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Abstract. For every compact metrizable group G there is a free universal
G-action on the Hilbert space ℓ2 which makes ℓ2 a G-equivariant absolute
extensor for the class of free G-spaces.

1. Introduction. For a compact Lie group G Milnor constructed a

universal G-space EG such that for every free G-action on a topological space

X there is a map f : X/G → BG = EG/G such that X is the pullback of the

free G-action on EG [7]. His construction can be modified to assume that EG

is homeomorphic to the Hilbert space and his universality result can be stated

as follows: For any compact Lie group G there is a free G-action on the Hilbert

space ℓ2 such that for any free G-action on a compact metric space X there is an

equivariant embedding X → ℓ2.
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In [6] this theorem was extended to all compact metrizable groups G. In

the current paper we obtainthat that results as a corollary of the Main Theorem

which states that the Hilbert space in our theorem is an equivariant absolute

extensor for free G-spaces.

We recall that a space L with a free action of a group G on it is an

equivariant absolute extensor for free G-spaces if for any G-equivariant pair (X,A)

of completely regular spaces with free G-action on X and closed invariant subset A

for any equivariant continuous map f : A→ L there is an equivariant continuous

extension f̄ : X→ L. We are using the notation L ∈ G-AEfree for this condition.

When we want to narrow down the class of all completely regular spaces to a

subclass C we write L ∈ G-AEfree(C).

2. Preliminaries.

2.1. Compact metrizable groups. It is well known that any compact

metrizable topological group G is the inverse limit of an inverse sequence of

compact Lie groups

G1 ← G2 ← G2 ← . . .

with bonding homomorphism φk
k−1 (see [9, Theorem 68] or [8, Theorem 2.6] as

classic references). Suppose that G acts on a compact metric space X. Using the

above, X can be presented as the limit space of the inverse sequence

(∗) Y0

q1
0←−−−− Y1

q2
1←−−−− Y2

q3
2←−−−− Y3 ←−−−− . . .

with Y0 = X/G and each space Yk equals the orbit space X/Hk of the action of

the subgroup Hk = ker{φ∞
k = lim

n→∞
φk+n
k : G→ Gk}. All the bonding maps qk+1

k

are the projection to the orbit space of an Fk-action with Fk = ker φk+1
k . The

compositions

qk+i
k = qk+1

k ◦ qk+2
k+1 · · · ◦ q

k+i
k+i−1 : Yk+i → Yk

are the projections onto the orbit space of an action of the quotient group

F i
k = kerφk+i

k . In particular, F i
0 = Gi.
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2.2. Borel construction. Let a group G act on spaces X and E with

the projections onto the orbit spaces qX : X → X/G and qE : E → E/G. Let

qX×E : X ×E → X ×G X = (X ×E)/G denote the projection to the orbit space

of the diagonal action of G on X × E. Then there is a commutative diagram

called the Borel construction [4]:

X
prX←−−−− X × E

prE−−−−→ E

qX





y

qX×E





y

qE





y

X/G
pE
←−−−− X ×G E

pX
−−−−→ E/G.

If G is compact and the actions are free, then all projections in the diagram are

Hurewicz fibrations. Moreover, if qE is locally trivial, then so is pX . The fiber

p−1
X (y) is homeomorphic to X/Iz where Iz = {g ∈ G | g(z) = z} is the isotropy

group of z ∈ q−1
E (y).

We will refer to G-equivariant maps as to a G-maps.

3. Main Theorem. We denote by S the class of metrizable separable

spaces. We prove our main result for this class though the same proof works for

the class of paracompact spaces.

Theorem 3.1. Let G be a compact metrizable group. Then there exists a

free G-space L homeomorphic to the separable infinite dimensional Hilbert space

ℓ2 such that L ∈ G-AEfree(S).

A G-action on a space L is called universal for a class of free G-spaces C

if for any X ∈ C there is an equivariant topological embedding X → L. Theorem

3.1 implies in particular the main result of [6].

Corollary 3.2. For every compact metrizable group G there is a free G-

action on the Hilbert space L× ℓ2 which is universal for free G-actions on metric

separable spaces.

P r o o f. Let X be a separable metric space with a free G-action. By

Theorem 3.1 there is G-equivariant map f : X → L. This map induces a map

of the orbit spaces f̄ : X/G → L/G. Since the orbit space X/G is separable

metrizable, X/G admits an topological embedding j : X/G→ ℓ2. Then the map
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φ : X→ L× ℓ2 defined as φ(x) = (f(x), j[x]) is an equivariant embedding where

[x] = Gx is the orbit of x. ✷

4. Proof of Main Theorem.

4.1. The case of compact Lie group. Let X be a topologically com-

plete, metric, separable space with at least two points. A function f : [0, 1]→ X

is measurable if f−1(U) is a Borel subset for every open U ⊂ X. Measurable

functions f, g : [0, 1] → X are equivalent if the set {t ∈ [0, 1] | f(t) 6= g(t)}

has measure 0. Let M([0, 1],X) denote the space of equivalence classes of all

measurable functions f : [0, 1]→ X supplied with the metric

ρ(f, g) =

(
∫ 1

0

d(f(t), g(t))2dt

)1/2

where d is a metric on X. In a general setting, a result of Bessaga and Pe lczyński

[3] says that M([0, 1],X) ≈ ℓ2 which we now state.

Theorem 4.1 (Bessaga-Pe lczyński). M([0, 1],X) is homeomorphic to

separable infinite dimensional Hilbert space.

The following proposition is well-known [10]:

Proposition 4.2. Let p : E → B be a locally trivial bundle over separable

metrizable space with the fiber F ∈ AE(S) and let s0 : A→ E be a partial section

on a closed subset A ⊂ B. Then p admits a section extending s0.

Let G be a compact Lie group. By Theorem 4.1M([0, 1], G) is a separable

infinite dimensional Hilbert space which admits the free G-action (g · f)(t) =

gf(t), t ∈ I, g ∈ G. The fact that M([0, 1], G) ∈ G-AEfree easily follows from

Theorem 4.3.

Theorem 4.3. Let G be a compact Lie group. A free metric G-space E

is G -AEfree(S) if and only if E is an AE(S)-space.

P r o o f o f T h e o r e m 4.3. Let G act freely on a metric space X and let
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X ←֓ A
ϕ
→E be a partial G-map. Consider the Borel construction

X
prX←−−−− X× E

prE−−−−→ E

qX





y

qX×E





y

qE





y

X
pE
←−−−− X×G E

pX
−−−−→ E

where we denote by X = X/G, A = A/G, and E = E/G. In view of [5, Theorem

5.4.] X has a local slice at any point. Hence we derive that pE : X×G E→ X is a

locally trivial bundle. Since the fiber of pE is homeomorphic to E ∈ AE(S) and

the orbit space X is a metric space, Proposition 4.2 implies that there is a section

s : X → X ×G E of pE extending the partial section σ : A → X ×G E defined

by the formula σ([a]) = [(a, ϕ(a))] for a ∈ A. Since the left square in the Borel

construction is a pullback diagram, the identity map on X and the composition

s◦qX define an equivariant map i : X→ X×E. Then the composition prE◦i defines

a G-extension ϕ̂ : X→ E of ϕ. Indeed, the pullback space X×E is imbedded into

the product X× (X×G E) by means of the correspondence (x, y) 7−→ x× ([x, y]).

In particular, if a ∈ A, then (a, φ(a)) 7−→ a × [a, φ(a)] = a × s([a]). Thus,

i(a) = (a, φ(a)) and hence φ̂(a) = prE(i(a)) = φ(a).

In the other direction, for a partial map X ⊃ A
φ
→ E we consider the

following commutative diagram

X
⊃

←−−−− A
φ

−−−−→ E

i





y
i0





y

=





y

X ×G
⊃

←−−−− A×G
f

−−−−→ E

where i(x) = (x, e), e is the unit in G, and f(a, g) = gφ(x). Clearly, f is

equivariant. Since E is a G -AEfree(S), there is an equivariant extension f̄ : X →

E of f . We define an extension φ̄ of φ by the formula φ̄(x) = f̄(x, e). ✷

We note that Theorem 4.3 is a generalization of Theorem 4 from [1].

4.2. The general case. It is well-known (see the Preliminaries) that a

compact metrizable group G is a closed subgroup of
∏

{Gn | n ∈ N} = H where

all Gn, n ∈ N, are compact Lie groups. Consider the separable metric space

M =
∏

{M([0, 1], Gn) | n ∈ N} with the product action of H. Note that

M =
∏

{M/Hn | n ∈ N}
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where Hn =
∏

i 6=n

Gi.

Since M([0, 1], Gn) is a free Gn-space homeomorphic to ℓ2, M is a free

H-space homeomorphic to ℓ2. Therefore, it is a free G-space homeomorphic to

ℓ2.

We obtain the Main Theorem (Theorem 3.1) from the following Proposi-

tions with L =M:

Proposition 4.4. M∈ H -AEfree.

P r o o f. Let X ←֓ A
ϕ
→M be a partial H-map defined on a free metric

H-space X. Since M =
∏

{M([0, 1], Gn) | n ∈ N} is a product It suffices to

extend this map followed by the projection for every n. To do this consider the

extension problem

X/Hn ←֓ A/Hn
ϕn

→M/Hn.

Note that there is an Gn−equivariant mapM/Hn →M(I,Gn) sending the orbit

Hn([fi]) → [fn] where [fi] ∈ M(I,Gi). By Theorem 4.3 there is an extension

ϕn : X/Hn →M(I,Gn) of the composition of πn ◦ ϕ where

πn :M =
∏

{M([0, 1], Gn) | n ∈ N} →M(I,Gn)

is projection onto the factor. ✷

Proposition 4.5. Let X be a free metrizable G-space for a compact group

G which is a subgroup of a metrizable group H. Then H×GX is a free metrizable

H-space.

P r o o f. We consider the G-action G×H → H on H given by the formula

g×h→ hg−1. We define an H-action on H×GX as follows: γG(h, x) = G(γh, x)

where γ ∈ H and G(h, x) ∈ H ×GX is the orbit of (h, x) ∈ H×X. The acction is

well-defined in view of the equality γG(hg−1, gx) = G(γhg−1, gx) = G(γh, x) =

γG(h, x). ✷

Proposition 4.6. M∈ G -AEfree.
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P r o o f. Let X ←֓ A
ϕ
→M be a partial G-map. We consider the partial

H-map

H ×G X ←֓ H ×G A
Φ
→H ×GM,

defined as Φ[h, a] = [h, ϕ(a)]. It is well-defined in view of the equality Φ([hg−1, ga] =

[hg−1, ϕ(g(a))] = g[h, ϕ(a)] for all g ∈ G. Note that Φ is H-equivariant: Φ(γ[h, a]) =

Φ([γh, a]) = [γh, ϕ(a)] = γΦ([h, a]).

Note that the map f : H ×GM→M defined by the formula f([h,m]) =

hm is well-defined: f([hg−1,m]) = hg−1gm = hm. It is an H-map: f(γ[h,m]) =

γhm = γf([h,m]). Since M ∈ H -AEfree(S) (see Proposition 4.4), there exists

an H-extension Φ̂ : H ×G X→M of f ◦ Φ.

Consider the restriction of Φ̂ to X = q(e×X) = G×G X ⊂ H ×GX where

q : H × X → H ×G X is the projection to the orbit space and e ∈ G is the unit.

Clearly, Φ̂ is a G-equivariant map. Its restriction to A = G ×G A ⊂ H ×G X

coinsides with ϕ: Φ̂([e, a]) = fΦ([e, a]) = f([e, ϕ(a)]) = eϕ(a) = ϕ(a). ✷
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