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ABSTRACT. The aim of this note is to show that if a finite field & with
absolute Galois group & acts on a set M with finite orbits and for some
m there is a ®-equivariant map £ : M — Em, whose fibres are of bounded
cardinality, then M admits a B-equivariant embedding in an affine space E"
of sufficiently large dimension n.

1. Introduction. Grothendieck has noticed that the Galois theory of
fields is related to the Galois theory of coverings through the bijective correspon-
dence between the finite coverings f : Y — X of algebraic varieties over a field
k and the finite extensions k(X) C k(Y) of function fields. This led him to the
notion of a Galois category (cf. [1], [7], [4] or [3]). To any connected scheme X
Grothendieck associates a profinite group 7°(X), called the etale fundamental
group of X and shows that the category of the finite etale coverings of X is equiv-
alent to the category of the finite sets with discrete topology, acted continuously
by 7$*(X). In particular, if k is a perfect field with algebraic closure k then the
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etale fundamental group 7$*(k) = Gal(k/k) coincides with the absolute Galois
group of k.

Note that Gal(k/k) acts on any algebraic variety X, defined over k and
the finite extensions k1 D k induce finite separable extensions ki (X) D k(X) of
function fields. For the interplay between k(X) C k1(X) and the finite separable
extensions k(X) C k(Y), arising from finite coverings Y — Xsee [6] or [5]. In
general, the absolute Galois group Gal(k/k) of a perfect field k is quite compli-
cated. However, for a finite field k = F,, the group & = Gal(F,/F,;) ~ Z is
the profinite completion of the infinite cyclic group, generated by the Frobenius
automorphism @, : F, — F,, ®,(a) = a?. The &-orbits Orbg(p) on a smooth
projective curve C' > p, defined over F, correspond to the discrete valuation
rings Op(C) of Fy(X) in such a way that the cardinality of Orbg(p) equals the
degree [O,(C) /M, (C) : Fy| of its associated valuation. Based on this fact, [2]
introduces the Hasse-Weil (-function (s (t) of a set M, acted by Gal(F,/F,) with
finite orbits. By a combinatorial argument it derives a sufficient condition for the
Riemann Hypothesis Analogue on (p/(t).

The present note studies to what extent the & = Gal(k/k)-action on an
affine variety X C k", defined over k = F,, determines the geometric properties
of X. We say that a set M with a ®-action is a locally finite ®-module if all
B-orbits on M are finite and there are finitely many &-orbits of fixed cardinality.
An arbitrary G-equivariant map f : M — &k with fibres of cardinality < s, s € N
is called a Noether normalization of M. By a combinatorial argument we prove
that any locally finite &-module M with a Noether normalization admits a &-
equivariant embedding M — %" in an affine space of sufficiently large dimension
n. The affine varieties X C k", defined over k are locally finite &-modules
with a Noether normalization, as well as all -submodules M C X. By specific
examples we show that the category of the locally finite &-modules with a Noether
normalization (whose morphisms are the &-equivariant maps) contains strictly
the category of the quasi-affine varieties.

2. The absolute Galois group of a finite field and its action
on the affine varieties. Let us start with some properties of the action of
the absolute Galois group & = Gal(k, k) of a finite field kK = F,, on an affine
variety X C k", defined over k. If a = (a1,...,a,) € X then a; € Fym for some
m € Nand all 1 <7 <n. An arbitrary ¢ € & = Gal(IE‘_q/Fq) transforms a into
¢(a) € Fym, so that [Orbg (a1, ... ,a,)| < ¢™" and all the G-orbits on X are finite.
We refer to the number of elements of an orbit as of its degree. Since Fym D F,
is a normal extension, the orbits Orbg(ar,...an) = OrbgaF,m/F,)(a1,. .. an)
coincide. The Galois group Gal(F,m/F;) = (®,)/(®y") is cyclic of order m
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and generated by the Frobenius automorphism ®,(z) = z?. If the -orbit of
(a1,...,a,) € X is of degree s then (a‘fs, coal) = di(a1,. .. a,) = (a,...,an),
whereas (ay,...an) € Fge. Thus, X has finitely many &-orbits of fixed degree s.

The absolute Galois group & = Gal(k/k) is profinite as a projective limit
of the finite Galois groups Gal(L/k) of the finite Galois extensions L D k. In the
case of a finite field k, any extension L D k of degree [L : k] = m is Galois and
its Galois group Gal(L/k) = (®q)/(®y") ~ Z/mZ = Zp, is a finite quotient group
of the infinite cyclic group (®4) ~ (Z,+). That is why the absolute Galois group
® = Gal(k/k) = <</I>;> ~ 7 is the profinite completion of (®q) ~ (Z,+). Let us
endow the finite Galois groups Gal(L/k) with the discrete topology. Then the
induced product topology on H Gal(L/k) is compact and totally disconnected.

The closed subgroup & of HGal(L/ k) is compact and totally disconnected, as
well. The next proposition establishes the continuity of the &-action on an affine
variety X with respect to the Zariski topology.

Proposition 1. If X C k" is an affine variety, defined over a finite field
k then the action p: & x X — X of & = Gal(k/k) on X is continuous with
respect to the Zariski topology on X.

Proof. The ®-action on the algebraic closure k induces a &-action on
the polynomials k[z1,...,z,], which fixes all the variables x1,...,7,. Let u :
&xk" — k" be the B-action on the affine space k" and V(f) = {a € k" |f(a) = 0}
for f € k[x1,...,2,]. Since X is a closed subset of k", it suffices to show that
YV (f)) € & xE" is a closed subset for any polynomial f, in order to conclude
that 1~ (V(£))N(® x X) is a closed subset of & x X and to prove the proposition.
Note that f has finitely many coefficients and there is a finite extension L 2 k
with f € L[z1,...,2,]. The closed normal subgroup Gal(k/L) of & = Gal(k/k) of
index [& : Gal(k/L)] = |Gal(L/k)| = [L : k] = m fixes f. If & = U, Gal(k/L)yp;
is the decomposition of ® into a disjoint union of cosets modulo Gal(k/L) then

pHV(S)) = Uges (o x V(e ' (f)) = UL Gal(k/L)p; x V(g (f))
is a closed subset of & x k", as far as Gal(k/L); is a closed subset of & = Gal(k/k)
and V (p; 1(f)) is a closed subset of k. O
Note that the Zariski topology on an affine variety X C k" is Ty since the
points are closed subsets of X. Generalizing the properties of the G-action on an
affine variety X C k', defined over k, we give the following

Definition 2. A set M with an action of & is called a B-module.
A &-module is locally finite if all &-orbits on M are finite and for any
s € N there are finitely many &-orbits on M of cardinality s.
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A B-module M is Ti-continuous if there is a Ti-topology on M, with
respect to which the G-action & x M — M is a continuous map.

3. Noether normalization. In the present section we start our study
of the morphisms of &-modules, i.e., of the &-equivariant maps of &-modules.

Definition 3. Let £ : M — N be a morphism of &-modules.
o If all the fibres of & are finite sets then £ is called a finite morphism.

o [f there exists d € N, such that all the fibres of & are of cardinality < d then
& is said to be of bounded degree d.

o A morphism £ : M — N in a &-submodule N C k" of an affine space is
dominant if the Zariski closure E(M) = N of the image of £ coincides with
N.

3 Definition 4. If M is a &-module then any &-equivariant map § : M —
k" of bounded degree with Zariski dense image §(M) = k" is called a Noether
normalization of M.

Proposition 5. Let M QLF_n be a Gal(F,/F,)-submodule of F," with an
irreducible Zariski closure M C F, " of dimension d. Then there exist m € N,

a Gal(F/Fgm)-submodule My C M with the same Zariski closure My = M and
a finite morphism & : My — 5 of Gal(F/Fym)-modules of bounded degree with

Zariski dense image (My) = a8

Proof. The function field k(X) of the affine variety X = M is a finite
extension of the function field k(y1,...,yq) of %" and there exists a non-empty

Zariski open subset U C X with a dominant regular map £ : U — Ed, whose

fibres are of cardinality ¢ := [k(X) : k(y1,...,yq)]. For a sufficiently small U the

map & = <ﬁ, ey E) is given by an ordered d-tuple of rational functions ﬁ €
91 9d 9i

k(z1,...,7n). Any Zariski open subset U C X is a finite union U = Uy<;<sUp,
of principal Zariski open subsets Uy, = {(a1,...,a,) € X|hj(a1,...,an) # 0},
determined by polynomials h; € k[xi,...,z,]. If all the coefficients of f;,g;,
1 <i<mnandof hj, 1 <j < s are contained in Fym O F, = k for some m € N
then{ : U — Elisa Gal(k/Fym)-equivariant map of the Gal(k/Fm )-submodule U
of X. The restriction &|yny : MNU — isa morphism of Gal(k/F,m)-modules
of degree < t. There remains to be shown that M NU = X and (M NU) = 5.
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An arbitrary non-empty open set ) # W C X has non-empty open intersection
with U, due to the irreducibility of X. Consequently, ) # U N W N M since M
is dense in X. This proves the Zariski density of M N U in X. Let us assume
that £(M NU) is not Zariski dense in %", Then there is a non-empty Zariski open
subset V' C & with EMNU)NV = (. The Zariski open subset £ (V) C X
intersects the Zariski dense subset M NU C X and any = € £ (V)N MNU maps
to {(x) € VNE(MNU). That contradicts the assumption (M NU)NV = @ and

proves the Zariski density of £(M NU) in o

The above proposition establishes that the submodules of affine spaces
have a Noether normalization. We are going to show that any locally finite
Ti-continuous module with a Noether normalization admits an equivariant em-
bedding in an affine space.

4. Affine embeddings of locally finite T;-continuous mod-
ules with a Noether normalizg\tion. We claim that if M is a locally finite
Ti-continuous module over & = (®;), then the orbits Orbg(z) = Orbg ()
coincide. On one hand (®g) is residually finite and embeds in &, so that
Orb(g,)(7) C Orbg(x). If ‘Orb )‘ = m then Stabg () is of index [(®,) :
Stabg ) (z)] = m, Whereas Stab< q>(:1:) = (®;"). The continuity of the action
uw: & x M — M with respect to a Ti-topology on M implies the continuity
of the maps p, : & — M, py(p) = ¢(y) for all y € M. The points y € M
form closed subsets {y} C M with respect to any Tj-topology on M, so that
ty L(y) = Stabe(y) are closed subgroups of &. The closure of (@") in & =
Gal(FF,/F,) coincides with the profinite completion &,, = Gal(Fy/Fqm) of (®}"),
so that (®7") C Stabg(z) implies &,, C Stabg(z). As a result, m = [& : &,,] >
(& : Stabﬁ( )] = |Orbg ()| > ‘Orb (z)| = m, whereas Orbg(z) = Orbg,) ().
Thus, the degree of Orbg(x) is the mlmmal natural number m with ®7"(x) = =.

Definition 6. Let M be a locally finite T1-continuous &-module. Then

M® = {a: €M | @Z(m) = a:} is called the set of the F k-rational points of
M;

Nu(M) = ‘M‘I’};

is the number of the F -rational points of M;

Br(M) == {zx € M | |Orbg(z)| =k} is the set of the points of M, whose
B-orbits are of degree k and

1
Bi(M) = z |B.(M)| is the number of the B-orbits on M of degree k.
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Note that B;(M) and M ®i are ®-modules, as far as ® is an abelian
group and all the points from some &-orbit have coinciding stabilizers. Moreover,
B,(M) C M®, so that kBy,(M) < Ny(M).

Proposition 7. Let L be a locally finite &-module and k,n € N be natural
numbers. Then for any 1 <1 < n the set
L) = (LP5)71 % By (L) x (L) (L) = (L")

is contained in the G-submodule By (L") of L™ and there holds the inequality

(1) kBR(L") > | | L{| = Nu(L)" = [NW(L) — kBy(L)]"

1<i<n
Proof. If (ay,...,a,) € L,(j) then d = | Orbg(ay,...,ay)| is the minimal
natural number with @3(@1, ceyap) = (a?d, ... ,a?ld) = (ay,...,an), sothat d < k.
Since k is the minimal natural number with <I>]qC (a;) = aj, there follow k = d and

Ly C By(L"). Combining | J LY’ C By(L") with

1<i<n

U o =amymy ey o)
1<i<n 1<i<n

= (L% \ {Picisal(L™)\ L)

= (L) \ {Picien(L98) 1 x (L5 \ By (L) x (L%

one derives (1). O

For an arbitrary morphism & : M — L of &-modules and an arbitrary
point € M one has Stabg(z) < Stabg(£(x)). Moreover, if the &-action on M
has finite orbits then one defines the inertia map

T M — Q,
e (i) = deg Orbg () _ [& : Stabg ()]
S deg Orbg (§(2)) — [® : Stabg (€())]

and notes that it takes natural values. As far as the inertia map is constant on
the -orbits of M, the set MY = {z e M | e¢(x) =t} is a B-submodule of M.

= [Stabg (£(x)) : Stabg(z)] € N
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Let £ : M — L be a morphism of bounded degree d between locally finite
T -continuous B-modules. Then

B, (M) = {2 € M|k = deg Orbg (z) = s deg Orbg (€(x))} # 0
only when s € N divides k € N. If so, then £(B (M) € B, (L) ng(Mb) =
B, (E(ME)). Conversely, if y € B i (E(M))) then y = £(x) for some 2 € M.
As a result, deg Orbg(z) = sdegOrbg(£(z)) = k, so that = € Bj(MP]). That
justifies B (€(M®)) C £(By (M) and
E(Br(MH)) = %g(é(M[s]))'
In particular, &(By (M) C B, (L), so that Bj(MP) C ¢1(B (L)) and there
holds kB, (M) < dEBE(L). Therefore
S s

Bp(M¥]) < C—ZBE(L).
S s

Note that £(Orbg(x)) € Orbe(£(x)) implies Orbg () € € 1(Orbe (€(z)), whereas
deg Orbg(x) < ddeg Orbg(£(x)). Therefore e¢(x) < d. That allows to split M

into a disjoint union M = U MU and to observe that

1<i<d
. 4 d
B - [y — (7] bl -
k(M) Z B(MMy= Y Bpmlly< > B (L)
1<i<d i<d; i/k i<d; i/k
d k d
Z - < Z
DS HOESS A
1<d; i/k
In such a way, we have derived
d
2) By(M) < ZNu(E).

The inequalities (1) and (2) will be used for showing that an arbitrary
locally finite T1-continuous &-module with a Noether normalization admits a &-
equivariant embedding in an affine space of sufficiently large dimension. Prior to

that, we derive a lower bound on By (F,).
Proposition 8. For any k € N there holds
(3) KBy(F,;) 2 ¢
Proof. Let a be a generator of the multiplicative group sz = (a).

Then ¢* — 1 € N is the minimal natural number with ' =1land k € N
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is the minimal natural number with a? = a, so that Stabg,y(a) = <<I>f§ ) and
Orb(g,)(a) = Orbg(a) is of degree degOrbg(a) = [(®,) : (<I>§>] = k. For an
arbitrary natural number 1 < s < ¢* — 1, if deg Orbg (a®) = deg Orb(g,(a”) = d
then

(®) = Stabg,)(a®) > Stabg,)(a) = (®F),

whereas <I>]qC € (@g) and d divides k. In particular, d < k and ¢ — 1 divides
¥ _ 1. On the other hand, @g € Stabg,)(a®) implies (as)qd = a°, whereas

@@ =1 = 1. Therefore the order ¢" — 1 of a divides s(¢? — 1) and, in particular,
" —1<s(¢?—1). As a result,

k
~1
sz—‘q]d_l R A An SRR LS I Y

If d < k then k/d € N, k/d > 1, whereas k/d > 2, which is equivalent to k/2 > d.
Therefore

s> g 41> R L1 s g2
whenever d < k. In other words, for any 1 < s < ¢"/? the orbit Orbg(a®) is of
degree deg Orbg(a®) = k and a® € B (F,). That implies (3). O

Now, we are ready to prove our main result:

Theorem 9. Let M_be a locally finite Ti-continuous &-module with a
&-equivariant map § : M — T, of bounded degree d (i.e & is a Noether normal—
ization of M ). Then there exzsts a &-equivariant embedding p : M — F for a
sufficiently large n € N,

Proof. For any k € N inequality (2) implies that

d. . — d. . — d

d
Bi(M) < =N.(F,”") = =Nu(F,)™ = —(¢")™ = = ¢F™.

On the other hand, by (3) from Proposition 8 and (1) there follows
Ny, (Fg)" — [Ni(Fy) — kBy(Fy)]"

By(F,") > ? =
_ " " —kBu(E)" " - (¢" g )"
k - k ’
We are going to show the existence of a natural number n € N with
(4) dg"™ < " — (¢" = ¢*/*)" for all ke N,

in order to have ®-equivariant embeddings g : B (M) — ‘Bk( ") for all k € N,
which give rise to a ®-equivariant embedding p : M — F . Note that (4) is
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equivalent to
n

=) _ k(n/2=m) <qk/2 _ 1) —d>0
and consider the function
n
f(l‘) — qx(nfm) _ qx(n/me) (qx/Z _ 1) —d

It suffices to prove that f(z) is an increasing function of a real variable x €
[1,400) with f(1) > 0 for a sufficiently large n € N, in order to establish that
f(k) > 0 for all kK € N and to conclude the proof of the theorem. To this end, let
us introduce t := q‘v/ 2 and note that

flz) = 2mm) —gn=2mp — ) — g = T2 — (¢ — 1)"] — d.

The function h(t) := t" — (t —1)" takes positive values and increases for ¢ > ¢'/2,
as far as its derivative b'(t) = n[t" ' — (t — 1)"7'] > 0. For n > 2m the function
"™ is non-negative and increasing, as well. Therefore f(z) is a non-negative

d /2 log(q) q:lt/2 > O,

d
increasing function on ¢ > ql/ 2 and according to d—t = d—q ==
x x
dt

d d
—_— = — —_— > > 1.
one has d:z:f(@ dtf(x)dx > 0 for all x > 1. That suffices for f(x) to be an

increasing function on x € [1,400), whenever n > 2m.
There remains to be shown the existence of n € N, n > 2m with

f)y=¢m- g <q1/2 -~ 1)" —d>0.
To this end, it suffices to prove that the auxiliary function

glz) = ¢ ™ — qI/Qfm <q1/2 _ 1>$ _ q:t/me |:qx/2 _ (q1/2 B 1) $}

tends to +o00 as x — +00. We denote by r the constant q% and show that

r
G(w) = 2 7 = (= 1))
has liril G(x) = +oo for any fixed » > 1. The function g1 (z) :=r* — (r — 1)*
T—r—+00
is strictly increasing, as far as it has a strictly positive derivative
d
e (x) =log(r)r* —log(r — 1)(r — 1)* =
T

= log(r)[r* — (r — 1)*] + [log(r) — log(r — 1)](r — 1)* > 0.

Therefore lim gi(x) = 400, whereas
T—+00

lim G(z) :( lim ﬁ) ( lim gl(x)> — too

T—+00 T—+o0 g™ T—r—+00
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for any fixed » > 1. In particular, for a sufficiently large n € N one has f(1) =
g(n) >0.0

5. Some distinctions between the morphisms of &-modules
and the morphisms of affine varieties. It is well known that if f : X — F,
is a finite morphism of affine varieties then X is a curve, f is of bounded degree
d and f has a finite branch locus

Ri={z € f(X)||/ ()| < a}.

The present section provides an example of a finite morphism £ : M — H*Tq of
locally finite &-modules of unbounded degree and an example of a finite morphism
n:N — F_q of locally finite &-modules of bounded degree d with an infinite branch
locus R. These examples reveal that the locally finite Tj-continuous ®-action
allows a larger diversity of morphisms than the Zariski topology.

Let us consider the &-submodules

M :={(a,b) € IF_q2| deg Orbg (a) # deg Orbg (b)}

— R

of ;" and F' :=Fy \ F, = | ] B:(F,) of F,. The map

a for deg Orbg(a) > deg Orbg (D),

&M —TF;, &ab)=
b for deg Orbg(b) > deg Orbg(a)

is B-equivariant and has finite fibres

FROE U Bi(Fy) x {a}| |J [{a} x U B, (F,)
1<i<deg Orbg (a) 1<i<deg Orbg (a)
of unbounded degree.

Let d € N be coprime to ¢, X, := {(yd,y)\y € F,} and n : X, — Fy,
n(yd, y) = yd be the first canonical projection. Then X, is a -submodule of IF_q2
and 7 is a morphism of X, onto F,. All the fibres of 7 except n~1(0) = (0,0) are
of cardinality d. We are going to show that if 6 € N, § > log,(d — 1) and 3 is a
generator of de(; = (B) then the inertia index of 5 : X, — F, at (3%,3) € X, is

en(ﬁd,ﬁ) < d. Therefore n~! Orbg (8%) 2 Orbe (3%, 8) and

N =X, \ U Orbg (5%, )

(ﬂ):F;gm ,0>log, (d—1)
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is a B-submodule of X, with a finite morphism n: N — IF_q, whose branch locus

R:={z€Fy||n ' (z)nN| <d} 2 U Orbg (89)
(ﬂ):F;gm ,0>log, (d—1)

is infinite. Note that there are infinitely many fibres of n: N — F_q of cardinality
d. For instance, for any natural number 1 < r < d — 1 and any generator 7, s
of FZdHT = (7,5) the fibre n_l(yﬁl, 5) is of cardinality d and there are infinitely
many such v, 5 with § > log,(d — 1). Towards en(B%, B) < d, note that if 3 is a
generator of FZ‘” = () then deg Orb@(ﬁd,ﬁ) = deg Orbg(B) = dd and Bl e }de(g
is of order

o ord(B) B
) = GEDord(B).d) ~ GCD(GT —T,d)

If ¢, (8%, 8) = d then

deg Orbg (5%, 8) _ do
deg Orbg (3%) = =— =9,
g (’5(ﬁ ) en(,deﬁ) d
so that Stabg(8%) = (@g) and (ﬁd)q(S = 3% As a result, (ﬁd)q5_1 = 1 and the

order ord(3%) of g4 € de(; divides ¢° — 1, i.e.,

qdﬁ -1
GCD(q% —1,d)

r=¢"—1 forsome reN.

Now,

PAH1<gP 4¢P P 1=

ds _ ds _
_e -t g -l
¢®—-17" ¢ -1
implies that 6 < log,(d —1). In such a way we have shown that if en(BY,B) = d
for a generator § of Flas = (B) then § < log,(d — 1). Bearing in mind that
en(ﬁd,ﬁ) < d for all B € F,, one concludes that en(ﬁd,ﬁ) < d for any generator

B of Fps = (B) with 6 > log,(d —1).

In the light of the previous example of a morphism 7 : N — F,, of bounded
degree with infinite branch locus, one questions the existence of Noether normal-

izations & : M — F_qml, &M — F_qm2 of one and a same locally finite &-module
M with images of different dimensions my # ms.

r=GCD(q® —1,d) <d
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