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ABSTRACT. For every compact metrizable group G there is a free universal
G-action on the Hilbert space £ which makes 5 a G-equivariant absolute
extensor for the class of free G-spaces.

1. Introduction. For a compact Lie group G Milnor constructed a
universal G-space EG such that for every free G-action on a topological space
X there is a map f : X/G — BG = EG/G such that X is the pullback of the
free G-action on EG [7]. His construction can be modified to assume that EG
is homeomorphic to the Hilbert space and his universality result can be stated
as follows: For any compact Lie group G there is a free G-action on the Hilbert
space Lo such that for any free G-action on a compact metric space X there is an
equivariant embedding X — 0.
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In [6] this theorem was extended to all compact metrizable groups G. In
the current paper we obtainthat that results as a corollary of the Main Theorem
which states that the Hilbert space in our theorem is an equivariant absolute
extensor for free G-spaces.

We recall that a space L with a free action of a group G on it is an
equivariant absolute extensor for free G-spaces if for any G-equivariant pair (X, A)
of completely regular spaces with free G-action on X and closed invariant subset A
for any equivariant continuous map f : A — IL there is an equivariant continuous
extension f : X — L. We are using the notation . € G-AE free for this condition.
When we want to narrow down the class of all completely regular spaces to a
subclass C we write L € G-AE f,...(C).

2. Preliminaries.

2.1. Compact metrizable groups. It is well known that any compact
metrizable topological group G is the inverse limit of an inverse sequence of
compact Lie groups

G1<—G2<—G2<—...

with bonding homomorphism ¢f ; (see [9, Theorem 68] or [8, Theorem 2.6] as
classic references). Suppose that G acts on a compact metric space X. Using the
above, X can be presented as the limit space of the inverse sequence

2 3

1
() Yo 20— ¥i 1 ¥,

Y3

with Yy = X/G and each space Y} equals the orbit space X/H} of the action of

the subgroup Hy = ker{¢y" = li_>m (;524'” : G — Gy }. All the bonding maps q,]:'H
n—od

are the projection to the orbit space of an Fi-action with Fy = ker (bi“. The

compositions

k+i k41 k+2 i . ,
Q. =4 °Gqpi1 %G 1" Yiri = Yi

are the projections onto the orbit space of an action of the quotient group
F} = ker gbﬁ‘”. In particular, Fy = G;.
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2.2. Borel construction. Let a group G act on spaces X and E with
the projections onto the orbit spaces ¢x : X — X/G and qg : F — E/G. Let
gxxg: X X E — X xg X = (X x E)/G denote the projection to the orbit space
of the diagonal action of G on X x E. Then there is a commutative diagram
called the Borel construction [4]:

X & xxp P2, R

ox | axe | o |

X/G &~ X x¢ E 2 EJG.

If G is compact and the actions are free, then all projections in the diagram are
Hurewicz fibrations. Moreover, if gg is locally trivial, then so is px. The fiber
px (y) is homeomorphic to X/I, where I, = {g € G | g(2) = 2} is the isotropy
group of z € 5" (y).

We will refer to G-equivariant maps as to a G-maps.

3. Main Theorem. We denote by S the class of metrizable separable
spaces. We prove our main result for this class though the same proof works for
the class of paracompact spaces.

Theorem 3.1. Let G be a compact metrizable group. Then there exists a
free G-space 1. homeomorphic to the separable infinite dimensional Hilbert space
Uy such that . € G-AE fy¢.(S).

A G-action on a space LL is called universal for a class of free G-spaces C
if for any X € C there is an equivariant topological embedding X — L. Theorem
3.1 implies in particular the main result of [6].

Corollary 3.2. For every compact metrizable group G there is a free G-
action on the Hilbert space 1L X €9 which is universal for free G-actions on metric
separable spaces.

Proof. Let X be a separable metric space with a free G-action. By
Theorem 3.1 there is G-equivariant map f : X — L. This map induces a map
of the orbit spaces f : X/G — L/G. Since the orbit space X/G is separable
metrizable, X/G admits an topological embedding j : X/G — f5. Then the map
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¢ : X — L x {5 defined as ¢(x) = (f(x),j[x]) is an equivariant embedding where
[x] = Gz is the orbit of z. O

4. Proof of Main Theorem.

4.1. The case of compact Lie group. Let X be a topologically com-
plete, metric, separable space with at least two points. A function f:[0,1] — X
is measurable if f~1(U) is a Borel subset for every open U C X. Measurable
functions f,g : [0,1] — X are equivalent if the set {t € [0,1] | f(¢) # g(t)}
has measure 0. Let M([0,1],X) denote the space of equivalence classes of all
measurable functions f : [0,1] — X supplied with the metric

1/2

o(f.) = ( / 1 d<f<t>,g<t>>2dt)

where d is a metric on X. In a general setting, a result of Bessaga and Pelczynski
[3] says that M([0,1], X) ~ ¢2 which we now state.

Theorem 4.1 (Bessaga-Pelczynski). M([0,1], X) is homeomorphic to
separable infinite dimensional Hilbert space.

The following proposition is well-known [10]:

Proposition 4.2. Letp: E — B be a locally trivial bundle over separable
metrizable space with the fiber F € AE(S) and let so : A — E be a partial section
on a closed subset A C B. Then p admits a section extending sg.

Let G be a compact Lie group. By Theorem 4.1 M([0, 1], G) is a separable
infinite dimensional Hilbert space which admits the free G-action (g - f)(t) =
gf(t),t € I,g € G. The fact that M([0,1],G) € G-AE,.. easily follows from
Theorem 4.3.

Theorem 4.3. Let G be a compact Lie group. A free metric G-space E
is G-AEfr¢c(S) if and only if E is an AE(S)-space.

Proof of Theorem 4.3. Let G act freely on a metric space X and let
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X<+ ASEbea partial G-map. Consider the Borel construction

X &% XxE 22y E

o | o | |

X&XXGE&}E

where we denote by X = X/G, A=A/G, and E =E/G. In view of [5, Theorem
5.4.] X has a local slice at any point. Hence we derive that pg: X XgE — X is a
locally trivial bundle. Since the fiber of pg is homeomorphic to E € AE(S) and
the orbit space X is a metric space, Proposition 4.2 implies that there is a section
s : X = X xg E of pg extending the partial section 0 : A — X X E defined
by the formula o([a]) = [(a,¢(a))] for a € A. Since the left square in the Borel
construction is a pullback diagram, the identity map on X and the composition
soqx define an equivariant map ¢ : X — XXxIE. Then the composition prgoi defines
a G-extension ¢ : X — E of . Indeed, the pullback space X x E is imbedded into
the product X x (X x ¢ E) by means of the correspondence (x,y) — z x ([z,y]).
In particular, if @ € A, then (a,¢(a)) — a X [a,¢(a)] = a x s(]a]). Thus,
i(a) = (a, ¢(a)) and hence ¢(a) = pri(i(a)) = B(a).

In the other direction, for a partial map X O A g E we consider the
following commutative diagram

X@ALE

R
XxG =2 AxG 4

where i(x) = (x,e), e is the unit in G, and f(a,g9) = go(z). Clearly, f is
equivariant. Since E is a G -AE f¢(S), there is an equivariant extension f : X —
E of f. We define an extension ¢ of ¢ by the formula ¢(z) = f(z,e). O

We note that Theorem 4.3 is a generalization of Theorem 4 from [1].

4.2. The general case. It is well-known (see the Preliminaries) that a
compact metrizable group G is a closed subgroup of H{G” | n € N} = H where
all G,,n € N, are compact Lie groups. Consider the separable metric space
M = H{M([O, 1],Gy) | n € N} with the product action of H. Note that

M =[[{M/H, | n € N}
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where H,, = HGZ"
i#n
Since M([0,1],G,,) is a free G,-space homeomorphic to f2, M is a free
H-space homeomorphic to #5. Therefore, it is a free (G-space homeomorphic to
Ls.
We obtain the Main Theorem (Theorem 3.1) from the following Proposi-
tions with L. = M:

Proposition 4.4. M € H-AEy,..

Proof. Let X <> A5 M be a partial H-map defined on a free metric
H-space X. Since M = H{M([O, 1],G,) | n € N} is a product It suffices to
extend this map followed by the projection for every n. To do this consider the
extension problem

X/H, < A/H, 5 M/H,,.

Note that there is an G, —equivariant map M/H,, — M(I, G,,) sending the orbit
H,([fi]) = [fn] where [f;] € M(I,G;). By Theorem 4.3 there is an extension
®, : X/H, - M(I,G,) of the composition of m, o ¢ where

M = [[AM((0,1],Gr) | n € N} = M(I,Gy)
is projection onto the factor. O

Proposition 4.5. Let X be a free metrizable G-space for a compact group
G which is a subgroup of a metrizable group H. Then H XX is a free metrizable
H -space.

Proof. We consider the G-action Gx H — H on H given by the formula
gxh — hg~!. We define an H-action on H xgX as follows: yG(h, ) = G(yh, )
where v € H and G(h,z) € H xg X is the orbit of (h,z) € H x X. The acction is
well-defined in view of the equality vG(hg™ !, gz) = G(yhg™ !, gz) = G(vh,z) =
vG(h,x). O

Proposition 4.6. M € G-AE ..
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Proof. Let X+ A% M bea partial G-map. We consider the partial
H-map

HXGXHHXGAgHXGM,

defined as ®[h, a] = [h, p(a)]. Tt is well-defined in view of the equality ®([hg ™!, ga] =
[hg™!, ©(g(a))] = glh, ¢(a)] for all g € G. Note that ® is H-equivariant: ®(y[h,a]) =
®([yh,al) = [vh, p(a)] = v®([h, al).

Note that the map f: H xg M — M defined by the formula f([h, m]) =
hm is well-defined: f([hg™',m]) = hg ' gm = hm. It is an H-map: f(y[h,m]) =
yhm = v f([h,m]). Since M € H-AE¢,..(S) (see Proposition 4.4), there exists
an H-extension @ : H xg X — M of fod.

Consider the restriction of ® to X = g(e x X) = G xg X C H xg X where
q: HxX — H xg X is the projection to the orbit space and e € G is the unit.

Clearly, d is a G-equivariant map. Its restriction to A = G xg A C H xg X
coinsides with : ®([e,a]) = fO([e,a]) = f([e, p(a)]) = ep(a) = pla). O
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