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Abstract. The aim of this note is to show that if a finite field k with
absolute Galois group G acts on a set M with finite orbits and for some
m there is a G-equivariant map ξ : M → k

m

, whose fibres are of bounded
cardinality, then M admits a G-equivariant embedding in an affine space k

n

of sufficiently large dimension n.

1. Introduction. Grothendieck has noticed that the Galois theory of
fields is related to the Galois theory of coverings through the bijective correspon-
dence between the finite coverings f : Y → X of algebraic varieties over a field
k and the finite extensions k(X) ⊂ k(Y ) of function fields. This led him to the
notion of a Galois category (cf. [1], [7], [4] or [3]). To any connected scheme X
Grothendieck associates a profinite group πet(X), called the etale fundamental
group of X and shows that the category of the finite etale coverings of X is equiv-
alent to the category of the finite sets with discrete topology, acted continuously
by πet

1 (X). In particular, if k is a perfect field with algebraic closure k then the
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etale fundamental group πet
1 (k) = Gal(k/k) coincides with the absolute Galois

group of k.

Note that Gal(k/k) acts on any algebraic variety X, defined over k and
the finite extensions k1 ⊃ k induce finite separable extensions k1(X) ⊃ k(X) of
function fields. For the interplay between k(X) ⊂ k1(X) and the finite separable
extensions k(X) ⊂ k(Y ), arising from finite coverings Y → Xsee [6] or [5]. In
general, the absolute Galois group Gal(k/k) of a perfect field k is quite compli-
cated. However, for a finite field k = Fq, the group G = Gal(Fq/Fq) ≃ Ẑ is
the profinite completion of the infinite cyclic group, generated by the Frobenius
automorphism Φq : Fq → Fq, Φq(α) = αq. The G-orbits OrbG(p) on a smooth
projective curve C ∋ p, defined over Fq correspond to the discrete valuation
rings Op(C) of Fq(X) in such a way that the cardinality of OrbG(p) equals the
degree [Op(C)/Mp(C) : Fq] of its associated valuation. Based on this fact, [2]
introduces the Hasse-Weil ζ-function ζM (t) of a set M , acted by Gal(Fq/Fq) with
finite orbits. By a combinatorial argument it derives a sufficient condition for the
Riemann Hypothesis Analogue on ζM (t).

The present note studies to what extent the G = Gal(k/k)-action on an
affine variety X ⊆ k

n
, defined over k = Fq, determines the geometric properties

of X. We say that a set M with a G-action is a locally finite G-module if all
G-orbits on M are finite and there are finitely many G-orbits of fixed cardinality.
An arbitrary G-equivariant map f : M → k

m
with fibres of cardinality ≤ s, s ∈ N

is called a Noether normalization of M . By a combinatorial argument we prove
that any locally finite G-module M with a Noether normalization admits a G-
equivariant embedding M →֒ k

n
in an affine space of sufficiently large dimension

n. The affine varieties X ⊂ k
n
, defined over k are locally finite G-modules

with a Noether normalization, as well as all G-submodules M ⊂ X. By specific
examples we show that the category of the locally finiteG-modules with a Noether
normalization (whose morphisms are the G-equivariant maps) contains strictly
the category of the quasi-affine varieties.

2. The absolute Galois group of a finite field and its action

on the affine varieties. Let us start with some properties of the action of
the absolute Galois group G = Gal(k, k) of a finite field k = Fq, on an affine
variety X ⊆ k

n
, defined over k. If a = (a1, . . . , an) ∈ X then ai ∈ Fqm for some

m ∈ N and all 1 ≤ i ≤ n. An arbitrary ϕ ∈ G = Gal(Fq/Fq) transforms a into
ϕ(a) ∈ Fn

qm, so that |OrbG(a1, . . . , an)| ≤ qmn and all the G-orbits on X are finite.
We refer to the number of elements of an orbit as of its degree. Since Fqm ⊃ Fq

is a normal extension, the orbits OrbG(a1, . . . an) = OrbGal(Fqm/Fq)(a1, . . . an)
coincide. The Galois group Gal(Fqm/Fq) = 〈Φq〉/〈Φ

m
q 〉 is cyclic of order m
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and generated by the Frobenius automorphism Φq(x) = xq. If the G-orbit of

(a1, . . . , an) ∈ X is of degree s then (aq
s

1 , . . . , aq
s

n ) = Φs
q(a1, . . . , an) = (a1, . . . , an),

whereas (a1, . . . an) ∈ Fn
qs . Thus, X has finitely many G-orbits of fixed degree s.

The absolute Galois group G = Gal(k/k) is profinite as a projective limit
of the finite Galois groups Gal(L/k) of the finite Galois extensions L ⊇ k. In the
case of a finite field k, any extension L ⊇ k of degree [L : k] = m is Galois and
its Galois group Gal(L/k) = 〈Φq〉/〈Φ

m
q 〉 ≃ Z/mZ = Zm is a finite quotient group

of the infinite cyclic group 〈Φq〉 ≃ (Z,+). That is why the absolute Galois group

G = Gal(k/k) = 〈̂Φq〉 ≃ Ẑ is the profinite completion of 〈Φq〉 ≃ (Z,+). Let us
endow the finite Galois groups Gal(L/k) with the discrete topology. Then the

induced product topology on
∏

Gal(L/k) is compact and totally disconnected.

The closed subgroup G of
∏

Gal(L/k) is compact and totally disconnected, as

well. The next proposition establishes the continuity of the G-action on an affine
variety X with respect to the Zariski topology.

Proposition 1. If X ⊂ k
n
is an affine variety, defined over a finite field

k then the action µ : G × X → X of G = Gal(k/k) on X is continuous with
respect to the Zariski topology on X.

P r o o f. The G-action on the algebraic closure k induces a G-action on
the polynomials k[x1, . . . , xn], which fixes all the variables x1, . . . , xn. Let µ :
G×k

n
→ k

n
be the G-action on the affine space k

n
and V (f) = {a ∈ k

n
|f(a) = 0}

for f ∈ k[x1, . . . , xn]. Since X is a closed subset of k
n
, it suffices to show that

µ−1(V (f)) ⊂ G×k
n
is a closed subset for any polynomial f , in order to conclude

that µ−1(V (f))∩(G×X) is a closed subset of G×X and to prove the proposition.
Note that f has finitely many coefficients and there is a finite extension L ⊇ k
with f ∈ L[x1, . . . , xn]. The closed normal subgroup Gal(k/L) of G = Gal(k/k) of
index [G : Gal(k/L)] = |Gal(L/k)| = [L : k] = m fixes f . If G = ∪m

i=1Gal(k/L)ϕi

is the decomposition of G into a disjoint union of cosets modulo Gal(k/L) then

µ−1(V (f)) = ∪ϕ∈G(ϕ× V (ϕ−1(f)) = ∪m
i=1Gal(k/L)ϕi × V (ϕ−1

i (f))

is a closed subset ofG×k
n
, as far as Gal(k/L)ϕi is a closed subset ofG = Gal(k/k)

and V (ϕ−1
i (f)) is a closed subset of k

n
. ✷

Note that the Zariski topology on an affine variety X ⊆ k
n
is T1 since the

points are closed subsets of X. Generalizing the properties of the G-action on an
affine variety X ⊆ k

n
, defined over k, we give the following

Definition 2. A set M with an action of G is called a G-module.
A G-module is locally finite if all G-orbits on M are finite and for any

s ∈ N there are finitely many G-orbits on M of cardinality s.
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A G-module M is T1-continuous if there is a T1-topology on M , with
respect to which the G-action G×M → M is a continuous map.

3. Noether normalization. In the present section we start our study
of the morphisms of G-modules, i.e., of the G-equivariant maps of G-modules.

Definition 3. Let ξ : M → N be a morphism of G-modules.

• If all the fibres of ξ are finite sets then ξ is called a finite morphism.

• If there exists d ∈ N, such that all the fibres of ξ are of cardinality ≤ d then
ξ is said to be of bounded degree d.

• A morphism ξ : M → N in a G-submodule N ⊆ k
n
of an affine space is

dominant if the Zariski closure ξ(M) = N of the image of ξ coincides with
N .

Definition 4. If M is a G-module then any G-equivariant map ξ : M →
k
n
of bounded degree with Zariski dense image ξ(M) = k

n
is called a Noether

normalization of M .

Proposition 5. Let M ⊆ Fq
n
be a Gal(Fq/Fq)-submodule of Fq

n
with an

irreducible Zariski closure M ⊆ Fq
n
of dimension d. Then there exist m ∈ N,

a Gal(Fq/Fqm)-submodule M1 ⊆ M with the same Zariski closure M1 = M and

a finite morphism ξ : M1 → k
d
of Gal(Fq/Fqm)-modules of bounded degree with

Zariski dense image ξ(M1) = k
d
.

P r o o f. The function field k(X) of the affine variety X = M is a finite

extension of the function field k(y1, . . . , yd) of k
d
and there exists a non-empty

Zariski open subset U ⊆ X with a dominant regular map ξ : U → k
d
, whose

fibres are of cardinality t := [k(X) : k(y1, . . . , yd)]. For a sufficiently small U the

map ξ =

(
f1
g1

, . . . ,
fd
gd

)
is given by an ordered d-tuple of rational functions

fi
gi

∈

k(x1, . . . , xn). Any Zariski open subset U ⊆ X is a finite union U = ∪1≤j≤sUhj

of principal Zariski open subsets Uhj
= {(a1, . . . , an) ∈ X|hj(a1, . . . , an) 6= 0},

determined by polynomials hj ∈ k[x1, . . . , xn]. If all the coefficients of fi, gi,
1 ≤ i ≤ n and of hj , 1 ≤ j ≤ s are contained in Fqm ⊇ Fq = k for some m ∈ N

then ξ : U → k
d
is a Gal(k/Fqm)-equivariant map of the Gal(k/Fqm)-submodule U

of X. The restriction ξ|M∩U : M ∩U → k
d
is a morphism of Gal(k/Fqm)-modules

of degree ≤ t. There remains to be shown that M ∩ U = X and ξ(M ∩ U) = k
d
.
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An arbitrary non-empty open set ∅ 6= W ⊆ X has non-empty open intersection
with U , due to the irreducibility of X. Consequently, ∅ 6= U ∩W ∩M since M
is dense in X. This proves the Zariski density of M ∩ U in X. Let us assume

that ξ(M ∩U) is not Zariski dense in k
d
. Then there is a non-empty Zariski open

subset V ⊆ k
d
with ξ(M ∩ U) ∩ V = ∅. The Zariski open subset ξ−1(V ) ⊆ X

intersects the Zariski dense subset M ∩U ⊆ X and any x ∈ ξ−1(V )∩M ∩U maps
to ξ(x) ∈ V ∩ ξ(M ∩U). That contradicts the assumption ξ(M ∩U)∩V = ∅ and

proves the Zariski density of ξ(M ∩ U) in k
d
. ✷

The above proposition establishes that the submodules of affine spaces
have a Noether normalization. We are going to show that any locally finite
T1-continuous module with a Noether normalization admits an equivariant em-
bedding in an affine space.

4. Affine embeddings of locally finite T1-continuous mod-

ules with a Noether normalization. We claim that if M is a locally finite

T1-continuous module over G = 〈̂Φq〉, then the orbits OrbG(x) = Orb〈Φq〉(x)
coincide. On one hand, 〈Φq〉 is residually finite and embeds in G, so that
Orb〈Φq〉(x) ⊆ OrbG(x). If

∣∣Orb〈Φq〉(x)
∣∣ = m then Stab〈Φq〉(x) is of index [〈Φq〉 :

Stab〈Φq〉(x)] = m, whereas Stab〈Φq〉(x) = 〈Φm
q 〉. The continuity of the action

µ : G × M → M with respect to a T1-topology on M implies the continuity
of the maps µy : G → M , µy(ϕ) = ϕ(y) for all y ∈ M . The points y ∈ M
form closed subsets {y} ⊂ M with respect to any T1-topology on M , so that
µ−1
y (y) = StabG(y) are closed subgroups of G. The closure of 〈Φm

q 〉 in G =

Gal(Fq/Fq) coincides with the profinite completion Gm = Gal(Fq/Fqm) of 〈Φ
m
q 〉,

so that 〈Φm
q 〉 ⊆ StabG(x) implies Gm ⊆ StabG(x). As a result, m = [G : Gm] ≥

[G : StabG(x)] = |OrbG(x)| ≥
∣∣Orb〈Φq〉(x)

∣∣ = m, whereas OrbG(x) = Orb〈Φq〉(x).
Thus, the degree of OrbG(x) is the minimal natural number m with Φm

q (x) = x.

Definition 6. Let M be a locally finite T1-continuous G-module. Then

• MΦk
q :=

{
x ∈ M | Φk

q (x) = x
}
is called the set of the Fqk-rational points of

M ;

• Nk(M) :=
∣∣∣MΦk

q

∣∣∣ is the number of the Fqk-rational points of M ;

• Bk(M) := {x ∈ M | |OrbG(x)| = k} is the set of the points of M , whose
G-orbits are of degree k and

• Bk(M) :=
1

k
|Bk(M)| is the number of the G-orbits on M of degree k.
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Note that Bk(M) and MΦk
q are G-modules, as far as G is an abelian

group and all the points from some G-orbit have coinciding stabilizers. Moreover,

Bk(M) ⊆ MΦk
q , so that kBk(M) ≤ Nk(M).

Proposition 7. Let L be a locally finite G-module and k, n ∈ N be natural
numbers. Then for any 1 ≤ i ≤ n the set

L
(i)
k := (LΦk

q )i−1 ×Bk(L)× (LΦk
q )n−i ⊂ (LΦk

q )n = (Ln)Φ
k
q

is contained in the G-submodule Bk(L
n) of Ln and there holds the inequality

(1) kBk(L
n) ≥

∣∣∣∣∣∣
⋃

1≤i≤n

L
(i)
k

∣∣∣∣∣∣
= Nk(L)

n − [Nk(L)− kBk(L)]
n

P r o o f. If (a1, . . . , an) ∈ L
(i)
k then d = |OrbG(a1, . . . , an)| is the minimal

natural number with Φd
q(a1, . . . , an) = (aq

d

1 , . . . , aq
d

n ) = (a1, . . . , an), so that d ≤ k.

Since k is the minimal natural number with Φk
q(ai) = ai, there follow k = d and

L
(i)
k ⊆ Bk(L

n). Combining
⋃

1≤i≤n

L
(i)
k ⊆ Bk(L

n) with

⋃

1≤i≤n

L
(i)
k = (LΦk

q )n \


(LΦk

q )n \
⋃

1≤i≤n

L
(i)
k


 =

= (LΦk
q )n \

{
∩1≤i≤n[(L

Φk
q )n \ L

(i)
k ]

}
=

= (LΦk
q )n \

{
∩1≤i≤n(L

Φk
q )i−1 × [LΦk

q \Bk(L)]× (LΦk
q )n−i

}
=

= (LΦk
q )n \

{[
LΦk

q \Bk(L)
]n}

,

one derives (1). ✷

For an arbitrary morphism ξ : M → L of G-modules and an arbitrary
point x ∈ M one has StabG(x) ≤ StabG(ξ(x)). Moreover, if the G-action on M
has finite orbits then one defines the inertia map

eξ : M → Q,

eξ(x) :=
degOrbG(x)

degOrbG(ξ(x))
=

[G : StabG(x)]

[G : StabG(ξ(x))]
= [StabG(ξ(x)) : StabG(x)] ∈ N

and notes that it takes natural values. As far as the inertia map is constant on
the G-orbits of M , the set M [t] = {x ∈ M | eξ(x) = t} is a G-submodule of M .
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Let ξ : M → L be a morphism of bounded degree d between locally finite
T1-continuous G-modules. Then

Bk(M
[s]) = {x ∈ M |k = degOrbG(x) = s degOrbG(ξ(x))} 6= ∅

only when s ∈ N divides k ∈ N. If so, then ξ(Bk(M
[s])) ⊆ Bk

s
(L) ∩ ξ(M [s]) =

Bk
s
(ξ(M [s])). Conversely, if y ∈ Bk

s
(ξ(M [s])) then y = ξ(x) for some x ∈ M [s].

As a result, degOrbG(x) = s degOrbG(ξ(x)) = k, so that x ∈ Bk(M
[s]). That

justifies Bk
s
(ξ(M [s])) ⊆ ξ(Bk(M

[s])) and

ξ(Bk(M
[s])) = Bk

s
(ξ(M [s])).

In particular, ξ(Bk(M
[s])) ⊆ Bk

s
(L), so that Bk(M

[s]) ⊆ ξ−1(Bk
s
(L)) and there

holds kBk(M
[s]) ≤ d

k

s
B k

s
(L). Therefore

Bk(M
[s]) ≤

d

s
B k

s
(L).

Note that ξ(OrbG(x)) ⊆ OrbG(ξ(x)) implies OrbG(x) ⊆ ξ−1(OrbG(ξ(x)), whereas
degOrbG(x) ≤ ddegOrbG(ξ(x)). Therefore eξ(x) ≤ d. That allows to split M

into a disjoint union M =
⋃

1≤i≤d

M [i] and to observe that

Bk(M) =
∑

1≤i≤d

Bk(M
[i]) =

∑

i≤d; i/k

Bk(M
[i]) ≤

∑

i≤d; i/k

d

i
B k

i
(L) =

d

k

∑

i≤d; i/k

k

i
B k

i
(L) ≤

d

k
Nk(L)

In such a way, we have derived

(2) Bk(M) ≤
d

k
Nk(L).

The inequalities (1) and (2) will be used for showing that an arbitrary
locally finite T1-continuous G-module with a Noether normalization admits a G-
equivariant embedding in an affine space of sufficiently large dimension. Prior to
that, we derive a lower bound on Bk(Fq).

Proposition 8. For any k ∈ N there holds

(3) kBk(Fq) ≥ qk/2

P r o o f. Let a be a generator of the multiplicative group F∗
qk = 〈a〉.

Then qk − 1 ∈ N is the minimal natural number with aq
k−1 = 1 and k ∈ N
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is the minimal natural number with aq
k

= a, so that Stab〈Φq〉(a) = 〈Φk
q 〉 and

Orb〈Φq〉(a) = OrbG(a) is of degree degOrbG(a) = [〈Φq〉 : 〈Φk
q 〉] = k. For an

arbitrary natural number 1 ≤ s ≤ qk − 1, if degOrbG(a
s) = degOrb〈Φq〉(a

s) = d
then

〈Φd
q〉 = Stab〈Φq〉(a

s) ≥ Stab〈Φq〉(a) = 〈Φk
q 〉,

whereas Φk
q ∈ 〈Φd

q〉 and d divides k. In particular, d ≤ k and qd − 1 divides

qk − 1. On the other hand, Φd
q ∈ Stab〈Φq〉(a

s) implies (as)q
d

= as, whereas

as(q
d−1) = 1. Therefore the order qk − 1 of a divides s(qd − 1) and, in particular,

qk − 1 ≤ s(qd − 1). As a result,

s ≥
qk − 1

qd − 1
= qk−d + qk−2d + . . .+ qd + 1 ≥ qk−d + 1.

If d < k then k/d ∈ N, k/d > 1, whereas k/d ≥ 2, which is equivalent to k/2 ≥ d.
Therefore

s ≥ qk−d + 1 ≥ qk−k/2 + 1 > qk/2

whenever d < k. In other words, for any 1 ≤ s ≤ qk/2 the orbit OrbG(a
s) is of

degree degOrbG(a
s) = k and as ∈ Bk(Fq). That implies (3). ✷

Now, we are ready to prove our main result:

Theorem 9. Let M be a locally finite T1-continuous G-module with a
G-equivariant map ξ : M → Fq

m
of bounded degree d (i.e ξ is a Noether normal-

ization of M). Then there exists a G-equivariant embedding µ : M → Fq
n
for a

sufficiently large n ∈ N.

P r o o f. For any k ∈ N inequality (2) implies that

Bk(M) ≤
d

k
Nk(Fq

m
) =

d

k
Nk(Fq)

m =
d

k
(qk)m =

d

k
qkm.

On the other hand, by (3) from Proposition 8 and (1) there follows

Bk(Fq
n
) ≥

Nk(Fq)
n − [Nk(Fq)− kBk(Fq)]

n

k
=

=
qkn − [qk − kBk(Fq)]

n

k
≥

qkn − (qk − qk/2)n

k
.

We are going to show the existence of a natural number n ∈ N with

(4) dqkm ≤ qkn − (qk − qk/2)n for all k ∈ N,

in order to have G-equivariant embeddings µk : Bk(M) → Bk(Fq
n
) for all k ∈ N,

which give rise to a G-equivariant embedding µ : M → Fq
n
. Note that (4) is



Locally finite modules with Noether normalization 337

equivalent to

qk(n−m) − qk(n/2−m)
(
qk/2 − 1

)n
− d ≥ 0

and consider the function

f(x) := qx(n−m) − qx(n/2−m)
(
qx/2 − 1

)n
− d.

It suffices to prove that f(x) is an increasing function of a real variable x ∈
[1,+∞) with f(1) ≥ 0 for a sufficiently large n ∈ N, in order to establish that
f(k) ≥ 0 for all k ∈ N and to conclude the proof of the theorem. To this end, let
us introduce t := qx/2 and note that

f(x) = t2(n−m) − tn−2m(t− 1)n − d = tn−2m[tn − (t− 1)n]− d.

The function h(t) := tn− (t− 1)n takes positive values and increases for t ≥ q1/2,
as far as its derivative h′(t) = n[tn−1 − (t− 1)n−1] ≥ 0. For n > 2m the function
tn−2m is non-negative and increasing, as well. Therefore f(x) is a non-negative

increasing function on t ≥ q1/2 and according to
d

dx
t =

d

dx
qx/2 =

log(q)

2
qx/2 ≥ 0,

one has
d

dx
f(x) =

d

dt
f(x)

dt

dx
≥ 0 for all x ≥ 1. That suffices for f(x) to be an

increasing function on x ∈ [1,+∞), whenever n > 2m.
There remains to be shown the existence of n ∈ N, n > 2m with

f(1) = qn−m − qn/2−m
(
q1/2 − 1

)n
− d ≥ 0.

To this end, it suffices to prove that the auxiliary function

g(x) := qx−m − qx/2−m
(
q1/2 − 1

)x
= qx/2−m

[
qx/2 −

(
q1/2 − 1

)x]

tends to +∞ as x → +∞. We denote by r the constant q
1
2 and show that

G(x) :=
rx

qm
[rx − (r − 1)x]

has lim
x→+∞

G(x) = +∞ for any fixed r > 1. The function g1(x) := rx − (r − 1)x

is strictly increasing, as far as it has a strictly positive derivative

d

dx
g1(x) = log(r)rx − log(r − 1)(r − 1)x =

= log(r)[rx − (r − 1)x] + [log(r)− log(r − 1)](r − 1)x > 0.

Therefore lim
x→+∞

g1(x) = +∞, whereas

lim
x→+∞

G(x) =

(
lim

x→+∞

rx

qm

)(
lim

x→+∞
g1(x)

)
= +∞



338 A. Kasparian, V. Magaranov

for any fixed r > 1. In particular, for a sufficiently large n ∈ N one has f(1) =
g(n) ≥ 0. ✷

5. Some distinctions between the morphisms of G-modules
and the morphisms of affine varieties. It is well known that if f : X → Fq

is a finite morphism of affine varieties then X is a curve, f is of bounded degree
d and f has a finite branch locus

R := {z ∈ f(X)|
∣∣f−1(z)

∣∣ < d}.

The present section provides an example of a finite morphism ξ : M → Fq of
locally finiteG-modules of unbounded degree and an example of a finite morphism
η : N → Fq of locally finiteG-modules of bounded degree d with an infinite branch
locus R. These examples reveal that the locally finite T1-continuous G-action
allows a larger diversity of morphisms than the Zariski topology.

Let us consider the G-submodules

M := {(a, b) ∈ Fq
2
|degOrbG(a) 6= degOrbG(b)}

of Fq
2
and Fq

′
:= Fq \ Fq =

⋃

i≥2

Bi(Fq) of Fq. The map

ξ : M −→ Fq
′
, ξ(a, b) =

{
a for degOrbG(a) > degOrbG(b),

b for degOrbG(b) > degOrbG(a)

is G-equivariant and has finite fibres

ξ−1(a) =


 ⋃

1≤i<degOrbG(a)

Bi(Fq)× {a}


⋃


{a} ×

⋃

1≤i<deg OrbG(a)

Bi(Fq)




of unbounded degree.

Let d ∈ N be coprime to q, Xo := {(yd, y)|y ∈ Fq} and η : Xo → Fq,

η(yd, y) = yd be the first canonical projection. Then Xo is a G-submodule of Fq
2

and η is a morphism of Xo onto Fq. All the fibres of η except η−1(0) = (0, 0) are
of cardinality d. We are going to show that if δ ∈ N, δ > logq(d − 1) and β is a

generator of F∗
qdδ = 〈β〉 then the inertia index of η : Xo → Fq at (βd, β) ∈ Xo is

eη(β
d, β) < d. Therefore η−1 OrbG(β

d) ! OrbG(β
d, β) and

N := Xo \




⋃

〈β〉=F∗

qdδ
,δ>logq(d−1)

OrbG(β
d, β)
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is a G-submodule of Xo with a finite morphism η : N → Fq, whose branch locus

R := {z ∈ Fq|
∣∣η−1(z) ∩N

∣∣ < d} ⊇
⋃

〈β〉=F∗

qdδ
,δ>logq(d−1)

OrbG(β
d)

is infinite. Note that there are infinitely many fibres of η : N → Fq of cardinality
d. For instance, for any natural number 1 ≤ r ≤ d − 1 and any generator γr,δ
of F∗

qdδ+r = 〈γr,δ〉 the fibre η−1(γdr,δ) is of cardinality d and there are infinitely

many such γr,δ with δ > logq(d − 1). Towards eη(β
d, β) < d, note that if β is a

generator of F∗
qdδ = 〈β〉 then degOrbG(β

d, β) = degOrbG(β) = dδ and βd ∈ F∗
qdδ

is of order

ord(βd) =
ord(β)

GCD(ord(β), d)
=

qdδ − 1

GCD(qdδ − 1, d)
.

If eη(β
d, β) = d then

degOrbG(β
d) =

degOrbG(β
d, β)

eη(βd, β)
=

dδ

d
= δ,

so that StabG(β
d) = 〈Φδ

q〉 and (βd)q
δ

= βd. As a result, (βd)q
δ−1 = 1 and the

order ord(βd) of βd ∈ F∗
qdδ divides qδ − 1, i.e.,

qdδ − 1

GCD(qdδ − 1, d)
r = qδ − 1 for some r ∈ N.

Now,

qδ + 1 ≤ qdδ−δ + qdδ−2δ + . . .+ qδ + 1 =

=
qdδ − 1

qδ − 1
≤

qdδ − 1

qδ − 1
r = GCD(qdδ − 1, d) ≤ d

implies that δ ≤ logq(d − 1). In such a way we have shown that if eη(β
d, β) = d

for a generator β of F∗
qdδ = 〈β〉 then δ ≤ logq(d − 1). Bearing in mind that

eη(β
d, β) ≤ d for all β ∈ Fq, one concludes that eη(β

d, β) < d for any generator
β of F∗

qdδ = 〈β〉 with δ > logq(d− 1).

In the light of the previous example of a morphism η : N → Fq of bounded
degree with infinite branch locus, one questions the existence of Noether normal-
izations ξ1 : M → Fq

m1 , ξ2 : M → Fq
m2 of one and a same locally finite G-module

M with images of different dimensions m1 6= m2.
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