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Abstract. Let κ be an infinite regular cardinal. We define a topological
space X to be a Tκ-Borel-space (resp. a Tκ-BP-space) if for every x ∈ X the
singleton {x} belongs to the smallest κ-additive algebra of subsets of X that
contains all open sets (and all nowhere dense sets) in X . Each T1-space is
a Tκ-Borel-space and each Tκ-Borel-space is a T0-space. On the other hand,
Tκ-BP-spaces need not be T0-spaces.

We prove that a topological space X is a Tκ-Borel-space (resp. a Tκ-BP-
space) if and only if for each point x ∈ X the singleton {x} is the intersection
of a closed set and a G<κ-set in X (resp. {x} is either nowhere dense or a
G<κ-set in X). Also we present simple examples distinguishing the separa-
tion axioms Tκ-Borel and Tκ-BP for various infinite cardinals κ, and we relate
the axioms to several known notions, which results in a quite regular two-
dimensional diagram of lower separation axioms.
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1. Introduction. In this paper we define and study some separation
axioms, weaker than the classical separation axiom T1. First we recall three
known definitions.

A topological space X is called

• a T1-space if for each x ∈ X the singleton {x} is a closed subset of X;

• a T 1
2
-space if for each x ∈ X the singleton {x} is closed or open in X;

• a T0-space if for each x ∈ X the singleton {x} coincides with the intersection
of all open or closed sets containing x.

T 1
2
-spaces were introduced by McSherry in [13] under name TES. The

name T 1
2
comes from Levine, who earlier introduced a different but equivalent

condition in [10].
These known notions suggest the following general definition.

Definition 1.1. Let A(X) be a family of sets of a topological space X.
We shall say that X is a TA-space if for each x ∈ X the singleton {x} belongs to
the family A(X).

In the role of the family A(X) we shall consider the following families:

• the family Open(X) of all open subsets of X, i.e., the topology of X;

• the family Closed(X) of all closed subsets of X;

• the algebra Constructible(X) of all constructible subsets ofX, i.e., the small-
est algebra of sets containing the topology of X;

• the σ-algebra Borel(X) of all Borel subsets of X, i.e., the smallest σ-algebra
of sets containing the topology of X;

• the ideal Nwd(X) of all nowhere dense subsets of X;

• the σ-algebra BP(X) of all sets with the Baire property in X, i.e., the
smallest σ-algebra of sets, containing all open and all nowhere dense sets.

We recall that a family A of subsets of a set X is called

• an algebra if for any A,B ∈ A the sets A ∩B, A ∪B, X \ A belong to A;

• κ-additive for a cardinal κ if for any subfamily F ⊂ A of cardinality |F| < κ

the union
⋃

F belongs to A;

• a σ-algebra if A is an ω1-additive algebra of sets.

For a topological space X and an infinite cardinal κ let
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• κ-Borel(X) be the smallest κ-additive algebra of subsets of X, containing
all open sets in X;

• κ-BP(X) be the smallest κ-additive algebra of subsets of X, containing all
open sets and all nowhere dense sets in X;

• ∞-Borel(X) =
⋃

κ

κ-Borel(X) = |X|+-Borel(X);

• ∞-BP(X) =
⋃

κ

κ-BP(X) = |X|+-BP(X).

Here by |X| we denote the cardinality of the space X and by |X|+ the successor
of the cardinal |X|.

The property of being a TBorel-space, i.e. being a Tκ-Borel-space for κ = ω1,
was considered by Harley and McNulty in [7]. They gave several characteriza-
tions, examined preservation under subspaces and products, and showed that the
property lies strictly between T1 and T0. In [11] Lo uses the name GTD instead
of TBorel and considers also spaces where every singleton is either closed or Gδ.
These spaces are called GT 1

2
by Lo. Among other results regarding interactions

between these properties and the lattice of all topologies on a particular set,
minimal GTD- and minimal GT 1

2
-spaces are characterized.

Remark 1.2. For an infinite singular cardinal κ and a topological space
X we have κ-Borel(X) = κ+-Borel(X) and κ-BP(X) = κ+-BP(X). In fact, any
κ-additive algebra is actually κ+-additive. Indeed, since there is a cofinal set

{αβ : β < λ} ⊂ κ for some λ < κ, we have
⋃

α<κ
Aα =

⋃

β<λ

(

⋃

α<αβ

Aα

)

for any family {Aα : α < κ} ⊂ A. Therefore, we may often restrict ourselves to
regular κ.

Given two families A(X) and B(X) we also use the following notation.

• A-or-B(X) denotes the family A(X) ∪ B(X);

• A-meets-B(X) denotes the family {A ∩B : A ∈ A(X), B ∈ B(X)}.

Using the introduced families and notation, TOpen means discreteness,
TClosed is T1, and TClosed-or-Open is T 1

2
. Also, T∞-Borel is equivalent to T0, which

shall be proved in Corollary 2.2. The inclusion relations between the families
are described in the following diagram (in which κ is any regular uncountable
cardinal and an arrow A → B means that A ⊂ B).
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These inclusion relations imply the following implications between the
corresponding separation axioms (holding for any topological space):

(1)

2. Characterizations. Now we give characterizations of separation
axioms Tκ-Borel and Tκ-BP for various cardinals κ. A subset A of a topological

space X is defined to be a G<κ-set in X if A =
⋂

U for some family U ⊂ Open(X)

of cardinality |U| < κ. We also denote the family of all G<κ-sets in X by G<κ(X)

and we denote the union
⋃

κ

G<κ(X) by G∞(X). Since a G<ω1
-set is also called

a Gδ-set, Gδ(X) will be the alternative name for G<ω1
(X).

The following theorem was proved for κ = ω1 by Harley and McNulty in
[7]. We include the generalized proof for completeness.

Theorem 2.1. Let κ be an infinite regular cardinal. A topological space
(X, τ) is a Tκ-Borel-space if and only if for each x ∈ X the singleton {x} can be
written as {x} = F ∩ G for some closed set F ⊂ X and some G<κ-set G ⊂ X.
That is, Tκ-Borel is equivalent to TClosed-meets-G<κ

.

P r o o f. The “if” part is trivial. To prove the “only if” part, assume that
for some x ∈ X the singleton {x} belongs to the algebra κ-Borel(X) ⊂ P(X).
Here P(X) stands for the power-set of X. We need to prove that the singleton
{x} belongs to the family of sets

G = {F ∩G : F is a closed set in X and G is a G<κ-set in X}.
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The algebra κ-Borel(X) can be written as the union κ-Borel(X) =
⋃

α

κ-Borelα(X)

of an increasing transfinite sequence
(

κ-Borelα(X)
)

α
of families κ-Borelα(X) ⊂

P(X), defined for any ordinal α by the recursive formula:

κ-Borelα(X) := Closed-or-Open(X)

∪
{
⋂

F ,
⋃

F : F ⊂
⋃

β<α κ-Borelβ(X), |F| < κ
}

.

By transfinite induction, for every ordinal α we shall prove the following
statement:

(∗α) for every set E ∈ κ-Borelα(X) containing x, there exists a set G ∈ G such
that x ∈ G ⊂ E.

This statement is trivial for α = 0 (as κ-Borel0(X) = Closed-or-Open(X) ⊂ G).
Assume that for some ordinal α and all ordinals β < α the statements (∗β) are
proved. Take any set B ∈ κ-Borelα(X), containing x. The definition of the family

κ-Borelα(X) implies that B is equal to
⋂

E or
⋃

E for some non-empty family

E ⊂
⋃

β<α

κ-Borelβ(X) of cardinality |E| < κ. IfB =
⋃

E , then x ∈ E ⊂ B for some

E ∈ E . Choose β < α such that the family κ-Borelβ(X) contains the set E and
using the inductive hypothesis (∗β), find a set G ∈ G such that x ∈ G ⊂ E ⊂ B.

Next, assume that B =
⋂

E . By the inductive hypothesis, for every

E ∈ E ⊂
⋃

β<α

κ-Borelβ(X), there exists a set GE ∈ G such that x ∈ GE ⊂ E.

For every E ∈ E the set GE can be written as GE = FE ∩
⋂

UE for some closed

set FE ⊂ X and some family UE ⊂ τ of cardinality |UE | < κ. The regularity

of the cardinal κ ensures that the family U =
⋃

E∈E

UE has cardinality |U| < κ

and hence the set G :=
⋂

E∈E

FE ∩
⋂

U belongs to the family G. It is clear that

x ∈ G =
⋂

E∈E

GE ⊂
⋂

E = B, which completes the proof of the statement (∗α).

If {x} ∈ κ-Borel(X), then {x} ∈ κ-Borelα(X) for some ordinal α and by
the statement (∗α), there exists a set G ∈ G such that x ∈ G ⊂ {x} and hence
{x} = G ∈ G. ✷

Corollary 2.2. A topological space X is a T0-space if and only if X is a
T∞-Borel-space.
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Remark 2.3. Theorem 2.1 implies that a topological space X is a
TConstructible-space if and only if X is a TClosed-meets-Open-space. So, X is a TD-
space in the sense of [4, Definition 3.1]. The axiom TD is also used in point-free
topology – in the class of TD-spaces the spaces can be reconstructed from their
lattices of open sets. More precisely, every isomorphism of lattices of open sets
of TD-spaces is induced by exactly one homeomorphism between the spaces [15,
Proposition I.2.4].

Next, we characterize Tκ-BP-spaces.

Theorem 2.4. Let κ be an infinite regular cardinal. A topological space
(X, τ) is a Tκ-BP-space if and only if for each x ∈ X the singleton {x} is either
nowhere dense or a G<κ-set in X. That is, Tκ-BP is equivalent to TNwd-or-G<κ

.

P r o o f. The “if” part is trivial. To prove the “only if” part, assume that
{x} ∈ κ-BP(X).

Let I be the ideal of sets that can be covered by < κ many nowhere dense
sets in X. The regularity of the cardinal κ implies the κ-additivity of the ideal
I. Let A denote the family of sets A ⊂ X for which there exists an open set
UA ⊂ X such that the symmetric difference A∆ UA belongs to the ideal I.

We claim that A is an algebra of sets in X. Indeed, for any set A ∈ A find
an open set U ∈ τ with A∆U ∈ I and observe that for the open set V := X \U
we get (X \A) ∆ V ⊂ (A∆ U) ∪ (U \ U) ∈ I, which implies that X \ A ∈ A.

Given a family F ⊂ A of cardinality |F| < κ, for each set F ∈ F find an

open set UF ⊂ X with F∆UF ∈ I and observe that for the open set U :=
⋃

F∈F

UF

we get
(

⋃

F
)

∆ U ⊂
⋃

F∈F

(F ∆ UF ) ∈ I. Therefore, A is a κ-additive algebra of

sets in X, containing all open sets and all nowhere dense sets in X. Taking into
account that κ-BP(X) is the smallest κ-additive algebra with this property, we
conclude that κ-BP(X) ⊂ A. The reverse inclusion A ⊂ κ-BP(X) is trivial.

Therefore, {x} ∈ κ-BP(X) = A and hence {x} ∆ U ∈ I for some open
set U ⊂ X. If x /∈ U , then {x}∆ U = {x} ∪ U ∈ I, which implies that {x} ∈ I
and hence {x} is nowhere dense in X. So, we assume that x ∈ U . In this case

{x}∆ U = U \ {x} ∈ I, so U \ {x} =
⋃

N for some family N of nowhere dense

sets in X of cardinality |N | < κ. If for some set N ∈ N the closure N contains
x, then the singleton {x} ⊂ N is nowhere dense in X. In the opposite case the

singleton {x} = U \
⋃

N∈N

N is a G<κ-set in X. ✷
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It is an easy observation that if X is a T1-space, then an isolated point of
a dense subset of X is also an isolated point of X. It turns out that this property
is equivalent to the axiom Tω-BP.

Proposition 2.5. A topological space X is Tω-BP if and only if for every
dense subset D ⊂ X every point isolated in D is also isolated in X.

P r o o f. First, suppose that X is Tω-BP, D ⊂ X is dense, and x is an
isolated point of D. By Theorem 2.4, there is an open set U ⊂ X such that
U ∩D = {x}. If {x} is open in X, we are done. Otherwise, {x} is nowhere dense
in X, and so U 6⊂ {x}. But then U \ {x} is a nonempty open set disjoint with D,
which is impossible.

On the other hand, suppose that every isolated point of every dense subset
is isolated in X, and let x ∈ X. We put D := (X \{x})∪{x}. Clearly, D is dense.
If {x} is not nowhere dense in X, then there is a nonempty open set U ⊂ {x},
which witnesses that x is isolated in D. It follows from the assumption that x is
isolated in X. Altogether, X is Tω-BP by Theorem 2.4. ✷

3. Implications and examples. Because of the characterizations of
the properties Tκ-Borel and Tκ-BP in the previous theorems, and because we have
already considered the property TClosed-or-Open, it makes sense to consider also the
properties TClosed-or-G<κ

for uncountable regular cardinals κ and TClosed-or-G∞
. By

Theorem 2.4, the axioms Tω-BP and TNwd-or-Open are equivalent. We introduce also
the axiom TNwd-or-Closed, which generalizes both TNwd and TClosed, and which is
stronger than TNwd-or-Open since every closed singleton that is not nowhere dense
is necessarily open. Finally, we denote the family of all regular open subsets
of a topological space X by RO(X), and we introduce the axioms TClosed-or-RO,
TClosed-meets-RO, and TNwd-or-RO. These axioms naturally fit the diagram, and they
are related to some known separation axioms. See Section 5 for details.

All these additional properties make Diagram 1 more complete. The
resulting diagram with all implications follows (κ is an arbitrary uncountable
regular cardinal):
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(2) T1, TClosed
+3

��

TNwd-or-Closed

��

TClosed-or-RO
+3

��

TClosed-meets-RO
+3

��

TNwd-or-RO

��

TClosed-or-Open,
TClosed-or-G<ω

+3

��

TConstructible ,
Tω-Borel

+3

��

TNwd-or-Open,
Tω-BP

��
TClosed-or-Gδ

,
TClosed-or-G<ω1

+3

��

TBorel,
Tω1-Borel

+3

��

TBP,
Tω1-BP

��

TClosed-or-G<κ
+3

��

Tκ-Borel
+3

��

Tκ-BP

��

TClosed-or-G∞

+3 T0, T∞-Borel
+3 T∞-BP

Note that the columns of the diagram correspond to the axiom patterns TClosed-or-•,
TClosed-meets-•, and TNwd-or-•, while the rows correspond to • ranging Closed (or
equivalently Clopen), RO, Open, Gδ, G<κ, and G∞.

The implications are clear or easily follow from what has already been
proved. We comment just on TClosed-meets-RO =⇒ TNwd-or-RO. If we have {x} =
F ∩ U where F is closed and U is regular open and the singleton {x} is not
nowhere dense, then we also have {x} = int({x}) ∩ U , and this is a regular open
set.

A topological spaceX is symmetric if for any points x, y ∈ X the existence
of an open set Ux ⊂ X containing x but not y is equivalent to the existence of an
open set Uy ⊂ X containing y but not x. It follows that a topological space is T1

if and only if is it T0 and symmetric. Similarly, it can be proved that a topological
space is TNwd-or-Closed if it is T∞-BP and symmetric. Hence, for symmetric spaces
Diagram 2 collapses vertically.

A topological space X is subfit if for every open sets U, V ⊂ X such that
U 6⊂ V there is an open set W ⊂ X such that U∪W = X 6= V ∪W . This property
clearly depends only on the lattice of open sets, and is in fact a separation axiom
considered in point-free topology [15, V.1] – it is a weaker but point-free variant
of T1. A topological space is subfit if and only if for every point x ∈ X and every
its neighborhood U there is y ∈ {x} such that {y} ⊂ U .

We are interested in the subfit condition since a topological space is T1
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if and only if it is TConstructible and subfit [15, V.1.1]. Similarly, it can be proved
that a topological space is TNwd-or-Closed if it is Tω-BP and subfit. Hence, for subfit
spaces we have a vertical collapse of Diagram 2 just for the top part. This suggests
the following definition.

Definition 3.1. Let κ be an infinite cardinal. We say that a topological
space is κ-subfit if for every G<κ-set U ⊂ X and an open set V ⊂ X such
that U 6⊂ V there is an open set W ⊂ X such that U ∪ W = X 6= V ∪ W .
Equivalently, if for every x ∈ X and every G<κ-set U ∋ x there is y ∈ {x} such
that {y} ⊂ U . Analogously, we define RO-subfit spaces and ∞-subfit spaces – the
set U is supposed to be regular open or G∞ rather than G<κ.

This way we obtain a sequence of subfitness conditions, one for each row
of Diagram 2. The subfitness condition for the first row, where the set U would
be closed or equivalently clopen, is trivial. Clearly, a topological space is subfit if
and only if it is ω-subfit. Also, we have the implications ∞-subfit =⇒ κ-subfit
=⇒ ω-subfit =⇒ RO-subfit.

Proposition 3.2. A topological space X is symmetric if and only if it is
∞-subfit if and only if it is hereditarily subfit.

P r o o f. It is easy to see that X is symmetric if for every x ∈ X and every

its neighborhood U we have {x} ⊂ U . It follows that {x} ⊂ Ux :=
⋂

{U ⊂ X

open : x ∈ U}, which is the smallest G∞-subset containing x, and hence X is
∞-subfit and in particular subfit. Since being symmetric is clearly a hereditary
property, we also have that X is hereditarily subfit.

On the other hand, suppose that X is ∞-subfit. Let x ∈ X and let Ux

be as above. By ∞-subfitness there is y ∈ {x} such that {y} ⊂ Ux. We have
x ∈ {y} since otherwise Ux \ {y} would be a G∞-set containing x strictly smaller
than Ux. We have {x} ⊂ Ux, and X is symmetric.

Finally, suppose that X is hereditarily subfit. Let x ∈ X and let U be an
open neighborhood of x. We consider the subspace Y := {x}∪ (X \U). We have
that x is an isolated point of a subfit space Y , and so {x} is closed in Y . This
is because from subfitness we have y ∈ {x} such that {y} ∩ Y ⊂ {x}. It follows
that {x} ⊂ U , and X is symmetric. ✷

Now we prove a general proposition on vertical collapses of the diagram.

Proposition 3.3. Let X be a topological space and let κ be an infinite
regular cardinal.

(1) X is T1 if and only if it is Tκ-Borel and κ-subfit, if and only if it is T∞-Borel
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and ∞-subfit, if and only if it is TClosed-meets-RO and RO-subfit.

(2) X is TNwd-or-Closed if it is Tκ-BP and κ-subfit, or T∞-BP and ∞-subfit, or
TNwd-or-RO and RO-subfit.

P r o o f. Clearly, if X is T1, then it has all the other properties. On the
other hand, suppose that {x} = F ∩ U for a closed set F ⊂ X and a G<κ-set
U ⊂ X. By κ-subfitness there is a point y ∈ {x} ⊂ F such that {y} ⊂ U . We
have {y} ⊂ F ∩ U = {x}, and hence y = x and {x} = {x}. It follows that a
Tκ-Borel and κ-subfit space is T1.

Finally, suppose that X is Tκ-BP and κ-subfit. Let x ∈ X. If {x} is
nowhere dense, we are done. If {x} is a G<κ-set, then by the same argument as
above, {x} is closed since X is κ-subfit. Together, X is TNwd-or-Closed.

The proofs for the ∞ and RO cases are analogous. ✷

Corollary 3.4. A topological space X is T1 if and only if every its sub-
space is T∞-BP and subfit.

P r o o f. If X is hereditarily T∞-BP, then by Proposition 4.3, which we
prove later, X is T0. If X is hereditarily subfit, then by Proposition 3.2 it is
symmetric. Together, X is T1. The other implication is clear. ✷

Remark 3.5. Later in this section we will distinguish between the sub-
fitness axioms (Example 3.12 and 3.13). Also note that the other implication in
Proposition 3.3 (2) does not hold, TNwd-or-Closed does not imply even RO-subfitness
(Example 3.14).

Remark 3.6. While the subfitness is a point-free condition, i.e. it really
depends only on the lattice of open sets, this is not the case with κ-subfitness
and ∞-subfitness. The space from Example 3.12 is not κ+-subfit. On the other
hand, κ with the cofinite topology has isomorphic lattice of open sets, but is even
T1.

Being RO-subfit is a point-free condition since U ⊂ X is regular open if
and only if U = U∗∗ where U∗ := X \ U , and U∗ is the pseudocomplement of U
in the lattice of open sets if U is open.

There is also a point-free condition of being fit [15, V.1.2]. For topological
spaces, this condition lies strictly between regularity and symmetry.

Now we shall consider the horizontal nature of Diagram 2. Recall that a
topological space is nodec if every its nowhere dense subset is closed.

Proposition 3.7. Diagram 2 collapses horizontally for nodec spaces.
More precisely, let X be a nodec space and let κ be an infinite regular cardinal.
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(1) X is TNwd-or-Closed if and only if X is T1;

(2) X is TNwd-or-RO if and only if X is TClosed-or-RO;

(3) X is Tκ-BP if and only if X is Tκ-Borel if and only if X is TClosed-or-G<κ
;

(4) X is T∞-BP is and only if X is T∞-Borel if and only if X is TClosed-or-G∞
.

P r o o f. Is trivial or follows easily from the characterization in Theo-
rem 2.4. ✷

Let us recall several kinds of nearly open sets. A subset A of a topological
space X is called

• semi-open [9] if there is an open set U such that U ⊂ A ⊂ U , or equivalently
if A ⊂ int(A);

• pre-open [12] if there is an open set U such that A ⊂ U ⊂ A, or equivalently
if A ⊂ int(A);

• α-open [14] if there are open sets U , V such that U ⊂ A ⊂ V ⊂ U , or
equivalently if A ⊂ int(int(A));

• β-open [1] or semi-preopen [2] if there is an open set U such that A ⊂ U

and U ⊂ A, or equivalently if A ⊂ int(A).

Note that the notion of α-open set is the strongest and the notion of β-open set
is the weakest. Also, every open set is α-open, α-open sets are exactly sets that
are both semi-open and pre-open, and pre-open sets are exactly intersections of
open and dense sets.

Let (X, τ) be a topological space. Nj̊astad showed in [14] that the family
of all α-open sets forms a topology, denoted by τα. Moreover, the α-open sets
are exactly the sets of form U \N where U is open and N is nowhere dense, so
τα is generated by τ and by declaring the nowhere dense sets closed. Also, by
doing this we do not introduce any new non-closed nowhere dense subsets, so the
space (X, τα) is nodec. Moreover, (X, τ) and (X, τα) have the same regular open
sets. This was proved in [14, Propositions 3 and 6], even though Nj̊astad used a
different terminology.

Proposition 3.8. Let (X, τ) be a topological space, let τα be the corre-
sponding nodec modification, and let κ be an infinite regular cardinal.

(1) (X, τ) is TNwd-or-Closed if and only if (X, τα) is T1;

(2) (X, τ) is TNwd-or-RO if and only if (X, τα) is TClosed-meets-RO or equivalently
TClosed-or-RO;
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(3) (X, τ) is Tκ-BP if and only if (X, τα) is Tκ-Borel or equivalently TClosed-or-G<κ
;

(4) (X, τ) is T∞-BP is and only if (X, τα) is T∞-Borel or equivalently TClosed-or-G∞
.

P r o o f. First, observe that since every α-closed set is the union of a
closed set and a nowhere dense set, any singleton is α-closed if and only if it is
closed or nowhere dense or equivalently clopen or nowhere dense. This gives us
the first equivalence.

The second equivalence follows from the previous observation and from
the fact that a singleton {x} is regular open in τ if and only if it is regular open
in τα.

For the third equivalence we use the characterization in Theorem 2.4. If
{x} is nowhere dense or G<κ, then it is clearly closed or G<κ in τα. For the other
implication let {x} be closed or G<κ in τα. If it is closed in τα, we are done by

the first observation. In the second case we have that {x} =
⋂

β<κ

Vβ where every

set Vβ is open in τα, i.e. there is a set Uβ that is open in τ and a set Nβ that is
nowhere dense in τ such that Vβ = Uβ \Nβ. We may suppose that the singleton

{x} is not nowhere dense, so we have x /∈ Nβ. Hence, {x} =
⋂

β<κ

Uβ \Nβ, which

is a G<κ-set.

The fourth equivalence follows from the third one. ✷

Proposition 3.9. Let X be a topological space.

(1) X is T1 if and only if X is TNwd-or-Closed and TClosed-or-Open;

(2) X is TClosed-or-RO if and only if X is TNwd-or-RO and TClosed-or-Open.

P r o o f. The “only if” part is trivial. For the “if” part let us assume
that X is TNwd-or-Closed and TClosed-or-Open. Then every singleton is either closed or
both nowhere dense and open, but the latter case is contradictory. Similarly, if
X is TNwd-or-RO and TClosed-or-Open, then every singleton is closed or regular open
or both nowhere dense and open. ✷

Next, we shall present some examples distinguishing the separation ax-
ioms TA for various algebras A. First we observe that the separation axioms in
the Diagram 2 are not trivial (i.e., fail for some topological spaces).

Example 3.10. The doubleton A = {0, 1} endowed with the anti-discrete
topology {∅, A} fails to be a T∞-BP-space.
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Example 3.11. Let A = {0, 1} be a doubleton endowed with the anti-
discrete topology {∅, A}, and [0, 1] be unit interval, endowed with the standard
Euclidean topology. It is clear that A× [0, 1] is not a T0-space and hence fails to
be a T∞-Borel-space. On the other hand, the product A× [0, 1] is a TNwd-space.

Example 3.12. Let κ be a regular infinite cardinal. On the space X =
κ ∪ {κ} consider the topology τ = {∅} ∪ {U ⊂ X : κ ∈ U ∧ |X \ U | < ω}. The
topological space (X, τ) has the following properties:

(1) X is a compact T0-space;

(2) X is a TClosed-or-G
<κ+

-space and hence a Tκ+-Borel-space;

(3) X fails to be a Tκ-BP-space;

(4) X is κ-subfit but not κ+-subfit;

(5) X × [0, 1] is a compact TNwd-space which is still a TClosed-or-G
<κ+

-space but
not a Tκ-Borel-space.

Example 3.13. Recall that every partially ordered set (P,≤) induces
the corresponding Alexandrov topology. Open sets are precisely the upper sets,
i.e., the sets U ⊂ P such that x ∈ U and x ≤ y implies y ∈ U .

(1) The two-point Sierpiński space S2 = {0, 1} with the Alexandrov topology
{{0, 1}, {1}, ∅} is TClosed-or-Open but not TNwd-or-RO. Also, it is RO-subfit but
not subfit.

(2) The three-point analogue of the Sierpiński space S3 = {0, 1, 2} with the
Alexandrov topology {{0, 1, 2}, {1, 2}, {2}, ∅} is TConstructible but is neither
TClosed-or-G∞

nor TNwd-or-RO.

(3) The ω-analogue, i.e., Sω = ω with the Alexandrov topology is TConstructible

and TNwd but not TClosed-or-G∞
and not TClosed-meets-RO.

Example 3.14. Recall that the set of all integers Z endowed with the
topology generated by the sets {2k − 1, 2k, 2k + 1} for k ∈ Z is called the
Khalimsky line or the digital line.

(1) The Khalimsky line is TClosed-or-RO but not TNwd-or-Closed. Every odd sin-
gleton is regular open, while every even singleton is closed and nowhere
dense.

(2) The subspace {−1, 0, 1} of the Khalimsky line, which may be viewed as one
open segment of the line, has the same properties, i.e. it is TClosed-or-RO but
not TNwd-or-Closed.
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(3) The space {−1, 0, 1} ×R is TClosed-meets-RO and TNwd, but not T1 and so not
TNwd-or-Closed (3.9) and not RO-subfit (3.3).

(4) Let us consider the following attachment of two copies of the previous space:
the set {−1, 0, 1−1, 10, 11} endowed with the topology generated by the sets
{−1}, {1−1, 10, 11}, {1−1}, {11}. This space is TClosed-meets-RO but neither
TNwd-or-Closed nor TClosed-or-G∞

. The singletons {−1}, {1−1}, {11} are regular
open, the singleton {0} is closed, and the singleton {10} is the intersection
of the closed set {0, 10} and the regular open set {1−1, 10, 11}.

4. Preservation properties. Finally, we establish some hereditary
properties of the separation axioms TA. The following is obvious.

Proposition 4.1. Let κ be an infinite cardinal. Any subspace of a space
that is TClosed-or-G<κ

is a TClosed-or-G<κ
-space. Any subspace of a TClosed-or-G∞

-space
is a TClosed-or-G∞

-space.

Theorem 2.1 and Remark 1.2 imply the following proposition.

Proposition 4.2. Let κ be an infinite cardinal. Any subspace of a Tκ-Borel-
space is a Tκ-Borel-space.

Proposition 4.3. Let κ be an infinite cardinal. A topological space X is
a Tκ-Borel-space if and only if each closed subspace of X is a Tκ-BP-space. Also,
X is T∞-Borel (i.e. T0) if and only if each closed subspace of X is a T∞-BP-space.

P r o o f. The “only if” part follows from Proposition 4.2. To prove the
“only if” part, assume that each closed subspace of X is a Tκ-BP-space and that
κ is regular. Given any point x ∈ X consider the closure {x} of the singleton
{x}. Taking into account that {x} is dense in {x} and {x} is a Tκ-BP-space, we
can apply Theorem 2.4 and conclude that the singleton {x} is a G<κ-set in {x}
and consequently, belongs to the algebra κ-Borel(X).

The ∞ case follows since ∞-Borel(X) = |X|+-Borel(X) and ∞-BP(Y ) =
|Y |+-BP(Y ) = |X|+-BP(Y ) for every Y ⊂ X. ✷

Proposition 4.4. A topological space X is T1 if and only if each closed
subspace of X is TNwd-or-RO.

P r o o f. The necessity is clear. For the sufficiency let x ∈ X. The
singleton {x} is dense in {x}, so it is not nowhere dense in {x}, and it is regular
open in {x} only if {x} = {x}. ✷
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To summarize, in Diagram 2 exactly the axioms in the first two columns
with the exception of TClosed-or-RO and TClosed-meets-RO are hereditary. Also, the
hereditary variant of a non-hereditary axiom is the weakest stronger hereditary
axiom in the diagram, and for this, only satisfying the axiom closed-hereditarily
is enough.

Let us investigate the hereditary properties of the non-hereditary axioms.
The class of Tκ-BP-spaces is not hereditary because a nowhere dense set does not
have to be nowhere dense in every subspace containing it.

Proposition 4.5. Let X be a topological space and A ⊂ X. Every subset
of A that is nowhere dense in X is nowhere dense in A if and only if A is β-open.

P r o o f. The condition that A is β-open is necessary since A \ int(A) is
open in A but nowhere dense in X. Now we show that the condition is also
sufficient. Suppose that A is β-open. If N ⊂ A is not nowhere dense in A, then
there is a an open set U such that ∅ 6= U ∩ A ⊂ N ∩ A. Let us consider the
set V = U ∩ int(A). Clearly, V is open and we have V ⊂ U ∩ A ⊂ U ∩A ⊂ N .

Finally, we have ∅ 6= U ∩ A ⊂ U ∩ int(A) ⊂ U ∩ int(A) = V . Therefore, V 6= ∅
and N is not nowhere dense in X. ✷

For every family of sets A and a set B we denote the family {A∩B : A ∈
A} by A ↾B.

Proposition 4.6. Let κ be an infinite cardinal, let X be a topological
space and let U ⊂ X.

• If U is β-open, then κ-BP(U) = κ-BP(X) ↾ U .

• If U is semi-open, then U ∈ κ-BP(X) and κ-BP(U) = κ-BP(X) ∩ P(U).

P r o o f. For the first part, let us consider the map f : P(X) → P(U)
defined by f(A) = A ∩ U for every A ⊂ X. The map f preserves arbitrary
unions, intersections, and complements. Hence, f(A) is a κ-additive subalgebra of
P(U) for every κ-additive subalgebra A ⊂ P(X), and also f−1(A) is a κ-additive
subalgebra of P(X) for every κ-additive subalgebra A ⊂ P(U). Moreover, if A
is the smallest κ-additive subalgebra of P(X) containing some family F , then
f(A) is the smallest κ-additive subalgebra of P(U) containing the family f(F).
In our case, κ-BP(X)↾U is the smallest κ-additive subalgebra of P(U) containing
Open(X)↾U∪Nwd(X)↾U . Clearly, Open(X)↾U = Open(U) and by Proposition 4.5
we have also Nwd(X) ↾ U = Nwd(U), which concludes the proof.

For the second part, since U is semi-open, there is an open set V such
that V ⊂ U ⊂ V , so U is the union of an open set and a nowhere dense set
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and hence a member of κ-BP(U). For every κ-additive subalgebra A ⊂ P(X)
we have A ∩ P(U) ⊂ A ↾ U . On the other hand, A ↾ U ⊂ A ∩ P(U) if and
only if U ∈ A, which is our case. Hence, by also using the first part we have
κ-BP(U) = κ-BP(X) ↾ U = κ-BP(X) ∩ P(U). ✷

The following is obvious by using Proposition 4.5.

Corollary 4.7. Any β-open subspace of a TNwd-space is a TNwd-space.
Any β-open subspace of a TNwd-or-Closed-space is a TNwd-or-Closed-space.

Either from Proposition 4.6 or from Proposition 4.5 by using Remark 1.2
and the characterization in Theorem 2.4 we obtain the following.

Corollary 4.8. Let κ be an infinite cardinal. Any β-open subspace of a
Tκ-BP-space is a Tκ-BP-space. The same holds for T∞-BP-spaces.

Example 4.9. The space A = {0, 1, 2} endowed with the topology {∅, {0},
A} is a Tω-BP-space, but its closed nowhere dense subspace B = {1, 2} is not even
a T∞-BP-space. Hence, not every subspace having the Baire property can be
allowed in the previous corollary.

In order to establish the hereditary properties of the axioms based on reg-
ular open sets we first need to look at preservation of regular open sets. Variants
of the following proposition are known.

Proposition 4.10. Let X be a topological space. If A is a pre-open subset
of X, then RO(A) = RO(X) ↾A.

P r o o f. We will show that for every open U ⊂ X we have roA(U ∩A) =
ro(U) ∩ A, where ro is a shortcut for the interior of the closure. If V ⊂ X is
open, then we have roV (U ∩ V ) = intV (U ∩ V ∩ V ) = int(U ∩ V ) = ro(U) ∩ V ,
so the claim holds for A open. Let D ⊂ X be dense. It generally holds that
intD(F∩D) = int(F )∩D for every closed F ⊂ X. By considering F = U ∩D = U
we obtain roD(U ∩D) = intD(U ∩D ∩D) = ro(U) ∩D, so the claim holds also
for A dense. As a pre-open set, A is dense in some open set V ⊂ X. We have
roA(U ∩A) = roA((U ∩V )∩A) = roV (U ∩V )∩A = ro(U)∩V ∩A = ro(U)∩A. ✷

The previous proposition cannot be generalized to β-open subsets A. It
is not true even for a regular closed set A since int(A) would be regular open in
the whole space but dense in A.

Corollary 4.11. Any pre-open subspace of a space that is TClosed-or-RO is
a TClosed-or-RO. The same holds for TClosed-meets-RO and TNwd-or-RO.
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The following example shows that the previous corollary cannot be gen-
eralized to β-open subspaces.

Example 4.12. The digital line is a TClosed-or-RO-space (Example 3.14),
but its regular closed (and hence semi-open and β-open) subspace {0, 1, 2} is not
even TNwd-or-RO.

Clearly, the subset of all non-isolated points of a TClosed-or-Open-space is
T1, so in particular the property TClosed-or-RO is hereditary with respect to meager
subsets (but not to all subsets with the Baire property as the previous example
shows). On the other hand, the following example shows that the properties
TClosed-meets-RO and TNwd-or-RO are not hereditary even to closed nowhere dense
subsets.

Example 4.13. The space {−1, 0, 1−1, 10, 11} from Example 3.14 is
TClosed-meets-RO, but its closed nowhere dense subspace {0, 10} (homeomorphic
to the Sierpiński space) is not even TNwd-or-RO.

Next, let us consider preservation of the separation axioms under prod-
ucts.

Example 4.14. The Khalimsky line K (Example 3.14) is TClosed-or-RO,
but the square K × K is not even TClosed-or-G∞

. Therefore, the properties
TClosed-or-RO and TClosed-or-G<κ

are easily destroyed by products.

For an infinite cardinal κ let κ∗ denote κ if κ is regular, and κ+ if it is
singular. The following proposition can be easily derived from Theorem 2.1 and
for singular κ from Remark 1.2.

Proposition 4.15. For any infinite cardinal κ, any set I of cardinality

|I| < κ∗ and any family {Xi}i∈I of Tκ-Borel-spaces the Tychonoff product
∏

i∈I

Xi

is a Tκ-Borel-space.

Remark 4.16. Let {(xi)i∈I} be a singleton in a Tychonoff product
∏

i∈I

Xi.

Its closure
∏

i∈I

{xi} contains an open subset if and only if there exists a finite set

F ⊂ I such that for every i ∈ F the singleton {xi} is not nowhere dense in Xi,
and for every i ∈ I \ F the singleton {xi} is dense in Xi. Hence, the singleton
{(xi)i∈I} is nowhere dense if and only if {xi} is nowhere dense in Xi for some
i ∈ I or there are infinitely many indices i ∈ I such that {xi} is not dense in Xi.

The following proposition can be easily derived from Theorem 2.4, Re-
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mark 4.16 and for singular κ from Remark 1.2.

Proposition 4.17. For any infinite cardinal κ, any set I of cardinality

|I| < κ∗ and any family {Xi}i∈I of Tκ-BP-spaces the Tychonoff product
∏

i∈I

Xi is

a Tκ-BP-space.

Corollary 4.18. For any family {Xi}i∈I of T∞-BP-spaces the Tychonoff

product
∏

i∈I

Xi is a T∞-BP-space.

From Remark 4.16 we also obtain the following.

Proposition 4.19. For any TNwd-space X and any topological space Y
the product X × Y is a TNwd-space.

Proposition 4.20. For any family {Xi}i∈I of TNwd-or-Closed-spaces the

product
∏

i∈I

Xi is a TNwd-or-Closed-space. Moreover, if infinitely many of the spaces

Xi are nondegenerate, the product is even a TNwd-space.

Since a finite product of regular open sets is a regular open set, we have
the following.

Proposition 4.21. Any finite product of TClosed-meets-RO-spaces is a
TClosed-meets-RO-space. Any finite product of TNwd-or-RO-spaces is a TNwd-or-RO-
space.

Example 4.22. Let κ be an infinite cardinal. The Tychonoff product of
κ∗-many copies of the TClosed-or-RO-space {−1, 0, 1} from Example 3.14 is not even
a Tκ-BP-space. Therefore, the bounds on the number of factors in the previous
propositions are sharp.

A function f : X → Y between topological spaces is called κ-Borel if for
any open (or equivalently κ-Borel) set U ⊂ X the preimage f−1(U) belongs to
the algebra κ-Borel(X).

Proposition 4.23. Let κ be an infinite cardinal. A topological space X
is Tκ-Borel if it admits a κ-Borel function f : X → Y into a Tκ-Borel-space Y such
that for every y ∈ Y the preimage f−1(y) is a Tκ-Borel-space.

P r o o f. By Remark 1.2 we can assume that κ is regular. Given any point
x ∈ X, consider the point y = f(x) ∈ Y . By Theorem 2.1, the singleton {y} can
be written as the intersection {y} = F ∩ G of a closed set F ⊂ Y and G<κ-set
G ⊂ Y . Since f is κ-Borel, the preimage f−1(y) = f−1(F )∩f−1(G) belongs to the
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algebra κ-Borel(X). Applying Theorem 2.1 to the Tκ-Borel-space f−1(y), we can
find a closed set F ′ in X and a G<κ-set G

′ in X such that {x} = f−1(y)∩F ′∩G′.
Observe that the sets f−1(y), F ′, G′ belong to the algebra κ-Borel(X), which
implies that {x} = f−1(y) ∩ F ′ ∩G′ ∈ κ-Borel(X) and X is a Tκ-Borel-space. ✷

Proposition 4.24. Let κ be an infinite cardinal. A topological space X
is a Tκ-BP-space if it admits a function f : X → Y into a Tκ-BP-space Y such that

• for every y ∈ Y the preimage f−1(y) is a Tκ-BP-space;

• for every open set U ⊂ Y the pre-image f−1(U) belongs to the algebra
κ-BP(X);

• for any nowhere dense set N ⊂ Y each singleton {x} ⊂ f−1(N) is nowhere
dense in X.

P r o o f. By Remark 1.2 we can assume that the cardinal κ is regular.
Given any point x ∈ X, consider the point y = f(x) ∈ Y . By Theorem 2.4, the
singleton {y} is either nowhere dense or a G<κ-set in Y . If {y} is nowhere dense
in Y , then by the third condition, the singleton {x} ⊂ f−1(y) is nowhere dense
in X and hence belongs to the algebra κ-BP(X).

So, assume that {y} is a G<κ-set in X. The second condition guarantees
that the preimage f−1(y) belongs to the algebra κ-BP(X). By the first condition,
the singleton {x} belongs to the algebra κ-BP(f−1(y)). So by Theorem 2.4, either
{x} is nowhere dense in f−1(y) and hence in X, or there is a G<κ-set G ⊂ X such
that {x} = G∩ f−1(y). In both cases we may conclude that {x} ∈ κ-BP(X). ✷

5. More connections with other separation axioms. We have
observed that several axioms based on Borel and Baire algebras are equivalent
to some classical separation axioms. Clearly, TClosed is T1, TClosed-or-Open is T 1

2
(or

TES), TConstructible is equivalent to TD, and T∞-Borel is equivalent to T0. Also note
that TClosed-or-Gδ

-spaces and TBorel-spaces are called GT 1
2
-spaces and GTD-spaces,

respectively, by Lo in [11]. In the last section we observe more connections with
other separation axioms.

Let us say that in a topological space X a set A is separated from a set B
if there is an open neighborhood of A disjoint with B. We also identify a point
x ∈ X with the singleton {x} when using this notion. In [3] Arenas, Dontchev,
and Ganster defined a topological space X to be T 1

4
if for every finite set F ⊂ X

and every point x ∈ X \F either x is separated from F or F is separated from x.
This property was considered earlier by Aull and Thron in [4] under name TF .
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It turns out that the property is equivalent to TClosed-or-G∞
. We include a proof

for completeness.

Proposition 5.1. A topological space X is T 1
4

if and only if it is

TClosed-or-G∞
.

P r o o f. Let F be a finite subset of X and x ∈ X \ F be a point. If the
singleton {x} is closed, then F is separated from x. If the singleton {x} is an
intersection of open sets, then it is separated from every point of F and hence
from F since it is finite. On the other hand, if X is T 1

4
, then it is TClosed-or-G∞

.

Otherwise, there are points x, y, z ∈ X such that x is not separated from y, and
z is not separated from x. Therefore, x is not separated from {y, z}, and {y, z}
is not separated from x. ✷

There are several separation axioms associated with the α-topology (see
for example [5]): for i ∈ {0,D, 12 , 1} a topological space (X, τ) is αTi if the induced
space (X, τα) is Ti. Proposition 3.8 shows that αT1 is equivalent to TNwd-or-Closed;

αT 1
2
and αTD are equivalent to Tω-BP, and αT0 is equivalent to T∞-BP. There

is also a notion of feebly open sets and the corresponding axioms feebly T0 and
feebly T1. However, feebly open sets are precisely α-open sets [8], so the axioms
feebly T0 and feebly T1 are equivalent to the axioms αT0 and αT1, respectively.

The axioms αTi can be equivalently defined using the classical definitions
of Ti where open are sets replaced with α-open sets and closed are replaced with
α-closed sets. When semi-open sets are used instead, we obtain the corresponding
axioms semi-Ti. Note that the family of all semi-open sets is closed under unions,
but not under finite intersections, so it does not form a topology in general. It

turns out that semi-Ti is equivalent to αTi for i ∈ {0,D,
1

2
} [8], [5], but semi-T1

is strictly weaker than αT1. In fact, it is equivalent to TNwd-or-RO [8].

Originally, Levine defined T 1
2
-spaces by the condition that every gener-

alized closed set is closed [10]. Later, Dontchev and Ganster defined T 3
4
-spaces

by the condition that every generalized δ-closed set is δ-closed [6]. Here the δ-
topology stands for the semi-regularization topology. They also proved that a
topological space is T 3

4
if and only if every singleton is closed or regular open, i.e.

if it is TClosed-or-RO.

The equivalences of semi-T1 and T 3
4
with TNwd-or-RO and TClosed-or-RO, re-

spectively, were the motivation for introducing TClosed-or-RO, TClosed-meets-RO, and
TNwd-or-RO in the first place. We do not know whether the property TClosed-meets-RO

is equivalent to any separation axiom considered before.

We conclude with a copy of Diagram 2 containing the names of equivalent
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separation axioms:

T1,
TClosed

��

+3 αT1,
TNwd-or-Closed

��
T 3

4
,

TClosed-or-RO

��

+3 TClosed-meets-RO

��

+3 semi-T1,
TNwd-or-RO

��

T 1
2
, TES,

TClosed-or-Open,
TClosed-or-G<ω

+3

��

TD, TConstructible,
Tω-Borel

��

+3

αT 1
2
, semi-T 1

2
,

αTD, semi-TD,
TNwd-or-Open, Tω-BP

��
GT 1

2
, TClosed-or-Gδ

,

TClosed-or-G<ω1

+3

��

GTD, TBorel,
Tω1-Borel

+3

��

TBP,
Tω1-BP

��

TClosed-or-G<κ
+3

��

Tκ-Borel
+3

��

Tκ-BP

��
T 1

4
, TF ,

TClosed-or-G∞

+3 T0,
T∞-Borel

+3 αT0, semi-T0,
T∞-BP
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[2] D. Andrijević. Semipreopen sets. Mat. Vesnik. 38, 1 (1986) 24–32.

[3] F. G. Arenas, J. Dontchev, M. Ganster. On λ-sets and the dual of
generalized continuity. Questions Answers Gen. Topology 15, 1 (1997), 3–13.

[4] C. E. Aull, W. J. Thron. Separation axioms between T0 and T1. Indag.
Math. 24 (1962), 26–37.

[5] J. Dontchev. On some separation axioms associated with the α-topology.
Mem. Fac. Sci. Kochi Univ. Ser. A Math. 18 (1997), 31–35.



176 T. Banakh, A. Bartoš
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