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1. Introduction. LetX be a regular topological space and suppose that

d is a metric in X (which is not obliged to be related to the original topology in

X). It is said that the space X is fragmentable by d if for any nonempty set A of

X and each ε > 0 there is an open set V of X which intersects A and moreover,

the d-diameter of V ∩ A is smaller than ε. An equivalent terminology is: the

metric d fragments the space X. The notion of fragmentability was introduced

by Jayne and Rogers in [12]. Different characterizations of this notion as well as

various applications in topology and analysis have been investigated in a number

of articles (cf. [10, 11, 14, 15, 16, 17, 20, 21]). A natural example of such a space

is any metric space considered with its metric topology. Less obvious examples

include some infinite dimensional Banach spaces (dual Banach spaces) which are

fragmentable by the norm if we equip them with the weak (weak*) topology.

In this article we continue our investigation from [8] where we studied

the topological spaces X in which there is a metric d which fragments only the

nonempty open sets, i.e. in the above definition of Jayne and Rogers, A is a

nonempty open set of X. We called such spaces fos-spaces. Evidently, this notion

is weaker than the notion of fragmentability. One might trace this concept up to

the paper of Thielman [22] where the author introduced the following notion: let

X be a topological space, (Y, d) be a metric space and f : X → Y is a mapping

between them. The mapping f was called cliquish in [22] if for every nonempty

open set U of X and any ε > 0 there exists a nonempty open subset V ⊂ U

such that d − diam(f(V )) < ε. One obtains the notion of fragmentability of

nonempty open sets in X by taking X = Y and the identity mapping in X.

The notion of cliquishness is present also (in an implicit way) in the definition of

neighborly-prime functions from Bledsoe [1].

In [8] we established several characterizations, both internal and external,

of the fos-spaces. One of them includes involvement of a certain topological game

which we will introduce in the next section and which will be used in the sequel. In

this article we will give several other characterizations of the fos-spaces involving

set-valued mappings which take values in such spaces.

The paper is organized as follows. In the next section we give some

preliminaries, including the presentation of the topological game involved in the

characterization of the fos-spaces. In particular, we formulate the characterization

of the fos-spaces via the existence of a winning strategy for one of the players in

this game from the paper [8]. In Section 3 we prove several characterizations of the

fos-spaces using set-valued mappings taking values in such spaces. Section 4 deals

with investigation of properties (like uniqueness of the solution) of optimization
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problems generated by bounded continuous functions in completely regular fos-

spaces.

2. Preliminaries. In this section we first introduce a topological game

which was considered and used in [8] for characterization of the fos-spaces. In a

given regular topological space X, let us consider the following infinite topological

game played between two players, denoted by Player I and Player II: Player I

makes the first move by selecting a nonempty open set U1 and Player II responds

with a nonempty open set V1 of X such that V1 ⊂ U1. At the nth move, n ≥ 2,

Player I selects a non empty open set Un which is included in the previous choice

of Player II and then Player II chooses a nonempty open set Vn ⊂ Un. Proceeding

in this way the players produce an infinite sequence of open sets {Un, Vn}n (which

satisfies Un+1 ⊂ Vn ⊂ Un for every n) which is called a play in the game. The

Player II wins this play if the intersection ∩nUn = ∩nVn is either empty or a

singleton. Otherwise, Player I wins this play. We denote this game by FO(X).

The game FO(X) with different winning conditions includes one of the

most known variants of the Banach-Mazur game–see e.g. Section 4 below.

Any finite sequence of nonempty open sets of the type (U1, V1, . . . , Un) or

(U1, V1, . . . , Un, Vn), where Ui, i = 1, . . . , n, are legal choices of Player I and Vi,

i = 1, . . . , n, are legal choices of Player II in the game FO(X) is called a partial

play in this game.

A strategy s for Player II in the game FO(X) is inductively constructed

mapping which puts into correspondence to any partial play of the type (U1, . . . ,

Un), n ≥ 1, (where, when n ≥ 2 the Vi, i = 1, . . . , n − 1 are obtained by s) a

nonempty open set Vn := s(U1, . . . , Un) with Vn ⊂ Un. A strategy s for Player

II is winning if this player wins each play {Un, Vn}n in the game FO(X) for

which Vn = s(U1, . . . , Un) for every n ≥ 1. Analogously, the notion of (winning)

strategy for Player I is defined.

The next result, which will be used in the sequel, is part of one of our main

results from [8] and shows that the existence of a winning strategy for Player II

in the game FO(X) is a necessary and sufficient condition for the fragmentability

of the open sets in the underlying space. Let us mention that a similar result

involving a modification of the above topological game and characterizing the

fragmentable spaces (that is the spaces X in which there is a metric which frag-

ments every nonempty subset of X) is proved in [15, 16].
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Theorem 2.1 ([8]). Let X be a regular topological space. Then Player II

has a winning strategy in the game FO(X) if, and only if, there is a metric d in

X which fragments the nonempty open sets in X (i.e. X is a fos-space).

3. Fragmentability of open sets and properties of set-valued

mappings. In this section we will investigate the relation between the frag-

mentability of the nonempty open sets in a regular topological space X and the

properties of a class of set-valued mappings taking its values in the space X.

Equivalently, we will study the relations between the existence of winning strate-

gies for Player II in the topological game FO(X) and the corresponding properties

of set-valued mappings. To this end, we need to introduce some terminology for

set-valued mappings.

Let F : Z ⇒ X be a set-valued mapping between the topological spaces

Z and X. By Dom (F ) we denote the effective domain of F which is the set

{z ∈ Z : F (z) 6= ∅} and Gr(F ) := {(z, x) ∈ Z ×X : x ∈ F (z)} is the graph of F .

When we say that F has a closed graph, this means that the graph Gr(F ) is a

closed subset in the product topology in Z ×X. When A is a subset of Z then

F (A) := ∪{F (z) : z ∈ A} is the image of A under the mapping F and for a subset

B ⊂ X the two possible pre-images of B are F#(B) := {z ∈ Z : F (z) ⊂ B} and

F−1(B) := {z ∈ Z : F (z) ∩ B 6= ∅}. The mapping F is upper semicontinuous

at some point z0 ∈ Z if for every open set V containing F (z0) there is un open

set U which contains z0 and such that F (U) ⊂ V . F is upper semicontinuous

in Z if it is upper semicontinuous at any point of Z. The mapping F is said to

be quasi-continuous at some z0 ∈ Z (for single-valued mappings this notion was

introduced by Kempisty [13]) if for every open set U containing z0 and for every

open set V of X such that F (z0) ∩ V 6= ∅ there is a nonempty open set U ′ ⊂ U

such that F (U ′) ⊂ V . F is quasi-continuous in Z if it is so at any point of Z.

Another way to say that F is quasi-continuous in Z is that for every open sets U

of Z and V of X such that F (U) ∩ V 6= ∅ there is a nonempty open set U ′ ⊂ U

such that F (U ′) ⊂ V . For mappings that are upper semicontinuous in Z and

with nonempty compact values the notion of quasi-continuity means that (see

[2]) the mapping F is minimal among all such mappings. Here the term minimal

means that the graph of F is a minimal element among all other graphs of such

mappings with respect to the usual partial order on the subsets of Z ×X.

Recall also that a set-valued mapping F : Z ⇒ X is open if F (U) is a

nonempty open set in X for every nonempty open set U ⊂ Z. The mapping F

is called demi-open if for every nonempty open set U in Z we have ∅ 6= IntF (U)
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is dense in F (U). Here as usual, for a subset A of X, IntA is the interior of A in

X and A is its closure in X. Obviosuly, every open mapping is demi-open, the

converse being not true, in general.

Before presenting our first result in this section we will introduce a special

complete metric space which was considered in [18] and which is related to the

possible (special) plays in the game FO(X). For a given regular topological

space X, let Σ(X) be the family of all sequences of nonempty open sets (Un)n≥1

such that Un+1 ⊂ Un for each n ≥ 1. Each element of the space Σ(X) can

be considered as a special play in the game FO(X) where the odd numbers of

the sequence correspond to the choices of Player I and the even numbers of the

sequence correspond to the choices of Player II. In the space Σ(X) we consider

the following metric ρ: for σ1 = (Un)n ∈ Σ(X) and σ2 = (U ′
n)n ∈ Σ(X) we define

ρ(σ1, σ2) :=
1

n
, where n := inf{k ≥ 1 : Uk 6= U ′

k},

with the convention 1/∞ = 0. It is easily seen that this is a metric in Σ(X). In

fact the following lemma, whose proof is easy, shows that it is a complete one:

Lemma 3.1. Let X be a regular topological space. Then, (Σ(X), ρ) is a

complete metric space.

The space Σ(X) determines in a natural way the following set-valued

mapping Φ : Σ(X) ⇒ X:

Φ((Un)n) := ∩n≥1Un, (Un)n ∈ Σ(X).

The next proposition summarizes some of the properties of the map-

ping Φ.

Proposition 3.2. The mapping Φ : Σ(X) ⇒ X has the following prop-

erties:

(a) Φ has a closed graph;

(b) Φ is an open mapping;

(c) Φ is quasi-continuous.

P r o o f. To prove (a) let σ0 = (Un)n ∈ Σ(X) and x0 ∈ X be such

that x0 /∈ Φ(σ0) = ∩n≥1Un. Since by definition of the elements of the space
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Σ(X) we have ∩nUn = ∩nUn then for some n0 we have x0 /∈ Un0
. Therefore,

there is an open neighborhood V of x0 such that V ∩ Un0
= ∅. Take the open

ball B(σ0, 1/n0) in the space Σ(X) and let σ = (U ′
n)n be an arbitrary element

from this ball. According to the definition of the metric ρ this will imply that

Uk = U ′
k for every k = 1, . . . , n0. In particular, Φ(σ) ⊂ Un0

which implies that

(B(σ0, 1/n0)× V ) ∩Gr(Φ) = ∅. And therefore, the graph Gr(Φ) is closed in the

product topology in Z ×X.

In order to check (b), take a nonempty open subset W of Σ(X). First

we prove that Φ(W ) is nonempty. Indeed, let σ0 = (Un)n ∈ W and let n0

be so large that B(σ0, 1/n0) ⊂ W . Let x0 ∈ Un0+1 and using the regularity

of X, let U ′
n0+k, k ≥ 2, be a sequence of open sets in X such that U

′

n0+2 ⊂

Un0+1, x0 ∈ U ′
n0+k and U

′

n0+k+1 ⊂ U ′
n0+k for every k ≥ 2. Then the sequence

σ := (U1, . . . , Un0
, Un0+1, U

′
n0+2, . . .) belongs to B(σ0, 1/n0) ⊂ W and we have

x0 ∈ Φ(σ).

To see that Φ(W ) is also open, let x0 ∈ Φ(σ0) for some σ0 = (Un)n ∈
W . Let n0 be so large that the open ball B(σ0, 1/n0) be included in W . We

have x0 ∈ Un0+1. Take some arbitrary x ∈ Un0+1 and construct by induction

nonempty open sets in X U ′
n0+k, k ≥ 2, such that U

′

n0+2 ⊂ Un0+1, x ∈ U ′
n0+k and

U
′

n0+k+1 ⊂ U ′
n0+k for every k ≥ 2. This is possible because X is regular. The

sequence σ := (U1, . . . , Un0
, Un0+1, U

′
n0+2, . . .) is obviously in Σ(X) and we have

ρ(σ0, σ) < 1/n0, thus σ ∈ W . On the other hand, x ∈ Φ(σ) which shows that

Un0+1 ⊂ Φ(W ), and thus, Φ is an open mapping.

Finally, let us prove (c). Let σ0 = (Un)n ∈ Σ(X) and for some nonempty

open set V of X we have Φ(σ0) ∩ V 6= ∅. Take a point x0 ∈ Φ(σ0) ∩ V . Let W

be an arbitrary open set in Σ(X) which contains σ0. Take a ball B(σ0, ε) which

is included in W for some ε > 0 and let n0 be so large that 2/n0 < ε. Since x0 ∈
Φ(σ0) we have that x0 ∈ Un0

. Let U ′
n0+1 be a nonempty open subset of X such

that x0 ∈ U ′
n0+1 and U

′

n0+1 ⊂ Un0
∩V . Construct further by induction a sequence

of nonempty open sets U ′
n0+k, k ≥ 1 such that x0 ∈ U ′

n0+1 and U
′

n0+k+1 ⊂ U ′
n0+k

for every k ≥ 1. Then the sequence σ = (U1, . . . , Un0
, U ′

n0+1, . . .) is in Σ(X)

and one has ρ(σ0, σ) ≤ 1/n0. Therefore, because of the choice of n0 and ε, the

ball B(σ, 1/n0) is included in W . It remains to mention that if σ′ = (Vn)n ∈
B(σ, 1/n0), then Φ(σ′) ⊂ U ′

n0+1 ⊂ V and therefore, Φ(B(σ, 1/n0)) ⊂ V . The

proof is completed. ✷
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With this proposition in hand, in the next theorem we characterize the

fact that X is a fos-space (which, according to Theorem 2.1 is equivalent to the

existence of a winning strategy for Player II in the game FO(X)) by properties

of set-valued mappings taking values in X. Below, in condition (d) the metric ρ

is that defined above for the space Σ(X).

Theorem 3.3. Let X be a regular topological space. Then the following

are equivalent:

(a) The space X is a fos-space;

(b) Every demi-open quasi-continuous set-valued mapping F : (Z, ρ) ⇒ X,

acting from a complete metric space (Z, ρ) into X is no more than single-

valued at the points of a dense Gδ-subset of Z;

(c) Every open quasi-continuous set-valued mapping F : (Z, ρ) ⇒ X, acting

from a complete metric space (Z, ρ) into X is no more than single-valued

at the points of a dense Gδ-subset of Z;

(d) The mapping Φ : (Σ(X), ρ) ⇒ X is no more than single-valued at the points

of a dense Gδ-subset of Σ(X).

P r o o f. To prove that (a) implies (b) suppose that X is a fos-space and

let d be a metric in X which fragments the nonempty open sets in X and F be

as in (b). For every n ≥ 1, let

Hn :=
⋃

{

W : ∅ 6= W is open in Z and d− diam(F (W )) < 1/n
}

.

We claim that for every n ≥ 1 the (open) set Hn is dense in Z. Indeed, fix

n ≥ 1 and take a nonempty open set W0 in Z. The mapping F is demi-open

and thus, the set IntF (W0) is nonempty and is dense in F (W0). As d fragments

the nonempty open sets in X there is a nonempty open set V of X such that

V ⊂ IntF (W0) and d − diam(V ) < 1/n. Since V ∩ F (W0) 6= ∅ and F is quasi-

continuous we can find a nonempty open set W ′ ⊂ W0 such that F (W ′) ⊂ V .

Obviously d−diam(F (W ′)) < 1/n and thus W ′ ⊂ Hn showing that Hn is dense in

Z. Therefore, the set H := ∩nHn is a dense Gδ-subset of Z. Take z0 ∈ H. Then

z0 ∈ ∩nWn for some nonempty open sets Wn such that d− diam(F (Wn)) < 1/n,

n ≥ 1. We have F (z0) ⊂ F (∩nWn) ⊂ ∩nF (Wn). And the latter intersection

cannot be more than a singleton. Thus, at the points of H the mapping F is no

more than a singleton. The proof of (a) implies (b) is completed.
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The implications (b) implies (c) and (c) implies (d) are obvious. There-

fore, let us prove that (d) implies (a).

Suppose that the mapping Φ is no more than single-valued at the points

of some dense Gδ-subset G of Σ(X). Let G := ∩n≥1Gn, where Gn are open

and dense subsets of Σ(X). We construct a strategy s for Player II in the game

FO(X) in the following way: let U1 be any nonempty open subset of X. It is

easily seen that Φ is onto (i.e., the constant sequence (X,X, . . .) belongs to Σ(X)).

Therefore, it follows by the quasi-continuity of Φ that there is a nonempty open

set W1 ⊂ Σ(X) such that Φ(W1) ⊂ U1. Without loss of generality we may think

that W1 ⊂ G1 and that the ρ-diameter of W1 is less than 1. We define the

strategy s at the first step by s(U1) := V1 = Φ(W1) ⊂ U1. The strategy s is

well-defined at the first step since Φ(W1) is a nonempty open subset of X.

Further, let (U1, V1, U2) be an arbitrary partial play of length 2 in the game

FO(X) such that V1 = s(U1) and let W1 be the open set in Σ(X) associated with

the definition of s at U1. We have V1 = Φ(W1) and ∅ 6= U2 ⊂ Φ(W1). By the

quasi-continuity of Φ there is a nonempty open set W2 ⊂ W1 such that Φ(W2) ⊂
U2. We may think that W2 ⊂ G2, W 2 ⊂ W1 and that ρ− diam(W2) < 1/2. Put

s(U1, V1, U2) := Φ(W2), the latter being a nonempty open set in X by Proposition

3.2, which is contained in U2. Proceeding in this way we can define by induction

the strategy s: suppose that the strategy has been defined in the above way for

any partial play (U1, V1, . . . , Vk−1, Uk) of length k, k = 1, . . . , n, n ≥ 2. Take

a partial play (U1, V1, . . . , Un, Vn, Un+1) of length n + 1, where all Vk have been

obtained by the strategy s and let W1, . . . ,Wn be the nonempty open sets in

Σ(X) associated with the definition of Vk = s(U1, . . . , Uk), k = 1, . . . , n. I.e.

Vk := Φ(Wk), ρ − diam(Wk) < 1/k for every k = 1, . . . , n and W k+1 ⊂ Wk for

each k = 1, . . . , n−1. Since ∅ 6= Un+1 ⊂ Vn = Φ(Wn) by the quasi-continuity of Φ

we can obtain a nonempty open set Wn+1 ⊂ Wn such that Φ(Wn+1) ⊂ Un+1. We

may think thatWn+1 ⊂ Gn+1, Wn+1 ⊂ Wn and that ρ−diam(Wn+1) < 1/(n+1).

In such a way the strategy s for Player II in the game FO(X) is completely

defined.

Let now {Un, Vn}n≥1 be an s-play in the game FO(X), that is a play in

which each Vn is obtained via the strategy s. Let (Wn)n be the sequence of open

sets in Σ(X) associated with the play {Un, Vn}n from the construction of s. We

have that for every n ≥ 1 the following is true:

(i) Vn = Φ(Wn);

(ii) Wn+1 ⊂ Wn and ρ− diam(Wn) < 1/n;

(iii) Wn ⊂ Gn.
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Because of (ii) the intersection ∩nWn is a singleton, say σ0 and moreover,

(iii) shows that σ0 ∈ G. Since the graph of Φ is closed and the sets (Wn)n
are a local base for σ0 it can be seen that (see e.g. Proposition 3.1 from [6])

Φ(∩nWn) = ∩nΦ(Wn). Thus, Φ(σ0) = Φ(∩nWn) = ∩nΦ(Wn) = ∩nVn, the latter

equality being true because of (i). Finally, having in mind that σ0 ∈ G we see

that the intersection ∩nVn is no more than a singleton, which shows that the

strategy s is winning for Player II in the game FO(X). Then the fact that X is

a fos-space follows by Theorem 2.1. The proof of the theorem is completed. ✷

Remark 3.4. In fact, a close look at the proof that (a) implies (b) shows

that, formally, we do not need that the mapping F is demi-open: what is enough,

is that for every nonempty open set U of Z the set IntF (U) be nonempty. But if

the mapping F has the latter property and, in addition, F is quasi-continuous,

then, it is easily seen that F is also demi-open.

Let us mention that the quasi-continuous demi-open mappings which also

have closed graph were investigated in [5] from the point of view of existence of

densely defined continuous selections.

Remark 3.5. Again looking carefully at the proof of (a) implies (b)

one can see that in the conditions (b)–(c) the space Z is enough to be a Baire

topological space.

Another remark is also in order here:

Remark 3.6. Again, a close look at the proof of the above theorem,

this time at the proof (d) implies (a), shows that in this proof we do not use the

specific properties of the mapping Φ. We have used only its three properties form

Proposition 3.2. Therefore, the conditions from the above theorem are equivalent

also to:

(d’) there exist a complete metric space (Z, ρ) and an open quasi-continuous

set-valued mapping F : (Z, ρ) ⇒ X with a closed graph, which is no more than

single-valued at the points of a dense Gδ-subset of Z.

4. Fragmentability of open sets and attainability of infima of

continuous functions. In this section we will give another characterization

of the fragmentability of open sets in topological spaces via the attainability of

infima of continuous bounded functions defined in the underlying space. This
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characterization again involves a certain set-valued mapping taking values in

completely regular fos-spaces.

Let X be a completely regular topological space and let us denote by

C(X) the space of all bounded real-valued functions in X. In this space we

consider the usual sup norm ‖f‖∞ := sup{|f(x)| : x ∈ X}, f ∈ C(X), under

which C(X) is real Banach space. Consider the following set-valued mapping

M : C(X) ⇒ X defined by M(f) := {x ∈ X : f(x) = inf
X

f}, f ∈ C(X). The

mapping M is called the solution mapping in X since it assigns to each f ∈ C(X)

the (possibly empty) set of the minima of f in X. The following proposition (the

proof of which is omitted) summarizes some of the important properties of the

mapping M :

Proposition 4.1. (see e.g. [4, 19]) The mapping M is an open quasi-

continuous mapping in X with closed graph and dense domain.

In [19] a characterization was given of the generic existence of solutions

for the optimization problems generated by the functions from C(X) by existence

of a winning strategy for one of the players in the following most known version of

the Banach-Mazur game BM(X) inX: two players, α and β, choose alternatively

nonempty open sets (β starts first) as in the game FO(X), U1 ⊃ V1 ⊃ U2 ⊃ V2 · · ·
(Uns for β and Vns for α). α wins the play {Un, Vn}n in the game BM(X) if

the intersection ∩nUn = ∩nVn is not empty. Otherwise, β wins. The notions of

(winning) strategies for the players are defined in a complete analogy with the

definition of the same notions in the game FO(X).

It was proved in [19][Theorem 3.1] that the player α has a winning strategy

in the Banach-Mazur game BM(X) if, and only if, the set E := {f ∈ C(X) :

the function f attains its minimum in X} contains a dense Gδ-subset of C(X).

In a subsequent paper [6] it was shown that the existence of special strategies

in the game BM(X) is equivalent to stronger conclusions on the minima for the

continuous bounded functions inX (like uniqueness, or uniqueness and stability of

the minima in the definition of the functions in the set E). After, in [9] the authors

developed further a general approach to transform strategies between different

games which allows also to prove such results. Further investigation related to

variational principles for perturbations of lower semi-continuous functions can be

found in [7].

Here, we have a similar (as the one above for the game BM(X)) char-

acterization of the fos-spaces (equivalently for the existence of a wining strategy

for Player II in the game FO(X)). Namely, in the next theorem we give another
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characterization of the fos-spaces, involving the set-valued mapping M .

Theorem 4.2. Let X be a completely regular topological space. Then the

following are equivalent:

(a) The space X is a fos-space;

(b) The set {f ∈ C(X) : the function f has no more than one minimum point

in X} contains a dense Gδ-subset of C(X) (equivalently, the mapping M :

C(X) ⇒ X is no more than single-valued at the points of a dense Gδ-subset

of C(X)).

P r o o f. The fact that (a) implies (b) follows by Theorem 3.3 applied for

the solution mapping M and having in mind its properties from Proposition 4.1.

As to the inverse implication, it follows by Remark 3.6 applied for the mapping

M using again the properties of the solution mapping from Proposition 4.1. ✷

When considering attainability of an infimum of a given function in a

topological space X, a special attention is paid to the question of the uniqueness

of the minimum and its stability. More precisely, given a bounded from below

function h : X → R it is said that the function h attains strong minimum in X,

if there is a unique minimum point x0 of h in X and every minimizing sequence

(xn)n ⊂ X for h (this means h(xn) → inf
X

h) converges to x0. In optimization

for this concept is used the term: “the problem to minimize h on X is Tykhonov

well-posed”.

In [8] we considered the case when the nonempty open sets of X are

fragmentable by a complete metric d whose topology is stronger than the original

topology in X and proved that this is equivalent to the fact that the space X con-

tains a dense subset X1 which is completely metrizable in its inherited topoology

([8]). On the other hand, in [3, 4] we proved that the completely regular topo-

logical space X contains a dense completely metrizable subspace exactly when

the set S := {f ∈ C(X) : f attains its strong minimum in X} contains a dense

Gδ-subset of C(X) (see Theorem 3.5 from [4]). Therefore, we have the following

immediate consequence of these two facts:

Theorem 4.3. Let X be a completely regular topological space. Then the

following are equivalent:

(a) The space X admits a complete metric d which fragments the nonempty

open sets in X and the topology of d is stronger than the original topology

of X;
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(b) The set {f ∈ C(X) : the function f attains its strong minimum in X}
contains a dense Gδ-subset of C(X).

It was shown in [8] that, if X is a compact fos-space, then there exists

a complete metric which fragments the nonempty open subsest of X and which

generates a topology which is stronger than the initial topology of X. Having this

in mind we obtain the following immediate corollary of the previous theorem:

Corollary 4.4. The compact space X is a fos-space if, and only if, the

set {f ∈ C(X) : the function f attains its strong minimum in X} contains a

dense Gδ-subset of C(X).

In fact, in connection with the last corollary, let us mention that in a com-

pact topological space X a continuous bounded function (even more, a bounded

below lower semi-continuous proper function) f attains its strong minimum in X

exactly when f attains its minimum in X at only one point of X.
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[4] M. M. Čoban, P. S. Kenderov, J. P. Revalski. Generic well-posedness

of optimization problems in topological spaces. Mathematika 36, 2 (1989),

301–324.
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