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Abstract. Let p be a prime and (K, v) a Henselian valued field with a

residue field K̂. This paper determines the Brauer p-dimension of K, in
case p 6= char(K̂) and K̂ is a p-quasilocal field properly included in its

maximal p-extension. When K̂ is a local field, it describes index-exponent
pairs of central division K-algebras of p-primary degrees. The same goal is
achieved, if (K, v) is maximally complete, char(K) = p and K̂ is local.

1. Introduction. Let E be a field, P the set of prime numbers, and for
each p ∈ P, let E(p) be the maximal p-extension of E in a separable closure Esep,
and rp(E) the rank of the Galois group G(E(p)/E) as a pro-p-group (put rp(E) =
0, if E(p) = E). Denote by s(E) the class of finite-dimensional associative central
simple E-algebras, and by d(E) the subclass of division algebras D ∈ s(E). For
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each A ∈ s(E), let [A] be the equivalence class of A in the Brauer group Br(E),
and DA a representative of [A] lying in d(E). The existence of DA and its
uniqueness, up-to an E-isomorphism, is established by Wedderburn’s structure
theorem (cf. [27], Sect. 3.5), which implies the dimension [A : E] is a square
of a positive integer deg(A) (the degree of A). It is known that Br(E) is an
abelian torsion group, so it decomposes into the direct sum, taken over P, of its
p-components Br(E)p (see [27], Sects 3.5 and 14.4). The Schur index ind(D) =
deg(DA) and the exponent exp(A), i.e. the order of [A] in Br(E), are invariants
of both A and [A]. Their general relations and behaviour under scalar extensions
of finite degrees are described as follows (cf. [27], Sects. 13.4, 14.4 and 15.2):

(1.1)

(a) exp(A) | ind(A) and p | exp(A), for each p ∈ P dividing ind(A).
For any B ∈ s(E) with ind(B) prime to ind(A), ind(A ⊗E B) =
ind(A). ind(B); if A, B ∈ d(E), then the tensor product A⊗E B lies
in d(E);

(b) ind(A) and ind(A⊗ER) divide ind(A⊗ER)[R : E] and ind(A),
respectively, for each finite field extension R/E of degree [R : E].

As shown by Brauer (see, e.g., [27], Sect. 19.6), (1.1) (a) determines
all generally valid index-exponent relations. It is known, however, that, for a
number of fields E, the pairs ind(A), exp(A), A ∈ s(E), are subject to much
tougher restrictions than those described by (1.1) (a). The Brauer p-dimensions
Brdp(E), p ∈ P, contain essential information on these restrictions. We say that
Brdp(E) = n, where n ∈ Z, if n is the least integer ≥ 0 for which ind(D) ≤
exp(D)n whenever D ∈ d(E) and [D] ∈ Br(E)p; if no such n exists, we put
Brdp(E) = ∞. In view of (1.1), Brdp(E) ≤ 1, for a given p, if and only if
ind(D) = exp(D), for each D ∈ d(E) with [D] ∈ Br(E)p; Brdp(E) = 0 if and only
if Br(E)p = {0}. The absolute Brauer p-dimension abrdp(E) of E is defined as
the supremum Brdp(R) : R ∈ Fe(E), Fe(E) being the set of finite extensions of E
in Esep. For example, when E is a global or local field, Brdp(E) = abrdp(E) = 1,
p ∈ P, and there exist Yn ∈ d(E), n ∈ N, with ind(Yn) = n, for any n (see [38],
Ch. XII, Sect. 2; Ch. XIII, Sects. 3, 6).

This paper deals with the study of index-exponentK-pairs, for a Henselian
(valued) field (K, v), along the lines drawn in [8], Sect. 5. Its purpose is to deter-
mine Brdp(K) and to describe p-primary index-exponent K-pairs, provided that

the residue field K̂ of (K, v) is endowed with a Henselian discrete valuation ω
whose residue field is quasifinite, and p ∈ P is different from char(K̂) (for other
types of K̂, such as the one of a global field, see [8], Sect. 5). Our main result,
presented by the following theorem, concerns the case where K̂ is a local field
and the value group v(K) is p-indivisible, i.e. the quotient group v(K)/pv(K)
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is nontrivial. When K contains a primitive p-th root of unity, it shows that
index-exponent p-primary K-pairs are not determined only by Brdp(K):

Theorem 1.1. Let (K, v) be a Henselian field with Brdp(K) < ∞, for

some p ∈ P, and let mp = min{τ(p), rp(K̂)}, where τ(p) is the dimension of

v(K)/pv(K) as a vector space over the field Fp = Z/pZ. Assume that τ(p) > 0,

p 6= char(K̂), K̂ is a local field, and εp is a primitive p-th root of unity in K̂sep,

denote by ν the greatest integer for which K̂ contains a primitive pν-th root of

unity, and in case εp ∈ K̂, put r′p(K̂) = rp(K̂) − 1 and m′

p = min{τ(p), r′p(K̂)}.
For each n ∈ N, let µ(p, n) = nm′

p + νn(mp −m′

p + [(τ(p) −mp)/2]), if εp ∈ K̂,

where νn = min{n, ν}, and µ(p, n) = nmp, if εp /∈ K̂. Then Brdp(K) = µ(p, 1);
moreover, for a pair (k, n) ∈ N2, there exists Dk,n ∈ d(K) with ind(Dk,n) = pk

and exp(Dk,n) = pn if and only if n ≤ k ≤ µ(p, n).

Assuming that (K, v) is Henselian, p ∈ P is not equal to char(K̂), τ(p)
and εp are defined as above, and (K̂, ω) is a Henselian discrete valued field (abbr,
an HDV-field) with a quasifinite residue field k̃, we obtain the following result:

(1.2)

(a) If 0 < τ(p) < ∞, char(K̂) = 0, and k̃ is infinite with char(k̃) =
p, then Brdp(K) = τ(p) and (pk, pn), k, n ∈ N, n ≤ k ≤ nτ(p), are
all nontrivial index-exponent p-primary K-pairs;

(b) Brdp(K) = 1 and (pn, pn), n ∈ N∪{0}, are all index-exponent
K-pairs, in case p 6= char(k̃) and εp /∈ K̂; the same holds, if p 6=
char(k̃) and τ(p) ≤ 1;

(c) When p 6= char(k̃), εp ∈ K̂, and 2 ≤ τ(p) < ∞, we have

rp(K̂) = 2 and Brdp(K) = 1 + [τ(p)/2];

(d) In the setting of (c), if K̂ contains finitely many roots of
unity of p-primary degrees, then index-exponent p-primary K-pairs
are determined in accordance with Theorem 1.1; when K̂ contains
infinitely many such roots, (pk, pn), k, n ∈ N, n ≤ k ≤ nBrdp(K),
are index-exponent K-pairs.

When (K, v) is a maximally complete field with char(K) = p and K̂ a
local field, Brdp(K) and index-exponent p-primary K-pairs are determined as
follows:

Proposition 1.2. Assume that (K, v) is a maximally complete field,

char(K) = p > 0, and K̂ is a local field, and define τ(p) as in Theorem 1.1.

Then:
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(a) Brdp(K) = ∞ if and only if τ(p) = ∞; when this holds, (pk, pn) is an
index-exponent pair over K, for any k, n ∈ N with k ≥ n;

(b) Brdp(K) = τ(p), provided that τ(p) < ∞; in this case, (pk, pn) is an

index-exponent K-pair, where k, n ∈ N, if and only if n ≤ k ≤ nτ(p).

Proposition 1.2 is deduced in Section 3 from our description of index-
exponent p-primary pairs over maximally complete fields of characteristic p with
perfect residue fields (see Corollary 3.6 and Proposition 3.5). The proofs of (1.2)
and Theorem 1.1 rely on the fact that HDV-fields with quasifinite residue fields
are quasilocal, i.e. their finite extensions are p-quasilocal fields with respect to
every p ∈ P (see [31], Ch. XIII, Sect. 3). As in [5], a field E with rp(E) > 0, for
some p, is called p-quasilocal, if the relative Brauer group Br(E′/E) equals the
group p Br(E) = {b ∈ Br(E) : pb = 0}, for every degree p extension E′ of E in
E(p); when rp(E) = 0, we say that E is p-quasilocal, if Br(E)p = {0}. The part
of Theorem 1.1 concerning Brdp(K) is a special case of a formula for Brdp(K),

deduced when K̂ is any p-quasilocal field with char(K̂) 6= p and rp(K̂) > 0

(see Section 4). To prove this formula we use the inequality Brdp(K̂) ≤ 1, the

surjectivity of the scalar extension map Br(K̂)p → Br(K̂ ′)p, for every extension

K̂ ′ of K̂ in K̂(p), and the following relations between finite extensions of K̂ in
K̂(p) and algebras ∆p ∈ d(K̂) of p-primary degrees (see [5], I, Sects. 3 and 4):

(1.3)

ind(∆p) = g.c.d.{[Lp : K̂], ind(∆p)} ind(∆p ⊗K̂ Lp) whenever Lp is a

finite extension of K̂ in K̂(p). Specifically, Lp embeds in ∆p as a

K̂-subalgebra if and only if [Lp : K̂] | ind(∆p); [∆p] ∈ Br(Lp/K̂) if

and only if ind(∆p) | [Lp : K̂].

Statements (1.2) and the concluding assertion of Theorem 1.1 are proved
in Section 5. Their proofs are based on Morandi’s theorem [26], the theory of
division algebras over Henselian fields developed in [17], and the structure of the
(continuous) character group C(K̂(p)/K̂) of G(K̂(p)/K̂) as an abstract abelian
group (see (5.2), (5.3) and Remark 5.3). Our proofs also rely on the fact that
if K̂ is a local field or p 6= char(k̃), then G(K̂(p)/K̂) is a Demushkin group if
K̂ contains a primitive p-th root of unity, and G(K̂(p)/K̂) is a free pro-p-group,
otherwise (cf. [32], Ch. II, 2.2 and 5.6). By a Demushkin group, we mean a pro-
p-group Gp whose continuous cohomology groups H i(Gp,Fp) with coefficients
in Fp, for i = 1, 2, satisfy the following conditions: H2(Gp,Fp) is of order p,
H1(Gp,Fp) is finite and abelian of period p, and for any nonzero a ∈ H1(Gp,Fp),
the homomorphism ϕa : H

1(Gp,Fp) → H2(Gp,Fp), mapping each b ∈ H1(Gp,Fp)
into the cup-product a ∪ b, is surjective. We also use the well-known fact that
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local fields contain finitely many roots of unity, and take into account that Brauer
groups of HDV-fields with quasifinite residue fields are isomorphic to the quotient
group Q/Z of the additive group of rational numbers by the subgroup of integers
(cf. [31], Ch. XIII, Sect. 3).

The basic notation and terminology used and conventions kept in this
paper are standard, like in [5], I, and [7, 8]. We write Z(B) for the centre of an
associative ring B. Given a Henselian field (K, v), Kur denotes the compositum
of inertial extensions of K in Ksep; the notions of an inertial, a nicely semi-
ramified (abbr, NSR), and a totally ramified (division) K-algebra, are defined in
[17]. Section 2 includes valuation-theoretic preliminaries used in the sequel. By a
Pythagorean field, we mean a formally real field whose set of squares is additively
closed. As usual, [r] stands for the integral part of a real number r ≥ 0, and
for any p ∈ P, a Zp-extension means a Galois extension whose Galois group is
isomorphic to the additive group Zp of p-adic integers. The set of intermediate
fields of a field extension Λ/Ψ is denoted by I(Λ/Ψ). Symbol algebras are defined,
e.g., in [17] and [27], Sect. 15.4. Galois groups are viewed as profinite with
respect to the Krull topology, and by a profinite group homomorphism, we mean
a continuous one. The reader is referred to [23], [14], [17], [16], [27] and [32],
for missing definitions concerning field extensions, orderings and valuations, m-
dimensional local fields, simple algebras, Brauer groups and Galois cohomology.

2. Preliminaries. Let (K, v) be a Krull valued field with a residue field
K̂ and a (totally ordered) value group v(K). We say that (K, v) is Henselian,
if v extends uniquely, up-to an equivalence, to a valuation vL on each algebraic
extension L/K. This occurs, for example, if (K, v) is maximally complete, i.e.
it has no immediate proper extension (a valued extension (K ′, v′), such that
K ′ 6= K, K̂ ′ = K̂ and v′(K ′) = v(K)). When (K, v) is Henselian, we denote by
L̂ the residue field of (L, vL) and put v(L) = vL(L), for any algebraic extension
L/K. Clearly, L̂/K̂ is an algebraic extension and v(K) is an ordered subgroup
of v(L); e(L/K) denotes the index of v(K) in v(L). By Ostrowski’s theorem (cf.
[14], Theorem 17.2.1), when L/K is finite, [L : K], [L̂ : K̂] and e(L/K) are related
as follows:

(2.1)
[L̂ : K̂]e(L/K) divides [L : K] and [L : K][L̂ : K̂]−1e(L/K)−1 is not
divisible by any p ∈ P, p 6= char(K̂); [L : K] = [L̂ : K̂]e(L/K), if
char(K̂) ∤ [L : K].

The Henselity of (K, v) ensures that each ∆ ∈ d(K) has a unique, up-to
an equivalence, valuation v∆ extending v and possessing an abelian value group
v(∆) (cf. [30], Ch. 2, Sect. 7). This group is totally ordered and includes
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v(K) as an ordered subgroup of index e(∆/K) ≤ [∆: K]. Also, the residue
division ring ∆̂ of (∆, v∆) is a K̂-algebra, and by Ostrowski-Draxl’s theorem [12],
e(∆/K)[∆̂ : K̂] | [∆: K] and if char(K̂) ∤ ind(∆), then [∆: K] = e(∆/K)[∆̂ : K̂].
Statement (2.1) and the Henselity of (K, v) imply the following:

(2.2)

The quotient groups v(K)/pv(K) and v(L)/pv(L) are isomorphic,
if p ∈ P and [L : K] < ∞. When char(K̂) ∤ [L : K], the nat-
ural embedding of K into L induces canonically an isomorphism
v(K)/pv(K) ∼= v(L)/pv(L).

A finite extension R of K is said to be inertial, if [R : K] = [R̂ : K̂] and
R̂/K̂ is separable. We say that R/K is totally ramified, if [R : K] = e(R/K);
R/K is called tamely ramified, if R̂/K̂ is separable and char(K̂) ∤ e(R/K). The
properties of Kur/K used in the sequel are essentially those presented in [17],
page 135, and restated in [6], (3.3) (see also [33], Theorem A.24). Here we recall
some results on central division K-algebras (most of which can be found in [17]):

(2.3)

(a) If D ∈ d(K) and char(K̂) ∤ ind(D), then [D] = [S⊗K V ⊗K T ],
for some S, V , T ∈ d(K), such that S/K is inertial, V/K is NSR,
T/K is totally ramified, T⊗KKur ∈ d(Kur), exp(T⊗KKur) = exp(T ),
and T is a tensor product of totally ramified cyclic K-algebras (see
also [12], Theorem 1);

(b) The set IBr(K) = {[S′] ∈ Br(K) : S′ ∈ d(K), S′/K inertial} is
a subgroup of Br(K) canonically isomorphic to Br(K̂); Brdp(K̂) ≤
Brdp(K), p ∈ P, and equality holds when p 6= char(K̂) and v(K) =
pv(K);

(c) With assumptions and notation being as in (a), if T 6= K, then
K contains a primitive root of unity of degree exp(T ); in addition, if
Tn ∈ d(K) and [Tn] = n[T ] 6= 0, for some n ∈ N, then Tn/K is totally
ramified;

Statement (2.3) can be supplemented as follows (see, e.g., [8], Sect. 4):

(2.4)

If D, S, V and T are related as in (2.3) (a), then:
(a) n[D] ∈ IBr(K), for a given n ∈ N, if and only if exp(V ) | n

and exp(T ) | n;
(b) D/K is inertial if and only if V = T = K; D/K is inertially

split, i.e. [D] ∈ Br(Kur/K), if and only if T = K;
(c) exp(D) = lcm(exp(S), exp(V ), exp(T )).

The following result of [8] gives a formula for Brdp(K) whenever p 6= char(K̂)

and Brdp(K̂) = 0:
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Theorem 2.1. Assume that (K, v) is a Henselian field with

Brdp(K̂) < ∞, for some p ∈ P, p 6= char(K̂), and let τ(p), εp and mp be as

in Theorem 1.1. Then:

(a) Brdp(K) = ∞ if and only if mp = ∞ or τ(p) = ∞ and εp ∈ K̂;

(b) [(τ(p)+mp)/2] ≤ Brdp(K) ≤ Brdp(K̂)+ [(τ(p)+mp)/2], if τ(p) < ∞
and εp ∈ K̂; when mp < ∞ and εp /∈ K̂, mp ≤ Brdp(K) ≤ Brdp(K̂) +mp.

As shown in [8], Sect. 4, Theorem 2.1 leads to the following description
of index-exponent p-primary K-pairs, in the case where Brdp(K) = ∞:

Corollary 2.2. Let (K, v) be a Henselian field with Brdp(K̂) < ∞ =

Brdp(K), for some p 6= char(K̂). Then the following alternative holds:

(a) (pk, pn) : k, n ∈ N, n ≤ k, are index-exponent K-pairs;

(b) p = 2 and K̂ is a Pythagorean field; such being the case, the group

Br(K)2 has period 2, and there are Dm ∈ d(K), m ∈ N, with ind(Dm) = 2m.

This Section ends with a lemma that is implicitly used in the proofs of
the main results of the following Section.

Lemma 2.3. Let (K, v) be a valued field with char(K) = p > 0 and

v(K) 6= pv(K), and let π ∈ K∗ be an element of value v(π) /∈ pv(K). Assume

that G is a finite p-group of order pt. Then there exists a Galois extension M of K
in K(p), such that G(M/K) ∼= G, v is uniquely, up-to an equivalence, extendable

to a valuation vM of M , and v(π) ∈ ptvM (M); in particular, vM (M)/v(K) is

cyclic and (M,vM )/(K, v) is totally ramified.

P r o o f. One may assume, for the proof, that v(π) < 0. Let F be the prime
subfield of K, (Kv , v̄) a Henselization of (K, v), ρ(Kv) = {up − u : u ∈ Kv}, ω
the valuation of the field Φ = F(π) induced by v and for each m ∈ N, let Lm

and Λm be the root fields in Ksep over K and Φ, respectively, of the polynomial
fm(X) = Xp−X−πm, where πm = π1+qm. IdentifyingKv with its K-isomorphic
copy in Ksep, take a Henselization (Φω, ω̄) of (Φ, ω) among the valued subfields
of (Kv, v̄) (this is possible, by [14], Theorem 15.3.5), and put

Ψm = Λ1 . . .Λm and Mm = L1 . . . Lm, for each m. It is well-known that
(Kv , v̄)/(K, v) and (Φω, ω̄)/(Φ, ω) are immediate extensions, i.e. K̂v = K̂, v̄(Kv) =
v(K) and Φ̂ω = Φ̂, ω̄(Φω) = ω(Φ). Also, it is easily verified that ρ(Kv) is an
F-subspace of Kv, and v̄(u′) ∈ pv(K) whenever u′ ∈ ρ(Kv) and v̄(u′) < 0. This
implies the cosets πm + ρ(Kv), m ∈ N, are linearly independent over F, so the
Artin-Schreier theorem (cf. [23], Ch. VIII, Sect. 6) enables one to prove the
following statement, for each m ∈ N:
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(2.5)
Lm/K, LmKv/Kv, Λm/Φ and ΛmΦω/Φω are degree p cyclic exten-
sions; Mm/K, MmKv/Kv, Ψm/Φ and ΨmΦω/Φω are abelian of de-
gree pm.

Let now Gr be a finite p-group of rank r > 0 and order pµ(r). Since char(Φ) = p,
and therefore, G(Φ(p)/Φ) is a free pro-p-group (cf. [32], I, 1.5, 4.2; II, 2.2),
there exists a Galois extension Γr of Φ in Ksep, such that G(Γr/Φ) ∼= Gr and
Ψr ∈ I(Γr/Φ). Hence, by Galois theory, the field ΓrK is a Galois extension of
K with G(ΓrK/K) ∼= G(Γr/Φ) ∼= Gr. We prove that ΓrK/K, Gr and π are
related in agreement with Lemma 2.3. Firstly, it is easy to see that Ψr equals
the fixed field of the Frattini subgroup of G(Γr/Φ). Secondly, it follows from the
Artin-Schreier theorem and the definition of Ψr that every degree p extension of
Φω in ΨrΦω is totally ramified (relative to ω̄). Note also that Φ̂ is finite, so the
Henselity of ω̄ ensures that each finite extension Φ′ of Φω contains as a subfield
an inertial lift of Φ̂′ over Φω. At the same time, ω̄ is discrete, which shows that
Φ′/Φω is defectless if it is separable (see [23], Ch. XII, Sect. 6, Corollary 2).
These facts make it easy to deduce from (2.5) and Galois theory that ΓrΦω/Φω

is totally ramified and [ΓrK : K] = [ΓrΦω : Φω] = [Γr : Φ] = pµ(r). Therefore,
Γr/Φ is totally ramified, i.e. it possesses a primitive element θ whose minimal
polynomial fθ(X) over Φ is Eisensteinian relative to ω (cf. [16], Ch. 2, (3.6), and
[23], Ch. XII, Sects 2, 3 and 6). Let θ0 be the free term of fθ(X). As π ∈ Φ,
v(π) /∈ pv(K) and Γr/Φ is a Galois extension, the conditions on θ guarantee that
it is a primitive element of ΓrK/K (and ΓrKv/Kv), p

µ(r)w(θ) = v(θ0) = ω(θ0)
and v(π) ∈ pµ(r)w(ΓrK), for any valuation w of ΓrK extending v. This implies
w is unique, up-to an equivalence, and so completes the proof of Lemma 2.3. ✷

The conclusion of Lemma 2.3 need not be true in the mixed-characteristic
setting. It has been established by Kurihara (cf. [20], Corollary 2) that there
exists an HDV-field (K, v) with char(K) = 0, K̂ imperfect and char(K̂) = p > 0,
which does not admit a totally ramified cyclic extension of degree pt, for any
sufficiently large t ∈ N depending on K.

3. Brauer p-dimensions in characteristic p. In this Section we
consider index-exponent relations of p-algebras over Henselian fields of charac-
teristic p. First we supplement Lemma 2.3 as follows:

Lemma 3.1. Let (K, v) be a valued field with char(K) = p > 0 and

v(K) 6= pv(K), and let τ(p) be defined as in Theorem 1.1. Suppose that L is a

finite abelian extension of K in K(p) satisfying the following conditions:
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(a) [L : K] = pm and G(L/K) has period pm
′

and rank t;

(b) L has a unique, up-to an equivalence, valuation vL extending v, and
the group vL(L)/v(K) is cyclic of order pm.

Then there is T ∈ d(K) with exp(T ) = pm
′

, possessing a maximal subfield

K-isomorphic to L, except, possibly, in case τ(p) < ∞ and pt−τ(p) ≥ [K̂ : K̂p].

P r o o f. It is clear from Galois theory and the structure of finite abelian

groups that L = L1 . . . Lt and [L : K] =

t∏

j=1

[Lj : K], for some cyclic extensions

Lj/K, j = 1, . . . , t. Take an element π ∈ K so that v(π) ∈ pmvL(L), put π0 = π,
and suppose that there exist πj ∈ K∗, j = 1, . . . , t, and µ ∈ Z with 0 ≤ µ ≤ t,
such that the cosets v(πi)+pv(K), i = 0, . . . , µ, are linearly independent over Fp,
and in case µ < t, v(πu) = 0 and the residue classes π̂u, u = µ+1, . . . , t, generate
an extension of K̂p of degree pt−µ (this assumption is admissible unless τ(p) ≤ t
and pt−τ(p) ≥ [K̂ : K̂p]). Fix a generator λj of G(Lj/K), for j = 1, . . . , t, denote
by T the K-algebra ⊗t

j=1(Lj/K, λj , πj), where ⊗ = ⊗K , and put T ′ = T ⊗K Kv.

We show that T ∈ d(K) (whence ind(T ) = pm) and exp(T ) = pm
′

. Clearly,
T ′ ∼= ⊗t

j=1(L
′

j/Kv, λ
′

j , πj) over Kv , where ⊗ = ⊗Kv
, L′

j = LjKv and λ′

j is the
uniqueKv-automorphism of L′

j extending λj , for each j (as in the proof of Lemma
2.3, we identify Kv with its K-isomorphic copy in Ksep). Therefore, it suffices for
the proof of Lemma 3.1 to show that T ′ ∈ d(Kv). Since, by the proof of Lemma
2.3, Kv and L′ = LKv are related as in our lemma, this amounts to proving
that T ∈ d(K), for (K, v) Henselian. Note that if m = 1, then our assertion is
a special case of [6], Lemma 4.2. Henceforth, we assume that m ≥ 2 and view
all value groups considered in the rest of the proof as (ordered) subgroups of a
fixed divisible hull of v(K). Let L0 be the degree p extension of K in Lt, and
Rj = L0Lj , j = 1, . . . , t. Put ρt = λp

t , and when t ≥ 2, denote by ρj the unique
L0-automorphism of Rj extending λj, for j = 1, . . . , t−1. Then the centralizer C
of L0 in T is L0-isomorphic to ⊗t

j=1(Rj/L0, ρj , πj), where ⊗ = ⊗L0
; in particular,

deg(C) = pm−1. Using (2.1), Lemma 2.3 and this result, one easily obtains that it
is sufficient to prove that T ∈ d(K), under the extra hypothesis that C ∈ d(L0).

Let w be the valuation of C extending vL0
, Ĉ its residue division ring,

and for each ξ ∈ C with w(ξ) = 0, let ξ̂ ∈ Ĉ be the residue class of ξ. It follows
from the Ostrowski-Draxl theorem that w(C) equals the sum of v(L) and the
group generated by [Ri′ : L0]

−1v(πi′), i
′ = 1, . . . , µ. Similarly, it is proved that

Ĉ/K̂ is a purely inseparable field extension. Moreover, one sees that Ĉ 6= K̂

if and only if µ < t, and when this is the case, [Ĉ : K̂] =

t∏

u=µ+1

[Ru : L0] and
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Ĉ = K̂(η̂µ+1, . . . , η̂t), where ηu ∈ (Ru/L0, ρu, πu) is a root of πu of degree [Ru : L0]
acting on Ru by conjugation as the automorphism ρu, for each index u. In view
of (2.1) and well-known general properties of purely inseparable finite extensions
(cf. [23], Ch. VII, Sect. 7), these results show that w(ηt) /∈ pw(C), if µ = t, and
w(ηt) = 0 and η̂t /∈ Ĉp, otherwise. Observe now that there is a K-isomorphism
ρ̄t of C extending λt, such that ρ̄pt (c̄) = ηtc̄η

−1
t : c̄ ∈ C, and ρ̄t(ηt) = ηt. This

implies w(c) = w(ρ̄t(c)), for each c ∈ C, the products c′ =

p−1∏

κ=0

ρ̄κt (c), c ∈ C,

have values w(c′) ∈ pw(C), and ĉ′ ∈ Ĉp, if w(c) = 0. Therefore, c′ 6= ηt, for any
c ∈ C, so it follows from [1], Ch. XI, Theorems 11 and 12, that T ∈ d(K). Let
now Λ be the fixed field of the maximal subgroup of G(L/K) of period p. Then
[27], Sect. 15.1, Corollary b, implies the class p[D] ∈ Br(K) is represented by a
crossed product of Λ/K, defined similarly to D. As Λ/K and π are related like
L/K and π, and G(Λ/K) is of period pm

′
−1, this enables one to prove inductively

that exp(D) = pm
′

, as claimed. ✷

Corollary 3.2. Let E be a field with char(E) = p > 0 and [E : Ep] =
pν < ∞, and F/E a finitely-generated extension of transcendency degree n > 0.
Then n+ ν − 1 ≤ Brdp(F ) ≤ abrdp(F ) ≤ n+ ν, and when n+ ν ≥ 2,

(pt, ps) : t, s ∈ N, s ≤ t ≤ (n+ ν − 1)s, are index-exponent pairs over F .

P r o o f. We have n + ν − 1 ≤ Brdp(F ) ≤ abrdp(F ) ≤ n + ν, by [6],
Theorem 2.1 (c). Note also that F has a valuation v trivial on E, such that v(F ) =
Zn and F̂ is a finite extension of E (see, e.g. [6], (4.1)). Therefore, [F̂ : F̂ p] = pν

(cf. [23], Ch. VII, Sect. 7) and v(F )/pv(F ) is of order pn, which makes it easy
to deduce the concluding assertion of Corollary 3.2 from Lemma 3.1. ✷

Remark 3.3. It is known [28], (3.19) (see also [17], Corollary 6.10) that if
(K, v) is a Henselian field and T ∈ d(K) is a tame K-algebra, in the sense of [28]
or [17], then the period per(T/K) of the group v(T )/v(K) divides exp(T ). At the
same time, by Lemma 3.1 with its proof, if char(K) = p > 0 and v(K)/pv(K) is
infinite, then there are Tn ∈ d(K), n ∈ N, such that ind(Tn) = per(Tn/K) = pn,
exp(Tn) = p and Tn/K is defectless, for each n.

Next we describe index-exponent p-primary pairs over some maximally
complete fields of characteristic p, including those with perfect residue fields.

Proposition 3.4. Let (K, v) be a valued field of characteristic p > 0.
Suppose that v(K)/pv(K) is infinite or [K̂ : K̂p] = ∞, where K̂p = {âp : â ∈ K̂}.
Then (pk, pn) : k, n ∈ N, n ≤ k, are index-exponent K-pairs.
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P r o o f. Lemma 3.1, [8], Remark 4.3, and our assumptions show that
there are tensor products Dn ∈ d(K), n ∈ N, of degree p cyclic K-algebras with
exp(Dn) = p and ind(Dn) = pn, for each n. Hence, by [7], Lemma 5.2, it suffices
to prove that (pn, pn), n ∈ N, are index-exponent K-pairs. By Witt’s lemma
(cf. [11], Sect. 15, Lemma 2), each cyclic extension L of K in K(p) lies in
I(L′/K), for some Zp-extension L′ of K in K(p). Fix a topological generator σ
of G(L′/K), and for any n ∈ N, let Ln be the extension of K in L′ of degree pn,
and σn the automorphism of Ln induced by σ. Clearly, Ln/K is cyclic and σn
generates G(Ln/K). Choosing L′ so that (L1/K, σ1, c) ∼= D1, for some c ∈ K∗,
one gets ind(∆n) = exp(∆n) = pn from [27], Sect. 15.1, Corollary b, for the
cyclic K-algebras ∆n = (Ln/K, σn, c), n ∈ N, which completes our proof. ✷

Proposition 3.5. Let (K, v) be a maximally complete field with

char(K) = p > 0, v(K) 6= pv(K) and [K : Kp] = pn, for some n ∈ N, and

let Gp be a Sylow pro-p-subgroup of G(K̂sep/K̂). Then n − 1 ≤ Brdp(K) ≤ n.

Moreover, the following holds when K̂ is perfect:

(a) Brdp(K) = n− 1 if and only if n > rp(K̂);

(b) (pk, ps) : k, s ∈ N, s ≤ k ≤ Brdp(K)s, are index-exponent K-pairs.

(c) abrdp(K) = n−1 if and only if either Gp = {1} or n ≥ 2 and Gp
∼= Zp.

P r o o f. Our assumptions show that [K : Kp] = [K̂ : K̂p]e(K/Kp) (cf.
[37], Theorem 31.21), so it follows from Lemma 3.1 and Albert’s theory of
p-algebras [1], Ch. VII, Theorem 28, that n − 1 ≤ Brdp(K) ≤ n, as claimed.

In the rest of the proof, we suppose that K̂ is perfect. First we consider the
case of rp(K̂) ≥ n. Then one gets from Galois theory and Witt’s lemma that

Zn
p is realizable as a Galois group over K̂. Hence, by [33], Theorem A.24,

there is a Galois extension Un of K in Kur with G(Un/K) ∼= Zn
p . This im-

plies each finite abelian p-group H of rank ≤ n is isomorphic to G(UH/K), for
some Galois extension UH of K in Un. Observing also that v(K)/pv(K) has
order pn, and using [17], Example 4.3, one proves the existence of an NSR-
algebra NH ∈ d(K) with a maximal subfield U ′

H
∼= UH over K. Therefore,

exp(NH) = per(H) and ind(NH) = [UH : K], so Brdp(K) = n, which reduces

the rest of our proof to the case of n > rp(K̂). Note that (L′, vL′) is maximally
complete and [L′ : L′p] = pn whenever L′/K is a finite extension (cf. [37], The-
orem 31.22, and [23], Ch. VII, Sect. 7). This enables one to deduce from [2],
Theorem 3.3, by the method of proving [8], (5.5), that for each De ∈ d(K) with
exp(De) = pe, where e ∈ N, [De] ∈ Br(Ke/K), for some purely inseparable ex-
tension Ke/K such that [Ke : K] | p(n−1)e. In view of (1.1) (b), the obtained
result yields ind(De) | p(n−1)e and Brdp(K) = n − 1, so Proposition 3.5 (a) is
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proved. Applying Lemmas 2.3 and 3.1, one concludes that (pt, pm), t,m ∈ N,
0 < m ≤ t ≤ (n − 1)m, are index-exponent K-pairs, which reduces Proposition
3.5 (b) to a consequence of Proposition 3.5 (a). It remains for us to prove Propo-
sition 3.5 (c). Clearly, if Gp = {1}, then rp(L̂) = 0, for every L ∈ Fe(K). At
the same time, it follows from Galois cohomology and Nielsen-Schreier’s formula
for open subgroups of free pro-p-groups (cf. [32], Ch. I, 3.3, 4.2; Ch. II, 2.2)
that if Gp is not procyclic, then rp(K1) ≥ n, for some finite extension K1 of K in
Kur. Note finally that if Gp has rank 1 as a pro-p-group, then its open subgroups
are isomorphic to Zp, which implies rp(L) ≤ 1, L ∈ Fe(K). As (L, vL) is max-
imally complete and [L : K] = pn, these facts give us the possibility to deduce
Proposition 3.5 (c) from Proposition 3.5 (a). ✷

We are now prepared to generalize Proposition 1.2 as follows.

Corollary 3.6. Let (K, v) be a maximally complete field with

char(K) = p > 0 and τ(p) defined as in Theorem 2.1. Suppose further that

K̂ is complete with respect to a discrete valuation ω with a quasifinite residue

field k̃. Then:

(a) Brdp(K) = ∞ if and only if τ(p) = ∞; when this holds, (pk, pn) is an
index-exponent pair over K, for any k, n ∈ N with k ≥ n;

(b) Brdp(K) = τ(p), provided that τ(p) < ∞; in this case, (pk, pn) is an

index-exponent K-pair, where k, n ∈ N, if and only if n ≤ k ≤ nτ(p).

P r o o f. It is known (cf. [14], Sect. 5.2) that K has a valuation ϕ (a
refinement of v), such that ϕ(K) = v(K)⊕ω(K̂), ω(K̂) is an isolated subgroup of
ϕ(K), v and ω are canonically induced by ϕ and ω(K̂) on K and K̂, respectively,
and K̂ϕ

∼= k̃, where K̂ϕ is the residue field of (K,ϕ). Observing that, by theorems
of Krull and Hasse-Schmidt-MacLane (cf. [14], Theorems 12.2.3, 18.4.1, and [37],
Theorem 31.24 and page 483), (K̂, ω) is maximally complete and (K,ϕ) possesses
an immediate extension (K ′, ϕ′) which is a maximally complete field, one obtains
that (K ′, ϕ′) = (K,ϕ). As rp(k̃) = 1 and k̃ is perfect, Corollary 3.6 can now be
deduced from Propositions 3.4 and 3.5. ✷

When (K, v) is a Henselian field, such that char(K) = p > 0, v(K) is a
non-Archimedean group, v(K)/pv(K) is finite and [K̂ : K̂p] = pν < ∞, there is,
generally, no formula for Brdp(K) involving only invariants of K̂ and v(K). This
is illustrated below in the case of v(K) = Zt, for any integer t ≥ 2.

Example 3.7. Let Y0 be a field with char(Y0)=p and [Y0 : Y p
0 ]=pν<∞,

and let Yt = Y0((T1)) . . . ((Tt)) be the iterated formal Laurent power series field
in t variables over Y0. Denote by wt the natural Zt-valued valuation of Yt triv-
ial on Y0. It is known (see [3], page 181 and further references there) that
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there exist elements Xn ∈ Yt−1, n ∈ N, algebraically independent over the
field Yt−2(Tt−1), where Yt−2 = Y0((T1)) . . . ((Tt−2)) in the case of t ≥ 3. Put
Fn = Yt−2(Tt−1,X1, . . . Xn), for each n ∈ N, F∞ = ∪∞

n=1Fn, and N∞ = N ∪ {∞}.
For any n ∈ N∞, denote by F ′

n the separable closure of Fn in Yt−1, and by vn
the valuation of the field Kn = F ′

n((Tt)) induced by wt. It is easily verified that
(Kn, vn) is Henselian, vn(Kn) = Zt and K̂n = Y0, for each index n. Note also
that [F ′

∞
: F ′p

∞
] = ∞, so Proposition 3.4, applied to the valuation of Kn induced

by the natural discrete valuation of Yt trivial on Yt−1, yields Brdp(K∞) = ∞.
When n ∈ N, we have [Kn : K

p
n] = pν+t+n = p[F ′

n : F
′p
n ], which enables one to

deduce from Lemma 3.1, [6], Lemma 4.1, and [1], Ch. VII, Theorem 28 (see also
[23], Ch. VII, Sect. 7) that ν + t+ n− 1 ≤ Brdp(Kn) ≤ ν + n+ t.

4. Brauer p-dimensions of Henselian fields with p-quasilocal

residue fields. Let (K, v) be a Henselian field with K̂ p-quasilocal and
rp(K̂) > 0. Then Brdp(K̂) ≤ 1, so Theorem 2.1 yields Brdp(K) = ∞ if and

only if mp = ∞ or τ(p) = ∞ and εp ∈ K̂. When Brdp(K) = ∞, index-exponent
p-primary K-pairs are described by Corollary 2.2 (and the Pythagorean property
of formally real 2-quasilocal fields, see [5], I, Lemma 3.5). The main result of this
Section concerns the case of Brdp(K) < ∞ and can be stated as follows:

Theorem 4.1. Let (K, v) be a Henselian field with Brdp(K) < ∞, for

some p ∈ P, and set εp, τ(p) and mp as in Theorem 2.1. Suppose that K̂ is

p-quasilocal, p 6= char(K̂) and mp > 0. Then:

(a) Brdp(K) = up, where up = [(τ(p) + mp)/2], if εp ∈ K̂ and K̂ is a

nonreal field; up = mp, if εp /∈ K̂;

(b) Br(K)2 is a group of period 2 and Brd2(K) = 1 + [τ(2)/2], provided
that K̂ is formally real and p = 2.

Before proving Theorem 4.1, note that it yields Brdp(K) = τ(p) whenever

rp(K̂) = ∞. This holds in all presently known cases where K̂ is p-quasilocal and

Br(K̂)p does not embed in Q/Z or, equivalently, in the quasicyclic p-group Z(p∞)
(see [35], the end of Sect. 3, [9], Theorem 1.2, and e.g., [25], [34]).

P r o o f o f T h e o r em 4.1. Suppose first that K̂ is formally real and
p = 2. Then, by [5], I, Lemma 3.5, K̂ is Pythagorean, K̂(2) = K̂(

√
−1) and

Br(K̂)2 is of order 2. Therefore, r2(K̂) = 1 and r2(K̂(
√
−1)) = 0, so it follows

from the Merkur’ev-Suslin theorem [24], (16.1), that Br(K̂(
√
−1))2 = {0}. Note

further that K is Pythagorean, which implies 2Br(K) = {0} (cf. [22], Theo-
rem 3.16, and [13], Theorem 3.1). These observations and [8], Corollary 5.5,
prove Theorem 4.1 (b). We turn to the proof of Theorem 4.1 (a), so we assume
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that p > 2 or K̂ is a nonreal field. Then Br(K̂)p is a divisible group, by [5], I,
Theorem 3.1. Our argument also relies on the following results concerning inertial
algebras I ∈ d(K) with [I] ∈ Br(K)p, and inertial extensions U of K in K(p):

(4.1)

(a) ind(I) = exp(I) and I is a cyclic K-algebra;
(b) [I] ∈ Br(U/K) if and only if ind(I) | [U : K]; U is embeddable

in I as a K-subalgebra if and only if [U : K] | ind(I);
(c) ind(I ⊗K I ′) equals ind(I) or ind(I ′), if I ′ ∈ d(K), I ′/K is

NSR, and [I ′] ∈ Br(K)p.

Statements (4.1) can be deduced from (1.3), (2.3) (b) and [17], Theorems 3.1 and
5.15. They imply in conjunction with [8], Lemma 4.1, that ind(W ) | exp(W )mp ,
for each W ∈ d(K) inertially split over K. At the same time, it follows from [6],
(3.3) and (3.6), and [26], Theorem 1 (see also [17], Example 4.3), that there is
an NSR-algebra W ′ ∈ d(K) with ind(W ′) = pmp and exp(W ′) = p. Observe now
that, by (2.3) (c), Br(K)p ⊆ Br(Kur/K) in case εp /∈ K̂ or τ(p) = 1. In view
of (4.1) and [17], Theorem 4.4 and Lemma 5.14, this yields Brdp(K) = mp, so

it remains for us to prove Theorem 4.1, under the extra hypothesis that εp ∈ K̂
and τ(p) ≥ 2. It is easily obtained from [26], Theorem 1, and [8], Lemmas 4.1
and 4.2, that there exists ∆ ∈ d(K) with exp(∆) = p and ind(∆) = pµ(p),
where µ(p) = [(mp + τ(p))/2]. This means that Brdp(K) ≥ µ(p), so we have to

prove that Brdp(K) ≤ µ(p). Note first that 2 ≤ mp, provided Br(K̂)p 6= {0}.
Assuming the opposite and taking into account that εp ∈ K̂, one obtains from

the other conditions on K̂ that it is a nonreal field with rp(K̂) = 1. Hence, by

[39], Theorem 2, K̂(p)/K̂ is a Zp-extension. In view of [24], (11.5) and (16.1),

and Galois cohomology (cf. [32], Ch. I, 4.2), this requires that Br(K̂)p = {0}.
As τ(p) ≥ 2, the obtained contradiction proves that rp(K̂) ≥ mp ≥ 2, as claimed.
Now take an algebra D ∈ d(K) so that exp(D) = pn, for some n ∈ N, attach S,
V and T ∈ d(K) to D as in (2.3) (a), and fix Θ ∈ d(K) so that [Θ] = [V ⊗K T ].
To prove that ind(D) | pnµ(p) we need the following statements:

(4.2)

(a) If n = 1, then S, V and T can be chosen so that V ⊗K T = Θ,
and S = K or V = K.

(b) If n ≥ 2, then there is a totally ramified extension Y of K
in K(p), such that [Y : K] | pµ(p) and either exp(DY ) | pn−1, or
exp(DY ) = exp(SY ) = pn, [Y : K] | p[τ(p)/2] and exp(VY ⊗Y TY ) |
pn−1, where SY , VY , TY ∈ d(Y ) are attached in accordance with (2.3)
(a) to a representative DY ∈ d(Y ) of [D ⊗K Y ].

Statement (4.2) (a) can be deduced from (4.1), [8], (4.7), and well-known prop-
erties of cyclic algebras (cf. [27], Sect. 15.1, Proposition b). Since mp ≥ 2, (4.2)
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(a) implies the assertion of Theorem 4.1 (a) in the case of n = 1, so we assume
further that n ≥ 2. The conclusion of (4.2) (b) is obvious, if exp(Θ) | pn−1 (one
may put Y = K). Therefore, by (2.4) (c), it suffices to prove (4.2) (b) under the
hypothesis that exp(Θ) = pn. Take Dn−1 ∈ d(K) so that [Dn−1] = pn−1[D] and
attach to it a triple Sn−1, Vn−1, Tn−1 ∈ d(K) in agreement with (4.2) (a). Then
Vn−1 ⊗K Tn−1 contains as a maximal subfield an abelian and totally ramified
extension Y of K. Observing that [Vn−1 ⊗K Tn−1] ∈ Br(Y/K), identifying Y
with its K-isomorphic copy in K(p), and using (2.4) (a) and (1.1) (a), one sees
that it has the properties required by (4.2) (b).

We continue with the proof of Theorem 4.1 (a). In view of (2.2) and
(4.2) (a), a standard inductive argument allows us to proceed under the extra
hypothesis that ind(D′) | exp(D′)µ(p), for each D′ ∈ d(K ′) with exp(D′) | pn−1,
where K ′/K is an arbitrary totally ramified finite extension. It is known (cf.
[17], Corollary 6.8) that if J, J ′ ∈ d(K), J/K is inertial and [J ′] = [J ⊗K Θ], then
v(J ′) = v(Θ), Z(Ĵ ′) = Z(Θ̂) and [Ĵ ′] = [Ĵ ⊗

K̂
Θ̂] ∈ Br(Z(Θ̂)). Note also that

the period of the group v(J ′)/v(K) divides exp(J ′) (see Remark 3.3). At the
same time, by [5], I, Theorem 4.1, the scalar extension map Br(K̂) → Br(Z(Θ̂))
induces a surjective homomorphism Br(K̂)p → Br(Z(Θ̂))p. As Brdp(K̂) ≤ 1 and
mp ≥ 2, these results, combined with (1.3), (4.1) (a), (b), the Ostrowski-Draxl
theorem, and the inductive hypothesis, prove the following:

(4.3)

(a) If exp(Θ) | pn−1, then ind(D) | p. ind(S0⊗K V ⊗K T ), for some
S0 ∈ d(K) inertial over K with exp(S0) | pn−1;

(b) If exp(Θ) | pn−1 and ind(D) > ind(I ⊗K V ⊗K T ) whenever
I ∈ d(K), [I] ∈ IBr(K) and exp(I) | pn−1, then [Z(D̂) : K̂] = pk and
[D̂ : Z(D̂)] = p2n−2k, for some k ∈ Z with 0 ≤ k < n; hence, ind(D)2 |
p2ne(Θ/K) | p2n exp(Θ)τ(p), which yields ind(D)2 | p2n+(n−1)τ(p) |
pmpn+(n−1)τ(p).

Now fix an extension Y/K and Y -algebras DY , SY , VY , TY as in (4.2) (b),
and take ΘY ∈ d(Y ) so that [ΘY ] = [VY ⊗Y TY ]. Observing that, by (1.1)
(b), ind(D) | ind(DY )[Y : K], and applying (4.3) in case exp(DY ) = pn to DY ,
VY , TY and ΘY , instead of D, V , T and Θ, respectively, one concludes that
ind(D)2 | pn(mp+τ(p)). Theorem 4.1 is proved. ✷

Theorem 4.1 (a) retains its validity, if (K, v) is a Henselian field, such
that τ(p) < ∞, rp(K̂) = 0 and µp(K̂) 6= {1}. Then it follows from [24], (16.1),

that Brdp(K̂) = 0, so Theorem 2.1 (a) implies Brdp(K) = [τ(p)/2].

Remark 4.2. Let (K, v) be a Henselian field with K̂ formally real and
2-quasilocal. Then the symbol K-algebra D′ = A−1(−1,−1;K) lies in d(K), and
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it follows from [8], Lemma 4.2, that if τ(2) ≥ 2, then there exist Dn ∈ d(K),
n = 1, . . . , [τ(2)/2], totally ramified over K with exp(Dn) = 2 and ind(Dn) = 2n,
for each n. As D′/K is inertial, this implies together with [26], Theorem 1, that
D′ ⊗K Dn ∈ d(K) (and ind(D′ ⊗K Dn) = 2n+1), n = 1, . . . , [τ(2)/2]. In view of
(2.3) (b) and Theorem 4.1 (b), these facts prove that if 0 ≤ τ(2) < ∞, then (1, 1)
and (2n, 2), n = 1, . . . , 1 + [τ(2)/2], are all index-exponent 2-primary K-pairs.

Corollary 4.3. Let Km be an m-dimensional local field with a quasifinite

m-th residue field K0, for some m ∈ N. Suppose that p ∈ P is different from

char(K0), and εp is a primitive p-th root of unity in K0,sep. Then Brdp(Km) =
[(1 +m)/2], if εp ∈ K0; Brdp(Km) = 1, otherwise.

P r o o f. This is in fact a special case of Theorem 4.1, since our as-
sumptions imply the existence of a Henselian Zm-valued valuation on Km with
K̂m = K0. ✷

When εp ∈ K0, the equality Brdp(Km) = [(1+m)/2] can also be obtained
from [6], Lemma 4.1, and Khalin’s formula for the number of isomorphism classes
of Km-algebras Dp,k ∈ d(Km) with exp(Dp,k) = p and ind(Dp,k) = pk, for a fixed
k ∈ N (Khalin’s formula has been deduced in [18], under the hypothesis that K0

is finite, but it clearly holds in the setting of Corollary 4.3 as well).

Proposition 4.4. Let Km be an m-dimensional local field with

char(Km) = 0, K0 finite and char(K0) = p. Then m − 1 ≤ abrdp(Km) ≤ m.

Moreover, Brdp(Km) ≥ m− 1 unless m ≥ 4, char(K1) = 0 and rp(K1) < m− 1,
where K1 is the last but one residue field of Km.

P r o o f. Note that if m = 1, then Brdp(Km) = abrdp(Km) = 1 (cf.
[31], Ch. XIII, Sect. 3), which proves our assertions. We assume further that
m ≥ 2. It is well-known that finite extensions of Km are m-dimensional local
fields, so the equality abrdp(Km) ≤ m reduces to a consequence of [7], Lemma 4.1,
and the Corollary to [19], Theorem 2. To prove the other inequalities stated in
Proposition 4.4, we consider the i-th residue field Km−i of Km, where i ≥ 0 is
the maximal integer for which char(Km−i) = 0. Clearly, if i > 0, then Km has
a Zi-valued Henselian valuation vi with a residue field Km−i. When i = m − 1,
Theorem 4.1, applied to (Km, vi), gives a formula for Brdp(Km), which indicates
that Brdp(Km) ≤ m− 1 and equality holds if and only if rp(K1) ≥ m− 1. This,
combined with [32], Ch. II, Theorems 3 and 4 (applied to finite extensions of
K1), proves that abrdp(Km) = m − 1. Thus it follows that Brdp(Km) = m − 1
in case m ≤ 3. It remains to be seen that Brdp(Km) ≥ m − 1, provided that
i < m − 1. Then Km−i′ , i′ = i, i + 1, is an (m − i′)-dimensional local field
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with last residue field K0; in particular, Km−i′ is complete with respect to a
discrete valuation ωm−i′ whose residue field is Km−i′−1. In view of Lemma 2.3
and Proposition 3.5, this means that rp(Km−i−1) = ∞, and in the case where
i < m−2, Brdp(Km−i−1) = m−i−2. More precisely, there existD0 ∈ d(Km−i−1),
defined as in the proof of Lemma 3.1 when i < m − 2 (and equal to K, if
i = m − 2), and totally ramified Galois extensions M ′

n/Km−i−1, n ∈ N, relative
to ωm−i−1, such that deg(D0) = e(D0/Km−i−1) = pm−i−2, [D0] ∈ pBr(Km−i−1),

D̂0 is a field with D̂p
0 ⊆ K̂, and for each index n, D0 ⊗Km−i−1

M ′

n ∈ d(M ′

n) and
G(M ′

n/Km−i−1) is elementary abelian of order pn. Let D and Mn be inertial
lifts over Km−i (relative to ωm−i) of D0 and M ′

n, respectively. Then Mn/Km−i

are inertial Galois extensions, G(Mn/Km−i) ∼= G(M ′

n/Km−i−1) and D⊗Km−i
Mn

lies in d(Mn), for every n ∈ N. This enables one to deduce (in the spirit of
the proof of [8], Proposition 6.3) from [17], Example 4.3 (or [7], (3.6) (a)), and
[26], Theorem 1, that there exists T ∈ d(Km−i) with deg(T ) = p, T/Km−i NSR
relative to ωm−i, and Σ ∈ d(Km−i), where Σ = D ⊗Km−i

T . Clearly, exp(Σ) = p
and deg(Σ) = pm−i−1, so Brdp(Km−i) ≥ m − i − 1, proving Proposition 4.4 in
case i = 0. Let finally i > 0. Considering inertial lifts over Km relative to vi of
Σ and any Li ∈ I(Mi+1/Km−i) with Σ ⊗Km−i

Li ∈ d(Li) and [Li : Km−i] = pi,
one obtains similarly that Brdp(Km) ≥ m− 1. ✷

The inequalities m − 1 ≤ Brdp(K) ≤ m also hold under the assumption

that (K, v) is an HDV-field, char(K) = 0 and char(K̂) = p > 0, where K̂ is an
(m − 1)-dimensional local field with a finite last residue field, for some m ≥ 2.
The lower bound Brdp(K) ≥ m−1 is obtained as in the proof of Proposition 4.4,
and the inequality Brdp(K) ≤ m is implied by Proposition 4.4 and the injectivity

of the scalar extension map Br(K) → Br(K̃), K̃ being the completion of K with
respect to v [10], Theorem 1.

5. Proof of Theorem 1.1. Let (K, v) be a Henselian field, p ∈ P,
K̂(p)ab the maximal abelian extension of K̂ in K̂(p), and µp(K̂), µp(K) the

groups of roots of unity of p-primary degrees lying in K̂ and K, respectively.
First, we describe index-exponent p-primary K-pairs, assuming that G(K̂(p)/K̂)
is a Demushkin group and µp(K̂) is a nontrivial finite group.

Lemma 5.1. Let (K, v) be a Henselian field containing a primitive p-
th root of unity, for some p ∈ P, p 6= char(K̂). Suppose that G(K̂(p)/K̂) is a

Demushkin pro-p-group, µp(K̂) is a finite group of order pν, and rp(K̂) = r < ∞.

Put r′ = r − 1, m′ = min{τ(p), r′}, and for each n ∈ N, let νn = min{n, ν} and

µ(p, n) = nm′+ νn(mp−m′ + [(τ(p)−mp)/2]). Then (pk, pn), where k, n ∈ N, is
an index-exponent pair over K, if and only if n ≤ k ≤ µ(p, n).
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P r o o f. First we prove the following assertions:

(5.1)

(a) C(K̂(p)/K̂) is isomorphic to the direct sum Z(p∞)r
′ ⊕ Z/pνZ

and G(K̂(p)ab/K̂) ∼= Zr′
p ⊕ Z/pνZ;

(b) A cyclic extension M of K̂ in K̂(p) lies in I(M∞/K̂), for
some Zp-extension M∞ of K̂ in K̂(p) if and only if there is M ′ ∈
I(K̂(p)/M), such that M ′/K̂ is cyclic and [M ′ : M ] = pν ; this is the
case if and only if µp(K̂) ⊂ N(M/K̂).

The nontriviality of µp(K̂) and the Demushkin property of G(K̂(p)/K̂) ensure

that r ≥ 2, K̂ is a p-quasilocal nonreal field (see [5], I, Lemma 3.8). Hence, by [5],
I, Theorem 3.1, Br(K̂)p is divisible, which enables one to deduce from [24], (11.5),

and the condition on the order of H2(G(K̂(p)/K̂),Fp) that Br(K̂)p ∼= Z(p∞). The

rest of the proof of (5.1) (a) relies on our assumption on µp(K̂), which shows that

K̂ contains a primitive pν-th root of unity δ not lying in K̂∗p. Consider an
extension K̂δ of K̂ obtained by adjunction of a p-th root of δ. It is easily verified
that K̂δ/K̂ is a cyclic extension of degree p. As K̂ is p-quasilocal and Br(K̂)p ∼=
Z(p∞), this means that Br(K̂δ/K̂) has order p. In view of Kummer theory,
cyclic K̂-algebras of degree p are symbol algebras, so the noted fact indicates
that there is a cyclic degree p extension K̂ ′/K̂, such that the cyclic K̂-algebra
(K̂ ′/K̂, σ′, δ) lies in d(K̂) (σ′ is a generator of G(K̂ ′/K̂)). Therefore, by [27],
Sect. 15.1, Proposition b, δ does not lie in the norm group N(K̂ ′/K̂). Applying
Albert’s height theorem to K̂ ′/K̂ (cf. [15], Sect. 2), one proves the nonexistence
of a cyclic extension K̂ ′

1/K̂ , such that [K̂ ′

1 : K̂] = p1+ν and K̂ ′ ∈ I(K̂ ′

1/K̂). This
result allows us to obtain from Galois theory that the complement C(K̂(p)/K̂) \
pνC(K̂(p)/K̂) contains an element of order p. Similarly, it can be deduced from
Kummer theory that pν−1C(K̂(p)/K̂) contains all elements of C(K̂(p)/K̂) of
order p. Observe now that the Demushkin condition on G(K̂(p)/K̂) ensures that
C(K̂(p)/K̂) ∼= Z(p∞)r

′ ⊕ C, for some cyclic p-group C (cf. [21], page 106).
Summing-up the noted properties of C(K̂(p)/K̂), one concludes that C ∼= Z/pνZ
and so proves (5.1) (a). As to (5.1) (b), it is implied by (5.1) (a) and Albert’s
height theorem.

We continue with the proof of Lemma 5.1. Statement (2.3) (b), the iso-
morphism Br(K̂)p ∼= Z(p∞), and the equality Brdp(K̂) = 1 imply that (pm, pm),

m ∈ N, are index-exponent pairs over both K̂ and K. In view of Theorem 4.1,
this proves Lemma 5.1 in the case where τ(p) = 1, so we assume that τ(p) ≥ 2.
Suppose first that n ∈ N and n ≤ ν. Then, by Theorem 4.1, ind(∆n) | pµ(p,n),
for each ∆n ∈ d(K) with exp(∆n) = pn. Using [26], Theorem 1, and the natural
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bijection between I(Y/K) and the set of subgroups of v(Y )/v(K), for any finite
abelian tamely and totally ramified extension Y/K (cf. [30], Ch. 3, Sect. 2), one
obtains that, for each k ∈ N with n ≤ k ≤ µ(p, n), there exist an NSR-algebra
Vn,k ∈ d(K) and a totally ramified Tn,k ∈ d(K), such that Vn,k ⊗K Tn,k ∈ d(K),
exp(Vn,k ⊗K Tn,k) = pn and ind(Vn,k ⊗K Tn,k) = pk. These observations and
the former part of (1.1) (a) prove Lemma 5.1 when n ≤ ν. The rest of the
proof is carried out by induction on n ≥ ν. The basis of the induction is pro-
vided by the preceding argument, which allows us to assume that n > ν and
ind(X) | pµ(p,(n−1)) whenever X ∈ d(K) and exp(X) | pn−1. Fix an algebra
D ∈ d(K) so that exp(D) = pn and attach to D a triple S, V , T ∈ d(K) as in
(2.3) (a). Clearly, if exp(V ) | pn−1, then exp(V ⊗K T ) | pn−1, so (4.3) and the
inductive hypothesis imply ind(D) | p1+µ(p,(n−1)) | pµ(p,n), as claimed. In view of
(2.4), it remains to consider the case where exp(V ) = pn. Let Σ, Dν ∈ d(K) sat-
isfy [Σ] = [S⊗K V ] and [Dν ] = pν [D] (= pν [Σ]). Then, by (2.4) (c), exp(Σ) = pn,
and it follows from (4.1) and [27], Sect. 15.1, Corollary b and Proposition b,
that Σ/K is NSR. Note also that exp(Dν) | pn−ν , and (2.3) (c) and [27], Sect.
15.1, Corollary b, imply Dν/K is NSR; in particular, Dν contains as a maximal
subfield an inertial extension Uν of K. By [17], Theorem 4.4, Uν/K is abelian
with G(Uν/K) of rank uν ≤ τ(p). Moreover, it follows from (5.1), Galois theory
and [27], Sect. 15.1, Corollary b, that Uν has a K-isomorphic copy in I(U ′

ν/K),
for the Galois extension U ′

ν of K in Kur with G(U ′

ν/K) ∼= Zr′
p . Therefore, uν ≤ r′,

so [17], Theorem 4.4, proves the following:

(5.2)
ind(Dν) | p(n−ν)m′

and Dν contains as a maximal subfield a K-
isomorphic copy of a totally ramified extension Φν of K in K(p).

Statement (5.2) shows that [Dν ] ∈ Br(Φν/K), [Φν : K] = ind(Dν) and Φ̂ν = K̂.
Hence, exp(D ⊗K Φν) | pν and rp(Φ̂ν) = rp(K̂), so it follows from (2.2) and

Theorem 4.1 that ind(D ⊗K Φν) | pνµ(p), where µ(p) = [(mp + τ(p))/2]. As

µ(p, n) = (n−ν)m′+νµ(p), it is now easy to see that ind(D) | pµ(p,n), as required.
Suppose finally that (k, n) ∈ N2 and n ≤ k ≤ µ(p, n). Then [17], Example 4.3,
[26], Theorem 1, the above-noted properties of U ′

ν , and those of intermediate
fields of any finite abelian tamely and totally ramied extension of K, imply the
existence of Dk,n ∈ d(K) with ind(Dk,n) = pk and exp(Dk,n) = pn. Moreover,
one can ensure that Dk,n

∼= Nk,n⊗K D′

k,n, for some Nk,n, D
′

k,n ∈ d(K), such that
Nk,n is NSR and D′

k,n is totally ramified over K. Lemma 5.1 is proved. ✷

Next we show that, in the setting of (1.2) (a), C(K̂(p)/K̂) possesses a
divisible subgroup with infinitely many elements of order p.
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Lemma 5.2. Let (E,ω) be an HDV-field with char(E) = 0, Ê quasifinite

and char(Ê) = p > 0, and let D(E(p)/E) be the maximal divisible subgroup of

C(E(p)/E). Then:

(a) rp(E) = ∞, provided that Ê is infinite;

(b) µp(E) is finite and C(E(p)/E) ∼= D(E(p)/E) ⊕ Z/pνZ, where pν is

the order of µp(E); in particular, C(E(p)/E) = D(E(p)/E) if and only if pν = 1.

P r o o f. (b): Let ε be a primitive p-th root of unity in Esep. It is well-
known that [E(ε) : E] | p − 1 (cf. [23], Ch. VIII, Sect. 3). Note also that every
E′ ∈ Fe(E) is a quasilocal field with Br(E′) ∼= Q/Z; hence, the scalar extension
map Br(E) → Br(E′) is surjective. These facts, combined with (1.1) (b) and [27],
Sect. 15.1, Proposition b, imply that if L is a cyclic p-extension of E in Esep, then
L(ε)∗ = L∗N(L(ε)/E(ε)). When ε /∈ E, this shows that ε ∈ N(L(ε)/E(ε)), which
enables one to deduce from [15], Theorem 3, that C(E(p)/E) = D(E(p)/E).
Suppose now that µp(E) 6= {1} and denote by Γp the extension of E generated
by the elements of µp(Esep). It is known that, for any n ∈ N, Z[X] contains the
pn-th cyclotomic polynomial Φpn(X) (of degree pn−1(p−1)), and the polynomial
Φpn(X+1) is p-Eisensteinian over Z. This implies pn−1(p−1)ωΓp

(εn−1) = ω(p),
for each n ∈ N, εn ∈ Γp being a primitive pn-th root of unity. As ω is discrete
and ω(p) 6= 0, the noted fact proves that µp(E) is finite. In view of [5], II,
Lemma 2.3, and the isomorphism Br(E)p ∼= Z(p∞), the obtained result yields
C(E(p)/E) ∼= D(E(p)/E) ⊕ Z/pνZ, as claimed by Lemma 5.2 (b).

(a): Assume that Ê is infinite, fix a uniformizer π ∈ E and elements
an ∈ E, n ∈ N, so that ω(an) = 0 and the residue classes ân, n ∈ N, be
linearly independent over the prime subfield Fp of Ê. It is easily verified that
the cosets (1 + anπ)E

∗p, n ∈ N, are linearly independent over Fp. This means
that E∗/E∗p is an infinite group. At the same time, by local class field theory, if
L1, . . . , Ln are cyclic extensions of E in E(p) of degree p, and L = L1 . . . Ln, then
E∗p ≤ N(L/E) ≤ E∗ and the index of N(L/E) in E∗ is equal to [L : E]. Finally,
the quasilocality of E shows that if a ∈ E∗ \E∗p, D ∈ d(E) and ind(D) = p, then
there is a cyclic degree p extension Y of E in E(p), such that D ∼= (Y/E, τ, a),
for some generator τ of G(Y/E) (cf. [27], Sect. 15.5, and [5], I, Corollary 8.5).
Hence, by [27], Sect. 15.1, Proposition b, a /∈ N(Y/E), which means that E∗p

equals the intersection of the norm groups of cyclic extensions of E of degree p.
Now it is clear that rp(E) = ∞, so Lemma 5.2 is proved. ✷

We are now in a position to prove (1.2) (a). The fulfillment of
the conditions of Lemma 5.2 ensures that D(E(p)/E) contains infinitely many
elements of order p. Hence, by Galois theory and the divisibility of D(E(p)/E),
every finite abelian p-group G is isomorphic to a subgroup of D(E(p)/E). As-
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suming now that E is isomorphic to K̂, for some Henselian field (K, v), and using
[33], Theorem A.24, one obtains further that K possesses a Galois extension UG

inKur with G(UG/K) ∼= G. When the rank of G is at most τ(p), one deduces from
[26], Theorem 1 (or [17], Example 4.3), that there is an NSR-algebra DG ∈ d(K)
possessing a maximal subfield K-isomorphic to UG. Thus it becomes clear that
there exist Dk,n ∈ d(K) : k, n ∈ N, n ≤ k ≤ τ(p)n, such that Dk,n/K is NSR,
ind(Dk,n) = pk and exp(Dk,n) = pn. The obtained result proves (1.2) (a), since

Theorem 4.1 and the equality rp(E) = rp(K̂) = ∞ yield Brdp(K) = τ(p).
Our objective now is to prove (1.2) (b), (c) and (d). Suppose

that (K, v) is Henselian, such that v(K) 6= pv(K), Brdp(K) < ∞, and K̂ has a
Henselian discrete valuation ω whose residue field k̃ is quasifinite with char(k̃) 6=
p. Then K̂ is quasilocal and Brdp(K) is determined by Theorem 4.1 (a). Also,

the conditions on ω ensure that K̂∗/K̂∗p ∼= k̃∗/k̃∗p×ω(K̂)/pω(K̂). This allows to
prove those of the following statements, for which we assume that µp(K̂) 6= {1}:

(5.3)

(a) rp(K̂) ≤ 2 and rp(K̂) = 2 ↔ µp(K̂) 6= {1} (cf. [16], Ch. 2,
(3.5));

(b) If µp(K̂) = {1}, then finite extensions of K̂ in K̂(p) are inertial

relative to ω, and G(K̂(p)/K̂) ∼= G(k̃(p)/k̃) ∼= Zp (see [39], Theorem 2,
and [4], Lemma 1.1);

(c) G(K̂(p)/K̂) is a Demushkin group when µp(k̃) 6= {1} (cf. [36],
Lemma 7);

(d) G(K̂ab(p)/K̂) ∼= Zp ⊕ Z/pνZ, provided that µp(k̃) is of finite

order pν ; G(K̂ab(p)/K̂) ∼= Z2
p, if µp(k̃) is infinite (apply (5.1) (a) in

the former case, and use Kummer theory in the latter one).

The inequality p 6= char(k̃) and the quasilocality of K̂ show that Brdp(K)
can be determined by applying Theorem 4.1. In view of (5.3) (a), (b) and the
divisibility of Br(K̂)p, this proves (1.2) (b) and (c). The former part of (1.2)
(d) follows from (5.3) (c), (d) and Lemma 5.1; in this case, µ(p, n) is equal to
n+min{n, ν}[τ(p)/2], for each n ∈ N. For the proof of the latter one, we use the
concluding part of (5.3) (d), which implies every finite abelian p-group G of rank
≤ 2 is isomorphic to G(UG/K), for some Galois extension UG of K in Kur. This
gives us the possibility to complete the proof of (1.2) (d), arguing along the lines
drawn at the end of the proof of (1.2) (a).

We prove Theorem 1.1. The field K̂ is quasilocal, and is complete
relative to a discrete valuation ω with a finite residue field k̃. This implies ω is
Henselian, µp(K̂) is finite, Br(K̂) ∼= Q/Z, and in case p 6= char(k̃), εp ∈ K̂ if

and only if p divides the order of k̃∗. When εp /∈ K̂, C(K̂(p)/K̂) is divisible,
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by the following results (which are contained in (5.3) (b) and [32], Theorem 3,
respectively):

(5.4)

(a) G(K̂(p)/K̂) ∼= Zp, provided that p 6= char(k̃);

(b) If char(K̂) = 0 and char(k̃) = p, then G(K̂(p)/K̂) is a free
pro-p-group, and G(K̂(p)ab/K̂) ∼= Zr

p, where r = rp(K̂); in addition,

K̂ is a finite extension of the field Qp of p-adic numbers and r =

[K̂ : Qp] + 1.

Note also that, by Theorem 4.1, Brdp(K) = mp, and by (5.4) and [26], Theorem 1,
each pair of p-primary integers admissible by Theorem 1.1 is an index-exponent
pair of a suitably chosen NSR-algebra over K.

Consider finally the case where εp ∈ K̂. Then Theorem 4.1 yields Brdp(K) =
µ(p, 1), and Lemma 5.1 implies (1, 1) and (pk, pn) : k, n ∈ N, n ≤ k ≤ µ(p, n), are
all index-exponent p-primary K-pairs. This completes our proof. ✷

Remark 5.3. Theorem 1.1 retains validity, if K̂ ∈ Fe(Q′

π), for some π-
adically closed field Q′

π (in the sense of [29]). This is fulfilled, if char(K̂) = 0 and
K̂ has a Henselian discrete valuation ω with a finite residue field k̃ of characteristic
π. Also, (5.4) hold, if µp(K̂) = {1} (in case (b), with Q′

p instead of Qp). When

µp(K̂) 6= {1} and r = rp(K̂), we have: r = 2, provided p 6= π; r = [K̂ : Q′

p] + 2, if
p = π (see (5.3), [36], Lemma 7, and [21], Sect. 5, for the case of Q′

p = Qp).

Corollary 5.4. Let (K, v) be a Henselian field, such that τ(p) < ∞, for

some p ∈ P, p 6= char(K̂). Also, let K̂ have a Henselian discrete valuation ω
with a quasifinite residue field k̃. Then abrdp(K) = 1 + [τ(p)/2], if p 6= char(k̃);

abrdp(K) = max{1, τ(p)}, if char(K̂) = 0 and char(k̃) = p.

P r o o f. In view of (1.1) (b) and (1.2), one may consider only the case
where µp(K̂) 6= {1}, char(K̂) = 0, k̃ is finite and char(k̃) = p. Then our conclu-

sion follows from Remark 5.3 and the fact that [K̂(p) : K̂] = ∞. ✷

Conclusion. Assume that (K, v) is Henselian with K̂ possessing a
Henselian discrete valuation ω whose residue field is quasifinite. Summing-up
(1.1), (2.3) (b) and Corollary 2.2, observing that Br(K̂) ∼= Q/Z and Brdp(K̂) = 1,
p ∈ P, and using results of this paper, one describes index-exponent K-pairs
prime-to char(K̂). The non-divisibility restriction is superfluous, if char(K) > 0,
(K, v) is maximally complete and K̂ satisfies the conditions of Corollary 3.6.
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