU ×gV which is W-continuous. We

will prove that this is not possible. For fixed y ∈ Y ′ the point

(

1

2
, y

)

is mapped

in the point

(

1

2
+

1

nU

, y

)

. If we fix y0 < 1, near to 1, such that:

y0 ∈

(

1

2
+

1

22
+ · · · +

1

2n−2
+

1

2n
,

1

2
+

1

22
+ · · · +

1

2n−1
+

1

2n

)

and
1

2
+

1

nU

> 1/2 + 1/(n+ 2) for n large enough. Then for every neighborhood

O × M of (1/2, y0), the set fU(O) consists of numbers less than 1/2 and also

contains the number
1

2
+

1

nU

= fU(1/2). So, the set fU (O) × gV(M) is not

inscribed in any set of the covering W. We couldn’t find a member fU ×gV which
would be W-continuous, hence h = { fU × gV | U ∈ CovM (X), V ∈ Cov(Y )} is
not a proper proximate net. ✷

Conclusion. Proper shape over finite coverings, as theory that classifies
noncompact spaces, fulfills the following universal property:

If ShpF (X) = ShpF (X
′) and ShpF (Y ) = ShpF (Y

′), then

ShpF (X × Y ) = ShpF (X
′ × Y ′).

The following question arises:

Does the theory of proper shape from [2] have the same property without
the assumption one of the spaces to be compact?

The example constructed in the end of the paper ensures us that, in the
category of proper shape, we couldn’t always obtain a morphism by product of
two morphisms.
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