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Abstract. It is given a simplified and self-contained proof of the classical
Michael’s finite-dimensional selection theorem. The proof is based on ap-
proximate selections constructed stepwise over skeletons of nerves of covers.
The method is also applied to simplify the proof of the Schepin–Brodsky’s
generalisation of this theorem.

1. Introduction. All spaces in this paper are Hausdorff topological
spaces. We will use Φ : X❀Y to designate that Φ is a map from X to the
nonempty subsets of Y , i.e. a set-valued mapping. Such a mapping is lower semi-

continuous, or l.s.c., if the set

Φ−1[U ] = {x ∈ X : Φ(x) ∩ U 6= ∅}

is open in X, for every open U ⊂ Y . Also, let us recall that a map f : X → Y is
a selection for Φ : X❀Y if f(x) ∈ Φ(x), for all x ∈ X.
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Let n ≥ −1. A family S of subsets of a space Y is equi-LCn [11] if every

neighbourhood U of a point y ∈
⋃

S contains a neighbourhood V of y such that

for every S ∈ S , every continuous map g : Sk → V ∩S of the k-sphere Sk, k ≤ n,
can be extended to a continuous map h : Bk+1 → U ∩ S of the (k+ 1)-ball Bk+1.
A space S is called Cn if for every k ≤ n, every continuous map g : Sk → S can
be extended to a continuous map h : Bk+1 → S. In these terms, a family S

of subsets of Y is equi-LC−1 if it consists of nonempty subsets; similarly, each
nonempty subset S ⊂ Y is C−1.

Let F (Y ) be the collection of all nonempty closed subsets of a space Y .
The following theorem was proved by Ernest Michael, see [11, Theorem 1.2], and
is commonly called the finite-dimensional selection theorem.

Theorem 1.1. Let X be a paracompact space with dim(X) ≤ n + 1, Y
be a completely metrizable space, and S ⊂ F (Y ) be an equi-LCn family such

that each S ∈ S is Cn. Then each l.s.c. mapping Φ : X → S has a continuous

selection.

The original proof of Theorem 1.1 in [11] takes up most of that paper,
and is accomplished in 6 steps. Other proofs of this theorem can be found in
the monograph [12], and the book [7]. Actually, in [12] are given two different
approaches to obtain the theorem — the one which follows the original Michael’s
proof, and another one based on filtrations [14]. Other proofs were given by other
authors, see e.g. [1] and [9]. However, what all these proofs have in common is
that they may somehow discourage the casual reader and make Theorem 1.1 not
so accessible to wider audience. The main purpose of this paper is to fill in this
gap, and present a simplified and self-contained proof of this theorem.

The paper is organised as follows. The next section contains a brief re-
view of canonical maps and partitions of unity, which is essential for the proper
understanding of any of the available proofs of Theorem 1.1. In this regard, let us
explicitly remark that these considerations were not made readily available in pre-
vious proofs, so they are now included to make the exposition self-contained. The
essential preparation for the proof of Theorem 1.1 starts in Section 3, which con-
tains a selection theorem for finite aspherical sequences of lower locally constant
mappings (Theorem 3.1). This theorem is similar to a theorem of Uspenskij, see
[16, Theorem 1.3], and represents a relaxed version of another theorem proved by
the author, see [9, Theorem 3.1]. Section 4 contains several simple constructions
of finite aspherical sequences of sets providing the main interface between such
sequences of sets and the property of equi-LCn. Finally, the proof of Theorem
1.1 is accomplished in Section 5. It is based on two constructions which are also
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present in Michael’s proof. The one, Proposition 5.1, relates l.s.c. mappings to
lower locally constant mappings; the other — Proposition 5.2, relates selections
for lower locally constant mappings to approximate selections for l.s.c. mappings.
These constructions are applied together with Theorem 3.1 to deal with two se-
lection properties of l.s.c. equi-LCn-valued mappings, see Theorems 5.3 and 5.4.
The proof of Theorem 1.1 is then obtained as an immediate consequence of these
properties.

2. Canonical maps and partitions of unity. The cozero set, or
the set-theoretic support, of a function ξ : X → R is the set coz(ξ) = {x ∈ X :
ξ(x) 6= 0}. A collection ξa : X → [0, 1], a ∈ A , of continuous functions on a space

X is a partition of unity if
∑

a∈A

ξa(x) = 1, for each x ∈ X. Here, “
∑

a∈A

ξa(x) = 1”

means that only countably many functions ξa’s do not vanish at x, and the series
composed by them is convergent to 1. For a cover U of a space X, a partition
of unity {ξU : U ∈ U } on X is index-subordinated to U if coz(ξU ) ⊂ U , for each
U ∈ U , see Remark 2.7. The following theorem is well known, it is a consequence
of Urysohn’s characterisation of normality [15] and the Lefschetz lemma [10].

Theorem 2.1. Every locally finite open cover of a normal space has an

index-subordinated partition of unity.

A partition of unity {ξa : a ∈ A } on a space X is called locally finite

if {coz(ξa) : a ∈ A } is a locally finite cover of X. Complementary to Theorem
2.1 is the following important property of partitions of unity; it follows from a
construction of M. Mather, see [3, Lemma] and [6, Lemma 5.1.8].

Theorem 2.2. If a cover U of a space X has an index-subordinated

partition of unity, then U also has an index-subordinated locally finite partition

of unity.

By a simplicial complex we mean a collection Σ of nonempty finite subsets

of a set S such that τ ∈ Σ, whenever ∅ 6= τ ⊂ σ ∈ Σ. The set
⋃

Σ is the vertex

set of Σ, while each element of Σ is called a simplex. The k-skeleton Σk of Σ
(k ≥ 0) is the simplicial complex Σk = {σ ∈ Σ : Card(σ) ≤ k+1}, where Card(σ)
is the cardinality of σ. In the sequel, for simplicity, we will identify the vertex
set of Σ with its 0-skeleton Σ0. In these terms, a simplicial map g : Σ1 → Σ2

is a map g : Σ0
1 → Σ0

2 between the vertices of simplicial complexes Σ1 and Σ2

such that g(σ) ∈ Σ2, for each σ ∈ Σ1. If g : Σ1 → Σ2 is a simplicial map and
g : Σ0

1 → Σ0
2 is bijective, then the inverse g−1 is also a simplicial map, and we say

that g is a simplicial isomorphism.
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The set ΣS of all nonempty finite subsets of a set S is a simplicial complex.
Another natural example is the nerve N (U ) of a cover U of a set X, which is
the subcomplex of ΣU defined by

(2.1) N (U ) =
{

σ ∈ ΣU :
⋂

σ 6= ∅
}

.

The k-skeleton of N (U ) is denoted by N
k(U ), and the vertex set N

0(U ) of
N (U ) is actually U because we can always assume that ∅ /∈ U .

For a set A , let ℓ1(A ) be the linear space of all functions y : A → R

with
∑

a∈A

|y(a)| <∞. In fact, ℓ1(A ) is a Banach space when equipped with the

norm ‖y‖1 =
∑

a∈A

|y(a)|, but this will play no role in the paper. The vertex set

Σ0 of a simplicial complex Σ is a linearly independent subset of ℓ1(Σ
0), where

each v ∈ Σ0 is identified with its characteristic function v : Σ0 → {0, 1}, namely
with the function v(u) = 0 for u 6= v, and v(v) = 1. Then to each σ ∈ Σ one
can associate the geometric simplex |σ| = conv(σ), which is the convex hull of
σ. Thus, |σ| is a k-dimensional simplex if and only if Card(σ) = k + 1. The set

|Σ| =
⋃

σ∈Σ

|σ| ⊂ ℓ1(Σ
0) is called the geometric realisation of Σ. As a topological

space, we will consider |Σ| endowed with the Whitehead topology [18, 19]. In
this topology, a subset U ⊂ |Σ| is open if and only if U ∩ |σ| is open in |σ|, for
every σ ∈ Σ. Let us explicitly remark that the Whitehead topology on |Σ| is not
necessarily the subspace topology on |Σ| as a subset of the Banach space ℓ1

(

Σ0
)

.
However, both topologies coincide on each geometric simplex |σ|, for σ ∈ Σ.

If p ∈ |σ| for some σ ∈ Σ, then p is both an element p ∈ ℓ1(Σ
0) and

a unique convex combination of the elements of σ ⊂ Σ0 ⊂ ℓ1(Σ
0). Hence, the

geometric realisation |Σ| is the set of all p ∈ ℓ1(Σ
0) such that

(2.2) p(v) ≥ 0, v ∈ Σ0, and coz(p) =
{

v ∈ Σ0 : p(v) > 0
}

∈ Σ.

Here, p(v) is called the v-th barycentric (or affine) coordinate of p ∈ |Σ|, while
the simplex coz(p) ∈ Σ is called the carrier of p, and denoted by car(p) = coz(p).

Since the representation p =
∑

v∈car(p)

p(v) · v is unique, the carrier car(p) is the

minimal simplex of Σ with the property that p ∈ | car(p)|.

To each vertex v ∈ Σ0, we can now associate the function αv : |Σ| → [0, 1],
defined by

(2.3) αv(p) = p(v), for every p ∈ |Σ|.
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It is called the v-th barycentric coordinate function and is continuous being affine
on each simplex |σ|, for σ ∈ Σ. The cozero set coz(αv) of αv is called the open

star of the vertex v ∈ Σ0, and denoted by

(2.4) st〈v〉 =
{

p ∈ |Σ| : αv(p) > 0
}

.

Clearly, the open star st〈v〉 is open in |Σ| because αv is continuous. The following
proposition is an immediate consequence of (2.2), (2.3) and (2.4).

Proposition 2.3. If Σ is a simplicial complex, then the collection
{

αv : v ∈ Σ0
}

is a partition of unity on |Σ| with coz(αv) = st〈v〉, for each v ∈ Σ0.

We now turn to the other essential concept in this section. For a cover
U of a space X, a continuous map f : X → |N (U )| is called canonical for U if

(2.5) f−1(st〈U〉) ⊂ U, for every U ∈ U .

Canonical maps are essentially partitions of unity, which are index-subordinated
to the corresponding cover of the space.

Theorem 2.4. A cover U of a space X has an index-subordinated par-

tition of unity if and only if U has a canonical map.

P r o o f. Let U be a cover of X and αU , U ∈ U , be the barycentric
coordinate functions of |N (U )|.

Suppose that f : X → |N (U )| is a canonical map for U . Since f is
continuous, by Proposition 2.3, {αU ◦ f : U ∈ U } is a partition of unity on X.
By the same proposition and (2.5), we also have that

coz(αU ◦ f) = f−1(coz(αU )) = f−1(st〈U〉) ⊂ U, U ∈ U .

Conversely, suppose that U has an index-subordinated partition of unity.
Then by Theorem 2.2, U also has an index-subordinated locally finite partition
of unity {ξU : U ∈ U }. For each x ∈ X, let σξ(x) ∈ N (U ) be the simplex
determined by the point x and the functions ξU , U ∈ U , namely σξ(x) = {U ∈
U : ξU (x) > 0}. Next, define a map f : X → |N (U )| by

(2.6) f(x) =
∑

U∈σξ(x)

ξU (x) · U, x ∈ X.

Since {ξU : U ∈ U } is a locally finite partition of unity, each point p ∈ X
has a neighbourhood Vp ⊂ X such that Up = {U ∈ U : Vp ∩ coz(ξU ) 6= ∅} is
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a finite set. According to (2.6), this implies that f(Vp) ⊂ |N (Up)| ⊂ ℓ1(Up).
However, ℓ1(Up) is now the usual Euclidean space RUp because Up is a finite
set. For the same reason, N (Up) has finitely many simplices. Therefore, the
Whitehead topology on |N (Up)| is the subspace topology on |N (Up)| as a subset
of RUp . Since each function ξU = αU ◦ f , U ∈ Up, is continuous, so is the
restriction f ↾Vp. This shows that f is continuous as well. Finally, let U ∈ U

and x ∈ f−1 (st〈U〉). Then f(x) ∈ st〈U〉 and by (2.4) and (2.6), we get that
ξU (x) = αU (f(x)) > 0. Accordingly, U ∈ σξ(x) which implies that x ∈ U
because coz(ξU ) ⊂ U . Thus, f is canonical for U , see (2.5). ✷

Canonical maps will be involved in the proof of Theorem 1.1 with two
properties, which are briefly discussed below.

For a simplicial complex Σ, as mentioned before, the carrier car(p) of a
point p ∈ |Σ| is the minimal simplex of Σ with p ∈ | car(p)|, see (2.2). According
to (2.3) and (2.4), it has the following natural representation

(2.7) car(p) =
{

v ∈ Σ0 : p ∈ st〈v〉
}

.

For a cover U of X and x ∈ X, we will associate the simplicial complex

(2.8) ΣU (x) =
{

σ ∈ ΣU : x ∈
⋂

σ
}

.

According to (2.1), we have that ΣU (x) ⊂ N (U ), for every x ∈ X. Thus, (2.8)
defines a natural set-valued mapping ΣU : X❀N (U ). To this mapping, we
will associate the mapping |ΣU | : X❀ |N (U )| which assigns to each x ∈ X the
geometric realisation |ΣU |(x) = |ΣU (x)|. In terms of this mapping, we have the
following selection interpretation of canonical maps which extends an observation
of Dowker [4], see Remark 2.9.

Proposition 2.5. Let U be a cover of a space X. Then a continuous

map f : X → |N (U )| is canonical for U if and only if f is a selection for the

mapping |ΣU | : X❀ |N (U )|.

P r o o f. Let f be a canonical map for U , and x ∈ X. Whenever U ∈
car(f(x)), it follows from (2.7) that f(x) ∈ st〈U〉 and therefore, by (2.5), x ∈ U .
Thus, by (2.8), car(f(x)) ∈ ΣU (x) and we have that f(x) ∈ | car(f(x))| ⊂
|ΣU |(x). Conversely, suppose that f is as selection for |ΣU |, and x ∈ f−1 (st〈U〉)
for some U ∈ U . Then by (2.7), U ∈ car(f(x)) because f(x) ∈ st〈U〉. Moreover,
f(x) ∈ |σ| for some σ ∈ ΣU (x) because f(x) ∈ |ΣU |(x). Since car(f(x)) is
the minimal simplex with this property, we get that U ∈ car(f(x)) ⊂ σ and,
therefore, x ∈ U . That is, f−1(st〈U〉) ⊂ U . ✷
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Each simplicial map g : Σ1 → Σ2, between simplicial complexes Σ1 and
Σ2, can be extended to a continuous map |g| : |Σ1| → |Σ2| which is affine on each
geometric simplex |σ|, for σ ∈ Σ1. This map is simply defined by

|g|(p) =
∑

v∈car(p)

αv(p) · g(v), p ∈ |Σ1|.

If a cover V of X refines another cover U , then there exists a natural
simplicial map r : N (V ) → N (U ) with V ⊂ r(V ), for each V ∈ V . Such a map
is commonly called a canonical projection, or a refining simplicial map, or simply
a refining map. Canonical maps are preserved by refinements in the following
sense.

Corollary 2.6. Let U and V be covers of a space X such that V refines

U . If r : N (V ) → N (U ) is a refining map and g : X → |N (V )| is canonical

for V , then the composite map |r| ◦ g : X → |N (U )| is canonical for U .

P r o o f. This follows from Proposition 2.5 and the fact that r (ΣV (x)) ⊂
ΣU (x), x ∈ X, because V ⊂ r(V ) for every V ∈ V , see (2.8). ✷

We conclude this section with several remarks.

Remark 2.7. For a space X, the support of a function ξ : X → R, called
also the topological support, is the set supp(ξ) = coz(ξ). In several sources, a
partition of unity {ξU : U ∈ U } on a space X is called index-subordinated to a
cover U of X if supp(ξU ) ⊂ U , for every U ∈ U ; and {ξU : U ∈ U } is called
weakly index-subordinated to U if coz(ξU ) ⊂ U , for every U ∈ U , see e.g. [13].
However, these variations in the terminology do not affect the results of this
section. Namely, if {ηU : U ∈ U } is a partition of unity on X, then X also has a
(locally finite) partition of unity {ξU : U ∈ U } with supp(ξU ) ⊂ coz(ηU ), for all
U ∈ U , [13, Proposition 2.7.4]. This property is essentially the construction of
M. Mather for proving Theorem 2.2.

Remark 2.8. Canonical maps provide an isomorphism between simpli-
cial complexes and nerves of covers. Namely, if OΣ =

{

st〈v〉 : v ∈ Σ0
}

is the
cover of |Σ| by the open stars of the vertices of a simplicial complex Σ and

σ ⊂ Σ0, then σ ∈ Σ if and only if
⋂

v∈σ

st〈v〉 6= ∅. That is, σ ∈ Σ precisely

when st〈σ〉 = {st〈v〉 : v ∈ σ} ∈ N (OΣ). Hence, st〈·〉 : Σ → N (OΣ) is a sim-
plicial isomorphism and the associated map | st〈·〉| : |Σ| → |N (OΣ)| is both a
homeomorphism and a canonical map for OΣ.
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Remark 2.9. In the case of a point-finite cover U of X, Proposition 2.5
is reduced to the following selection interpretation of canonical maps given by
Dowker [4]. Whenever x ∈ X, let σ(x) = {U ∈ U : x ∈ U} ∈ N (U ) be the
simplex determined by x. Then a continuous map f : X → |N (U )| is canonical
for U if and only if f(x) ∈ |σ(x)|, for every x ∈ X. While σ(x) is only an element
of ΣU (x), we have that |σ(x)| = |ΣU |(x) because σ ⊂ σ(x), for each σ ∈ ΣU (x).

3. Aspherical sequences of mappings and selections. A map-
ping ϕ : X❀Y is lower locally constant [9] if the set {x ∈ X : K ⊂ ϕ(x)}
is open in X, for every compact subset K ⊂ Y . This property appeared in a
paper of Uspenskij [16]; later on, it was used by some authors (see, for instance,
[2, 17]) under the name “strongly l.s.c.”, while in papers of other authors strongly
l.s.c. was already used for a different property of set-valued mappings (see, for
instance, [8]). Every lower locally constant mapping is l.s.c. but the converse fails
in general and counterexamples abound. In fact, if we consider a single-valued
map f : X → Y as a set-valued one, then f is l.s.c. if and only if it is continuous,
while f will be lower locally constant if and only if it is locally constant. Thus,
our terminology provides some natural analogy with the single-valued case.

Let k ≥ 0. For subsets S,B ⊂ Y , we will write that S
k
→֒ B if every

continuous map of the k-sphere in S can be extended to a continuous map of the

(k + 1)-ball in B. Evidently, the relation S
k
→֒ B implies that S ⊂ B. Similarly,

for mappings ϕ,ψ : X❀Y , we will write ϕ
k
→֒ ψ to express that ϕ(x)

k
→֒ ψ(x),

for every x ∈ X. In these terms, we shall say that a sequence of mappings

ϕk : X❀ Y , 0 ≤ k ≤ n, is aspherical if ϕk
k
→֒ ϕk+1, for every k < n. The

following theorem will be proved in this section.

Theorem 3.1. Let X be a paracompact space with dim(X) ≤ n, Y be

a space, and ϕk : X❀Y , 0 ≤ k ≤ n, be an aspherical sequence of lower locally

constant mappings. Then ϕn has a continuous selection.

The proof of Theorem 3.1 is based on special skeletal selections motivated
by the characterisation of canonical maps in Proposition 2.5. Namely, we shall
say that a mapping ϕ : X❀Y has a k-skeletal selection, k ≥ 0, if there exists
and open cover U of X and a continuous map u : |N k(U )| → Y such that

(3.1) u
(

|Σk
U (x)|

)

⊂ ϕ(x), for every x ∈ X.

Here, Σk
U (x) is the k-skeleton of the simplicial complex ΣU (x), see (2.8). In fact,

just like before, one can consider Σk
U : X❀N

k(U ) as a set-valued mapping;
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similarly for |Σk
U | : X❀ |N k(U )|. Then a continuous map u : |N k(U )| → Y is

a k-skeletal selection for ϕ if and only if the composite mapping u◦|Σk
U | : X❀Y

is a set-valued selection for ϕ : X❀Y , see Remark 3.6.

We proceed with the following constructions of k-skeletal selections which
furnish the essential part of the proof of Theorem 3.1.

Proposition 3.2. Each lower locally constant mapping ϕ : X❀Y has a

0-skeletal selection.

P r o o f. For each x ∈ X, take a point y(x) ∈ ϕ(x), and set

(3.2) U(x) =
{

z ∈ X : y(x) ∈ ϕ(z)
}

.

Then U = {U(x) : x ∈ X} is an open cover of X. Moreover, for each U ∈ U

there is a point xU ∈ X with U = U(xU ). Since |N 0(U )| = U , we may define
a map u : |N 0(U )| → Y by u(U) = y(xU ), for each U ∈ U . If x ∈ U ∈ U , then
x ∈ U(xU ) and by (3.2), we get that u(U) = y(xU ) ∈ ϕ(x). ✷

Proposition 3.3. Let X be a paracompact space, and ψ : X❀Y be a

mapping which has a k-skeletal selection, for some k ≥ 0. Then ψ has a k-skeletal
selection u : |N k(U )| → Y for some open locally finite cover U of X.

P r o o f. Let v : |N k(V )| → Y be a k-skeletal selection for ψ, for some
open cover V of X. Since X is paracompact, the cover V has an open locally
finite refinement U . Let r : N (U ) → N (V ) be a refining map. Then by (3.1),
u = v ◦ |r| ↾ |N k(U )| : |N k(U )| → Y is a k-skeletal selection for ψ because
r(Σk

U (x)) ⊂ Σk
V (x), for every x ∈ X. ✷

A cover V of X is a star-refinement of a cover U if the cover V
∗ =

{V ∗ : V ∈ V } refines U , where V ∗ =
⋃

{W ∈ V : W ∩ V 6= ∅}. To reflect this

property, we shall say that a simplicial map ℓ : N (V ) → N (U ) is a star-refining

map if V ∗ ⊂ ℓ(V ), for each V ∈ V . Each star-refining map ℓ : N (V ) → N (U )
has the property that

(3.3)
⋃

σ ⊂
⋂

ℓ(σ), for each σ ∈ N (V ).

Proposition 3.4. Let X be a paracompact space, Y be a space, and

ψ,ϕ : X❀Y be such that ϕ is lower locally constant and ψ
k
→֒ ϕ for some k ≥ 0.

If ψ has a k-skeletal selection, then ϕ has a (k + 1)-skeletal selection.

P r o o f. By Proposition 3.3, ψ has a k-skeletal selection u : |N k(U )| → Y
for some open locally finite cover U of X. For each σ ∈ N (U ), let uσ =
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u ↾ |N k(σ)| be the restriction of u over the subcomplex |N k(σ)| = |σ|∩|N k(U )|.
Then, whenever σ ∈ Σk+1

U
(x) for some x ∈ X, the map uσ can be extended to a

continuous map u(x,σ) : |σ| → Y such that

(3.4) u(x,σ)(|σ|) ⊂ ϕ(x).

Indeed, if σ ∈ Σk
U (x), then by (3.1), u(|σ|) ⊂ ψ(x) ⊂ ϕ(x) and we can take

u(x,σ) = uσ. If σ /∈ Σk
U (x), then |N k(σ)| =

⋃

{|τ | : ∅ 6= τ ( σ} is homeomorphic

to the k-sphere being the boundary of |σ|. Hence, uσ has a continuous extension

u(x,σ) : |σ| → ϕ(x) because u(|N k(σ)|) ⊂ u(|Σk
U (x)|) ⊂ ψ(x)

k
→֒ ϕ(x), see (3.1).

Now, whenever x ∈ X, set

(3.5) K(x) =
⋃

{

u(x,σ)(|σ|) : σ ∈ Σk+1
U

(x)
}

.

Then by (3.4), K(x) ⊂ ϕ(x); moreover, K(x) is compact because U is locally
finite and, therefore, Σk+1

U
(x) contains finitely many simplices. Since ϕ is lower

locally constant, for each U ∈ U , each point x ∈ U is contained in the open set

(3.6) W(x,U) =
{

z ∈ U : K(x) ⊂ ϕ(z)
}

.

Since X is paracompact, the cover {W(x,U) : x ∈ U ∈ U } has an open star-
refinement V . So, there are maps p : V → X and ℓ : V → U such that

(3.7) V ∗ ⊂W(p(V ),ℓ(V )), for every V ∈ V .

Accordingly, ℓ is a star-refining map because by (3.6), V ∗ ⊂W(p(V ),ℓ(V )) ⊂ ℓ(V ).
Finally, take a map q : N (V ) → V which selects from any simplex σ ∈ N (V ) a
vertex q(σ) ∈ σ, and next set π = p ◦ q : N (V ) → X. Then

(3.8) ℓ(σ) ∈ ΣU (π(σ)), σ ∈ N (V ),

because π(σ) = p(q(σ)) ∈ q(σ) ⊂
⋃

σ ⊂
⋂

ℓ(σ), see (3.3).

We complete the proof as follows. Using (3.4) and (3.8), one can de-
fine a continuous extension v : |N k+1(V )| → Y of the map u ◦ |ℓ| ↾ |N k(V )| :
|N k(V )| → Y by v ↾ |σ| = u(π(σ),ℓ(σ)), for every σ ∈ N

k+1(V ). This v is a (k+1)-

skeletal selection for ϕ. Indeed, let σ ∈ Σk+1
V

(x) for some x ∈ X. Then x ∈ q(σ)
because q(σ) ∈ σ, see (2.8). Moreover, by (3.7), q(σ) ⊂ [q(σ)]∗ ⊂ W(π(σ),ℓ(q(σ))) .
Hence, by (3.5), (3.6) and (3.8), v(|σ|) = u(π(σ),ℓ(σ))(|ℓ(σ)|) ⊂ K(π(σ)) ⊂ ϕ(x). ✷
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P r o o f o f T h e o r em 3.1. According to Propositions 3.2 and 3.4, the
mapping ϕn has an n-skeletal selection u : |N n(U )| → Y , for some open cover
U of X. Since X is paracompact and dim(X) ≤ n, the cover U has an open
refinement V with N (V ) = N

n(V ), see Remark 3.5. Let r : N (V ) → N
n(U )

be a refining map, and g : X → |N (V )| be a canonical map for V which exists
because X is paracompact, see Theorems 2.1 and 2.4. Then by Corollary 2.6, the
composite map h = |r| ◦ g : X → |N n(U )| is a canonical map for U . Finally,
by (3.1) and Proposition 2.5, the composite map f = u ◦ h : X → Y

|N n(U )|

X Y

uh

ϕ

is a continuous selection for ϕ. ✷

Remark 3.5. Let n ≥ −1 be an integer and X be a normal space. The

order of a cover V of X doesn’t exceed n if
⋂

σ = ∅, for every σ ⊂ V with

Card(σ) ≥ n+ 2; equivalently, if N (V ) = N
n(V ). In these terms, the covering

dimension of X is at most n, written dim(X) ≤ n, if every finite open cover of
X has an open refinement V with N (V ) = N

n(V ). According to a result of
Dowker [4, Theorem 3.5], dim(X) ≤ n if and only if every locally finite open
cover of X has an open refinement V with N (V ) = N

n(V ). In particular, for a
paracompact space X, we have that dim(X) ≤ n if and only if every open cover
of X has an open refinement V with N (V ) = N

n(V ).

Remark 3.6. A mapping ψ : X❀Y is a set-valued selection (or set-

selection, or multi-selection) for ϕ : X❀Y if ψ(x) ⊂ ϕ(x), for all x ∈ X. In terms
of set-valued selections, a mapping ϕ : X❀ Y has a k-skeletal selection, k ≥ 0,
if there exists an open cover U of X and a continuous map u : |N k(U )| → Y
such that the composite mapping u ◦ |Σk

U | : X❀Y

|N k(U )|

X Y

u
|Σk

U
|

ϕ

is a set-valued selection for ϕ : X❀Y .

4. Generating aspherical sequences of sets. For a point y ∈ Y
of a metric space (Y, d) and ε > 0, let

Oε(y) = {z ∈ Y : d(z, y) < ε}
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be the open ε-ball centred at y; and Oε(S) =
⋃

y∈S

Oε(y) be the ε-neighbourhood

of a subset S ⊂ Y . Also, recall that a map f : X → Y is an ε-selection for a
mapping ϕ : X❀Y if f(x) ∈ Oε(ϕ(x)) for every x ∈ X.

Throughout this section, δ : (0,+∞) → (0,+∞) is a fixed function. To
this function, we associate the sequence of iterated functions δn : (0,+∞) →
(0,+∞), n ≥ 0, defined by

(4.1) δ0(ε) = ε and δn+1(ε) = δ(δn(ε)).

Proposition 4.1. Let (Y, d) be a metric space and S0 ⊂ S1 ⊂ · · · ⊂ Sn ⊂ Y

be such that Oδ(ε)(y) ∩ Sk
k
→֒ Oε(y) ∩ Sk+1, for every y ∈ Y and k < n. Then

(4.2) Oδn−k(ε)(y) ∩ Sk
k
→֒ Oδn−k−1(ε)(y) ∩ Sk+1, k < n.

P r o o f. Follows from the fact that δn−k(ε) = δ
(

δn−k−1(ε)
)

, see (4.1). ✷

We now have the following “local” version of Theorem 3.1.

Theorem 4.2. Let (Y, d) be a metric space, X be a paracompact space

with dim(X) ≤ n, and ψk : X❀Y , 0 ≤ k ≤ n, be lower locally constant mappings

such that Oδ(ε)(y)∩ψk(x)
k
→֒ Oε(y)∩ψk+1(x) for every x ∈ X, y ∈ Y and k < n.

Then for each continuous δn(ε)-selection g : X → Y for ψ0, there is a continuous

selection f : X → Y for ψn with d(f(x), g(x)) < ε, for all x ∈ X.

P r o o f. Let g : X → Y be a continuous δn(ε)-selection for ψ0. Next, for
each k ≤ n, define a set-valued mapping ϕk by ϕk(x) = Oδn−k(ε)(g(x)) ∩ ψk(x),
x ∈ X. Since g is a δn(ε)-selection for ψ0, the mapping ϕ0 is nonempty-valued
and, according to (4.2), so is each ϕk, k ≤ n. In fact, by (4.2), the resulting
sequence of mappings ϕk : X❀Y , 0 ≤ k ≤ n, is aspherical. Moreover, each ϕk is
lower locally constant because so are ψk and the mapping x→ Oδn−k(ε)(g(x)), x ∈
X (see Proposition 5.1). Hence, by Theorem 3.1, ϕn has a continuous selection
f : X → Y because X is a paracompact space with dim(X) ≤ n. Evidently, f is a
selection for ψn and, by (4.1), f(x) ∈ Oδn−n(ε)(g(x)) = Oδ0(ε)(g(x)) = Oε(g(x)),
x ∈ X. ✷

We conclude this section with the following two applications of Theorem
4.2 which will provide the main interface between selections for l.s.c. mappings
and Theorem 3.1, see Theorems 5.3 and 5.4.
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Corollary 4.3. Let E be a normed space, and ∅ 6= S ⊂ T ⊂ E be such

that S
k
→֒ T and Oδ(ε)(y)∩S

i
→֒ Oε(y)∩S, for every y ∈ E and 0 ≤ i < k. Then

Oδk(ε)(S)
k
→֒ Oε(T ).

P r o o f. Let ℓ : Sk → Oδk(ε)(S) be a continuous map from the k-sphere

Sk. Consider the constant mappings ψi(x) = S, x ∈ Sk and i ≤ k. Then ℓ is

a continuous δk(ε)-selection for ψ0, and Oδ(ε)(y) ∩ ψi(x)
i
→֒ Oε(y) ∩ ψi+1(x) for

every x ∈ Sk, y ∈ E and i < k. Hence, by Theorem 4.2, there exists a continuous
q : Sk → S with ‖q(x)−ℓ(x)‖ < ε, for every x ∈ Sk. Let h1 be the linear homotopy
between ℓ and q, i.e. h1(x, t) = tq(x) + (1 − t)ℓ(x), whenever (x, t) ∈ Sk ×[0, 1].
Then, h1(S

k ×[0, 1]) ⊂ Oε(S) ⊂ Oε(T ). Also, let h2 : Sk ×[0, 1] → T be a

homotopy between q and a constant map, which exists because S
k
→֒ T . Finally,

take h to be the homotopy obtained by combining h1 and h2. Then h is a
homotopy of ℓ with a constant map over a subset of Oε(T ). ✷

Corollary 4.4. Let E be a normed space, and ∅ 6= S ⊂ T ⊂ E be such

that Oδ(ε)(y) ∩ T
k
→֒ Oε(y) ∩ T and Oδ(ε)(y) ∩ S

i
→֒ Oε(y) ∩ S, for every y ∈ E

and 0 ≤ i < k. Define functions

(4.3) η(ε) = δ(ε)/2 and λ(ε, µ) = δk
(

min {η(ε), µ}
)

, ε, µ > 0.

Then Oη(ε)(y) ∩Oλ(ε,µ)(S)
k
→֒ Oε(y) ∩Oµ(T ), for every y ∈ E.

P r o o f. Let ℓ : Sk → Oη(ε)(y)∩Oλ(ε,µ)(S) be a continuous map for some
y ∈ E. Then, precisely as in the previous proof, there exists a continuous map
q : Sk → S such that ‖q(x) − ℓ(x)‖ < min{η(ε), µ}, for every x ∈ Sk. Since
η(ε) = δ(ε)/2, see (4.3), just like before, using a linear homotopy, we get that ℓ
and q are homotopic in Oδ(ε)(y)∩Oµ(S). Moreover q is homotopic to a constant

map in Oε(y) ∩ T because q : Sk → Oδ(ε)(y) ∩ S ⊂ Oδ(ε)(y) ∩ T
k
→֒ Oε(y) ∩ T .

Accordingly, ℓ is homotopic to a constant map in Oε(y) ∩Oµ(T ). ✷

5. Selections for equi-LC
n-valued mappings. In this section, to

each Φ : X❀Y we associate the mapping Φ : X → F (Y ) defined by Φ(x) =
Φ(x), x ∈ X. Moreover, for a pair of mappings Φ,Ψ : X❀Y , we will use Φ ∧ Ψ
to denote their intersection, i.e. the mapping which assigns to each x ∈ X the set
[Φ ∧Ψ](x) = Φ(x) ∩Ψ(x). Finally, to each ε > 0 and a mapping Φ : X❀Y in a
metric space (Y, d), we will associate the mapping O[Φ, ε] : X❀Y defined by

(5.1) O[Φ, ε](x) = Oε(Φ(x)), x ∈ X.
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This convention will be also used in an obvious manner for usual maps f : X → Y
considering f as the singleton-valued mapping x → {f(x)}, x ∈ X. In these
terms, for maps f, g : X → Y and ε, µ > 0, we have that f is a µ-selection for
Φ : X❀Y with d(f(x), g(x)) < ε for every x ∈ X, if and only if f is a selection
for the mapping O[Φ, µ] ∧O[g, ε].

The following two constructions are due to Michael, see [11, Lemma 11.3]
and [11, Proof that Lemma 5.1 implies Theorem 4.1, page 569]. They reduce the
selection problem for l.s.c. mappings to that of lower locally constant mappings.
For completeness, we sketch their proofs following the original arguments in [11].

Proposition 5.1. Let (Y, d) be a metric space, Φ : X❀Y be l.s.c. and

ε > 0. Then the mapping O[Φ, ε] : X❀Y is lower locally constant.

P r o o f. Take x0 ∈ X and a compact set K ⊂ O[Φ, ε](x0) = Oε(Φ(x0)).
Then K ⊂ Oδ(S) for some finite subset S ⊂ Φ(x0) and some δ > 0 with δ < ε.

Since Φ is l.s.c., U =
⋂

y∈S

Φ−1[Oε−δ(y)] is an open set containing x0. Moreover,

x ∈ U implies S ⊂ Oε−δ(Φ(x)) and, therefore, K ⊂ Oδ(S) ⊂ Oε(Φ(x)) =
O[Φ, ε](x). ✷

Proposition 5.2. Let (Y, d) be a complete metric space, ξ : (0,+∞) →
(0,+∞) be a function with ξ(ε) ≤ ε, and Φ : X❀Y be a mapping such that

for each continuous ξ(ε)-selection g : X → Y for Φ and µ > 0, then mapping

O[Φ, µ] ∧O[g, ε] has a continuous selection. Then for every continuous ξ(ε/2)-
selection g : X → Y for Φ, the mapping Φ∧O[g, ε] also has a continuous selection.

P r o o f. Let f1 = g : X → Y be a continuous ξ
(

2−1ε
)

-selection for
Φ. By condition with µ = ξ

(

2−2ε
)

, the mapping O
[

Φ, ξ
(

2−2ε
)]

∧ O[f1, 2
−1ε]

has a continuous selection f2 : X → Y . Thus, by induction, there exists a
sequence of continuous maps fn : X → E such that fn+1 is a selection for

O
[

Φ, ξ
(

2−(n+1)ε
)]

∧ O
[

fn, 2
−nε

]

, for every n ∈ N. Then the sequence {fn :

n ∈ N} is uniformly Cauchy because d(fn+1(x), fn(x)) < 2−nε, x ∈ X. Hence,
it converges uniformly to some continuous map f : X → Y because (Y, d) is
complete. Since ξ

(

2−nε
)

≤ 2−nε, each fn is a 2−nε-selection for Φ being a
selection for O

[

Φ, ξ
(

2−nε
)]

, see (5.1). Hence, d(f(x),Φ(x)) = 0, for each x ∈ X.
Finally, we also have that

d(f(x), g(x)) ≤
∞
∑

n=1

d(fn+1(x), fn(x)) <

∞
∑

n=1

2−nε = ε, x ∈ X. ✷
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Let n ≥ −1. A family S of subsets of a metric space (Y, d) is called
uniformly equi-LCn [11] if for every ε > 0 there exists δ(ε) > 0 such that, for every
S ∈ S , every continuous map of the k-sphere (k ≤ n) in S of diameter < δ(ε)
can be extended to continuous map of the (k + 1)-ball into a subset of S of
diameter < ε. Just as in the case of equi-LCn families, a family S is uniformly
equi-LC−1 iff it consists of nonempty sets. For such a family S , by replacing

δ(ε) with
δ(ε)

2
, we get that S is uniformly equi-LCn if there exists a function

δ : (0,+∞) → (0,+∞) such that

(5.2) Oδ(ε)(y) ∩ S
k
→֒ Oε(y) ∩ S, for every S ∈ S , y ∈ Y and 0 ≤ k ≤ n.

Evidently, we may further assume that δ(ε) ≤ ε, for every ε > 0. Based on this
and the results of the previous section, we now have the following two applications
of Theorem 3.1. The first one gives a simplified proof of [11, Theorem 4.1].

Theorem 5.3. Let E be a Banach space and S be a uniformly equi-LCn

family of subsets of E. Then there exists a function γ : (0,+∞) → (0,+∞)
with the following property : If X is a paracompact space with dim(X) ≤ n + 1,
Φ : X → S is l.s.c. and g : X → E is a continuous γ(ε)-selection for Φ, then
Φ ∧O[g, ε] has a continuous selection.

P r o o f. Let δ(ε) ≤ ε be as in (5.2) with respect to the family S . Also,
let λ(ε, µ) and η(ε) be as in (4.3) applied to this particular function δ(ε). Next,
define functions ηk(ε) and λk(ε, µ), 0 ≤ k ≤ n+ 1, by

(5.3)

{

ηn+1(ε) = ε and ηk(ε) = η
(

ηk+1(ε)
)

λn+1(ε, µ) = µ and λk(ε, µ) = λ
(

ηk+1(ε), λk+1(ε, µ)
)

.

Then γ(ε) = η0(ε/2) is as required. Indeed, let X and Φ be as in the theorem.
Applying Proposition 5.2 with ξ(ε) = η0(ε), it will be now sufficient to show that
for every µ > 0 and a continuous η0(ε)-selection g : X → E for Φ, the mapping
O[Φ, µ]∧O[g, ε] has a continuous selection. To this end, for every 0 ≤ k ≤ n+1,
let ϕk = O[Φ, λk(ε, µ)] ∧ O[g, ηk(ε)]. According to Proposition 5.1, each ϕk is
lower locally constant. Moreover, the resulting sequence of mappings ϕk : X❀E,
0 ≤ k ≤ n+ 1, is aspherical because by (5.2) and Corollary 4.4,

ϕk(x) = Oλk(ε,µ)(Φ(x)) ∩Oηk(ε)(g(x))

= Oλ(ηk+1(ε),λk+1(ε,µ))(Φ(x)) ∩Oη(ηk+1(ε))(g(x))

k
→֒ Oλk+1(ε,µ)(Φ(x)) ∩Oηk+1(ε)(g(x)) = ϕk+1(x), k ≤ n.
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Hence by Theorem 3.1,

ϕn+1 = O[Φ, λn+1(ε, µ)] ∧O[g, ηn+1(ε)] = O[Φ, µ] ∧O[g, ε]

has a continuous selection. The proof is complete. ✷

Theorem 5.4. Let X be a paracompact space with dim(X) ≤ n+1, E be

a Banach space, and Φk : X❀E, 0 ≤ k ≤ n+1, be a sequence of l.s.c. mappings

such that {Φk(x) : x ∈ X} is uniformly equi-LCk and Φk
k
→֒ Φk+1 for every

k ≤ n. Then Φn+1 has a continuous ε-selection, for every ε > 0.

P r o o f. According to (5.2) and Corollary 4.3, for each 0 ≤ k ≤ n there
exists a function δk : (0,+∞) → (0,+∞) such that

(5.4) Oδk(ε)(Φk(x))
k
→֒ Oε(Φk+1(x)), x ∈ X.

Next, define functions γk : (0,+∞) → (0,+∞), 0 ≤ k ≤ n+ 1, by

(5.5) γn+1(ε) = ε and γk(ε) = δk(γk+1(ε)), k ≤ n.

Finally, define a sequence of mappings ϕk : X❀E by ϕk = O[Φk, γk(ε)]. It now
follows from (5.4) and (5.5) that

ϕk(x) = Oγk(ε)(Φk(x)) = Oδk(γk+1(ε))(Φk(x))

k
→֒ Oγk+1(ε)(Φk+1(x)) = ϕk+1(x), k ≤ n.

Hence, the mappings ϕk, 0 ≤ k ≤ n+ 1, form an aspherical sequence. Moreover,
by Proposition 5.1, each ϕk is lower locally constant. Since dim(X) ≤ n+ 1, by
Theorem 3.1, ϕn+1 = O[Φn+1, γn+1(ε)] = O[Φn+1, ε] has a continuous selection,
i.e. Φn+1 has a continuous ε-selection. ✷

We are also ready for the proof of Theorem 1.1.

P r o o f o f T h e o r em 1.1. Let X, Y , S ⊂ F (Y ) and Φ : X → S

be as in that theorem. Since S is equi-LCn, by [5, Theorem 1] (see, also,

[11, Proposition 2.1]),
⋃

S can be embedded into a Banach space E such that

S ⊂ F (E) is uniformly equi-LCn. Then by Theorem 5.4, applied with Φk = Φ,
0 ≤ k ≤ n + 1, the mapping Φ has a continuous ε-selection, for every ε > 0.
Hence, by Theorem 5.3, Φ = Φ has a continuous selection as well. ✷

Another application of Theorems 5.3 and 5.4 is the following generalisa-
tion of Theorem 1.1, see [14], [12, Theorem 7.2] and [9, Corollary 7.10].
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Corollary 5.5. Let X be a paracompact space with dim(X) ≤ n + 1,
Y be a completely metrizable space, and Φk : X → F (Y ), 0 ≤ k ≤ n + 1,

be a sequence of l.s.c. mappings such that Φk
k
→֒ Φk+1 for k ≤ n, while each

family {Φk(x) : x ∈ X}, for k ≤ n+1, is equi-LCk. Then Φn+1 has a continuous

selection.

P r o o f. As before, the proof is reduced to the case when Y = E is a
Banach space, and each family {Φk(x) : x ∈ X} ⊂ F (E), 0 ≤ k ≤ n + 1, is
uniformly equi-LCk. Then by Theorem 5.4, Φn+1 has a continuous ε-selection,
for every ε > 0. Finally, by Theorem 5.3, Φn+1 also has a continuous selection. ✷
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