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Abstract. In this paper, we introduce a class of surfaces called radial
inverse mean curvature surface (RIMC-surfaces) and we show that there
is a correspondence between these surfaces and Bryant surfaces in the hy-
perbolic space H

3, therefore, the RIMC-surfaces are isothermic. We obtain
a Weierstrass type representation for RIMC-surfaces which depends on a
meromorphic function and a holomorphic function and we obtain a char-
acterization so that these surfaces are parametrized by lines of curvature.
In [3] it is shown that for each isothermic surface parametrized by lines of
curvature in the Euclidean space a solution of the Calapso equation is asso-
ciated, in this work we show that for these surfaces we can associate another
solution of the Calapso equation. Moreover, we give explicit solutions of the
Calapso equation that depend on holomorphic functions.
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1. Introduction. Ribaucour transformations for surfaces parametrized
by lines of curvature, were classical studied by Bianchi [1], they can be applied
to obtain surfaces of constant Gaussian curvature from a given such surface.
Similarly, by using Ribaucour transformations, one may obtain surfaces of con-
stant mean curvature from such a given surface. In [10] was showed that an
n-dimensional sphere or hyperplane can be locally associated by a Ribaucour
transformation to any given hypersurface Mn of Rn+1. Since, two surfaces are
related by a Ribaucour transformation if they are envelopes of a congruence of
spheres preserving lines of curvature, in [9] the author show that locally all surface
is an envelope of a congruence of spheres where the other envelope is contained
in a plane and obtain an explicit parametrization for this surface.

We say that an oriented surface M ⊂ R
3 is a Laguerre minimal surface if

△III

(
H

K

)
= 0

where H, K are the mean and Gaussian curvature of M and III is the third
fundamental form of M . Also, M is a surface of the spherical type if the set

of spheres of centers p +
H(p)

K(p)
N(p) and radius

H(p)

K(p)
are tangent to a fixed

oriented plane, p ∈ M . In [17], was showed that all surface of the spherical type
is a Laguerre minimal surface.

A regular surface M is isothermic if locally, near each non umbilic point
of M there exist curvature line coordinates which are conformal with respect to
the first fundamental form of M .

The research of isothermic surfaces is one of the most common more diffi-
cult problems of differential geometry and depends on the integration of an equa-
tion with fourth-order partial derivatives (see [23]). Particular classes of these
surfaces are known and some transformations by means of which it is possible
to deduce from isothermic surfaces other isothermic surfaces. All this is known
indirectly and independently of the fourth-order differential equation, because it
is difficult to integrate.

The theory of isothermic surfaces has a great development for eminent
geometers as Christoffel [7], Darboux [12]–[13] and Bianchi [1] among others. In
the last decades, the theory woke up interest by his connection with the modern
theory of integrated systems, see [5], [6], [18], [21] and [22]. Particular classes
of isothermic surfaces are the constant mean curvature surfaces, quadrics, sur-
faces whose lines of curvature has constant geodesic curvature, in particular, the
cyclides of Dupin. Trasformations of R

3 that preserve isothermic surfaces are
isometries, dilations and inversions.
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In [2], the authors study surfaces with harmonic inverse mean curvature
(HIMC surfaces), they distinguish a subclass of θ-isothermic surfaces, which is a
generalization of the isothermic HIMC surfaces, and classify all the θ-isothermic
HIMC surfaces, note that when θ = 0, the surfaces are isothermic.

In [6], the author show that theory of soliton surfaces, modified in an
appropriate way, can be applied also to isothermic immersions in R

3. In this
case the so called Sym’s formula gives an explicit expression for the isothermic
immersion with prescribed fundamental forms. The complete classification of the
isothermic surfaces is an open problem.

In [3], the author establishes a new equation for the equation with fourth-
order partial derivatives from which the problem of obtaining isothermic surfaces
apparently becomes much simpler. The Calapso equation defined in [3] given by

(ω,u1u2

ω

)

,u1u1

+
(ω,u1u2

ω

)

,u2u2

+ (ω2),u1u2
= 0,

describes the isothermic surfaces ω = ω(u1, u2) in R
3. As was shown in the paper

[18], this PDE has solitonic sense. This equation is very difficult to solve and
is strongly connected to the Painleve ODEs and we can study it from the point
of view developed in [8]. In [4], using the symbolic computation in MAPLE,
the authors produce some solutions of the Calapso equation. In [19] a vector
analogue of the classical Calapso equation governing isothermic surfaces in R

n+2

is introduced. It is shown that this vector Calapso system admits a (nonlocal)
scalar lax pair based on the classical Moutard equation.

Given a holomorphic function f(z) on the complex plane C, define the
Schwarzian derivative S(f) to be the function

S(f) =
f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

=

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

This expression is ubiquitous and tends to appear in seemingly unrelated fields of
mathematics: classical complex analysis, differential equations, and one-dimen-
sional dynamics, as well as, more recently, Teichmüller theory, integrable systems,
and conformal field theory. In [20], the author applying a theorem of Ghys on
Schwarzian derivatives gives a new proof of the four-vertex theorem for closed
convex curves in the hyperbolic plane. In [14] Duval and Ovsienko, together with
L. Guieu, related the Schwarzian derivative to the geometry of Lorentz surfaces.

In this paper motivated by the papers [2] and [17], we introduce the class
of radial inverse mean curvature surfaces (RIMC-surfaces), as being the surfaces

M such that the set of spheres of centers p +
1

H(p)
N(p) and radius

1

H(p)
are

tangent to a fixed oriented plane, where p ∈ M and H is the mean curvature
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of M , we note that these surfaces are not Laguerre minimal surfaces. We show
that there exist a correspondence between RIMC-surfaces and Bryant surfaces
in the hyperbolic space H

3, therefore, the RIMC-surfaces are isothermic. We
obtain a Weierstrass type representation for such surfaces which depends on a
meromorphic function and a holomorphic function and we characterize a class of
RIMC-surfaces parametrized by lines of curvature. Also, in this work motivated
by [3] where for each isothermic surface parametrized by lines of curvature asso-
ciates a solution of the Calapso equation, we show that we can associate these
surfaces another solution to the Calapso equation. Moreover, we give explicit
solutions of the Calapso equation that depend on holomorphic functions.

2. Prelimiminaries. In this paper the inner product 〈·, ·〉 : C×C → R

is defined by

〈f, g〉 = f1g1 + f2g2, where f = f1 + if2, g = g1 + ig2,

are holomorphic functions. In the computation we use the following properties:
If f, g, h : C → C, z = u1 + iu2 ∈ C are holomorphic functions then

〈f, g〉,1 = 〈f ′, g〉+ 〈f, g′〉, 〈f, g〉,2 = 〈if ′, g〉+ 〈f, ig′〉,
(2.1) 〈fg, h〉 = 〈g, fh〉, △〈f, g〉 = 4〈f ′, g′〉,

〈f, g〉 + i〈f, ig〉 = fg, 〈1, f〉〈1, if〉 = 1

2
〈1, if2〉, 〈1, f〉2 − 〈1, if〉2 = 〈1, f2〉.

Here 〈f, g〉,i denotes the derivative of 〈f, g〉 with respect to ui, i = 1, 2.

In [3] the author proposes the following problem: Find an isothermic
surface X(u1, u2) whose first and second fundamental forms are given by

(2.2) I = e2ϕ(du21 + du22), II = ẽdu21 + g̃du22

Using (2.2) and the expressions of the Gaussian curvature and the Codazzi equa-
tions we obtain the following system

ẽ,2 = (ẽ+ g̃)ϕ,2,

g̃,1 = (ẽ+ g̃)ϕ,1,(2.3)

ẽ g̃

e2ϕ
= −△ϕ.

To integrate the system (2.3) we make the following substitution

(2.4) ẽ =
1√
2
(ω +Ω)eϕ, g̃ =

1√
2
(ω − Ω)eϕ.

Thus, by (2.4) the system (2.3) can be written as

Ω,1 = ω,1 − (ω +Ω)ϕ,1,
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Ω,2 = −ω,2 + (ω − Ω)ϕ,2,(2.5)

△ϕ = −1

2
(ω2 − Ω2).

Therefore, considering (2.5) as a system of three equations in the two unknown
functions Ω and ϕ we must find ω for the system to be consistent.
By successive derivation we obtain that the system (2.5) is integrable if, and only
if, ω satisfies the equation

(2.6)
(ω,u1u2

ω

)

,u1u1

+
(ω,u1u2

ω

)

,u2u2

+ (ω2),u1u2
= 0.

The equation (2.6) is called Calapso equation and describes isothermic surfaces
in R

3. This equation is very difficult to solve and is strongly connected to the
Painleve ODEs, some authors have obtained some solutions using symbolic com-
putation. Also, some authors have found solutions of this equation associated
with constant mean curvature surfaces.

As a consequence, each isothermic surface parametrized by lines of curva-
ture gives us an explicit solution of the Calapso equation (2.6), more specifically,
using equation (2.4), we obtain:

Remark 2.1. Let X(u1, u2) be an isothermic surface parametrized by
lines of curvature with first fundamental form given by

I = e2ϕ(du21 + du22).

Then the function ω =
√
2eϕH is a solution of the Calapso equation, where H is

the mean curvature of X.

Definition 2.2. A congruence of spheres in R
3 is a two-parameter family

of spheres with a differentiable radius function , whose centers lie on a regular
surface.

Definition 2.3. An envelope of a congruence of spheres is a surface M
of R3 such that each point of M is tangent to a sphere of the congruence.

Lemma 2.4. Let M be a surface in R
3 with Gauss map N and Π a

plane with unit normal vector η. Then there exists a congruence of spheres where
M is an envelope of the congruence and the other envelope is contained in Π.
Moreover, the radius function h : M → R is given by

h(p) =
〈p, η〉 − d(0,Π)

1− 〈N(p), η〉
where d(0,Π) denotes the distance from the origin to the plane Π and N(p) 6= η.

P r o o f. Let Q(p) the point of contact of the congruence of spheres with
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the plane Π, then

p+ h(p)N(p) = Q(p) + h(p)η

hence, making the inner product with η, we obtain

h(p) =
〈p, η〉 − 〈Q(p), η〉
1− 〈N(p), η〉 ,

and since 〈Q(p), η〉 measures the distance from the origin to the plane Π, follows
the result. ✷

Remark 2.5. We note that fixed a plane Π in R
3 for each surface M

the radius function h introduced in the previous lemma is a geometric invariant,
analogous to the support function, mean and Gaussian curvatures, which does
not depend on the local parametrization of M .

Definition 2.6. A surface M ⊂ R
3 is called radial inverse mean curva-

ture surface (RIMC-surface) if the congruence of spheres of centers p+
1

H(p)
N(p),

p ∈ M and radius
1

H(p)
determines two envelopes which one of them is contained

in a plane, H is the mean curvature of M .

The following theorem can be found in [11].

Theorem 2.7. Let X : U ⊂ R
2 → R

3 be a regular parametrized surface.
Consider X(U), as a surface in (R3, 〈, 〉) with Euclidean metric, let N be the nor-
mal Gauss map, ki the principal curvatures, H and K the mean and Gaussian
curvatures, respectively. Analogously, consider X(U) like a surface in (R3, 〈·, ·〉g),
with a metric conformal to the Euclidean metric, with the conformal factor F−2,
let k̄i be the principal curvature, H̄, and K̄E the mean and the extrinsic curva-
tures, respectively. Then

k̄i = Fki + 〈N, gradF 〉

H̄ = FH + 〈N, gradF 〉

K̄E = F 2K + 2HF 〈N, gradF 〉+ 〈N, gradF 〉2

The following proposition shows that there is a correspondence between
RIMC-surfaces and Bryant surfaces.

Proposition 2.8. Let X : U ⊂ R
2 → R

3 be a regular parametrized
surface. Consider X(U), as a surface in (R3, 〈, 〉) with Euclidean metric, let N be
the normal Gauss map, H the mean curvature. Analogously, consider X(U) like
a surface in hyperbolic space as the upper half-space model H

3 = {(u1, u2, u3) ∈
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R
3/u3 > 0}, let H̄ the mean curvature. Moreover, consider Π = {(u1, u2, u3) ∈

R
3/u3 = 0}. Then X(U) is a RIMC-surface in R

3 with respect to Π if, and only
if, X(U) is a Bryant surface in H

3.

P r o o f. Let X = (X1,X2,X3) and N = (N1, N2, N3), if X(U) is a RIMC-
surface in R

3 with respect to Π, from Lemma 2.4 and definition 2.6, we get

X3

1−N3
= h =

1

H
.

On the other hand, if X(U) is a surface in hyperbolic space H
3, using Theorem

2.7, with conformal factor F (u1, u2, u3) = u3 we obtain

H̄ = X3H +N3 = 1

hence, the result follows. ✷

Remark 2.9. As there is a correspondence between RIMC-surfaces and
Bryant surfaces, some geometrical properties are preserved, for example the prop-
erty of being isothermic, the class of rotation surfaces around the axis u3, but
in general both classes of surfaces have their geometric properties and particular
applications to be studied.

Definition 2.10. A surface M ⊂ R
3 is called isothermic if it admits

parametrization by lines of curvature and the first fundamental form is conformal.

The following Theorem obtained in [9] characterize locally the surfaces M
in R

3 which are the envelopes of a congruence of spheres, whose other envelope
is contained in a plane.

Theorem 2.11. A surface M in R
3 is the envelope of a congruence of

spheres, whose other envelope is contained in the plane Π = {(u1, u2, u3) ∈ R
3 :

u3 = 0} if, and only if, there exist an orthogonal local parametrization of Π,
Y : U ⊂ R

2 → Π and a differentiable function h : U ⊂ R
2 → R, such that

X : U ⊂ R
2 → M , given by

(2.7) X(u) = Y (u)− 2h(u)

S

(
h,1
L11

(u)Y,1(u) +
h,2
L22

(u)Y,2(u)− e3

)

is a parametrization of M , with e3 = (0, 0, 1), Lii = 〈Y,i, Y,i〉, 1 ≤ i ≤ 2 and

(2.8) S =
(h,1)

2

L11
+

(h,2)
2

L22
+ 1.

Moreover, the Gauss map is given by

(2.9) N(u) = e3 +
2

S

(
h,1
L11

(u)Y,1(u) +
h,2
L22

(u)Y,2(u)− e3

)
.
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The Weingarten matrix is given by

(2.10) W =
2

P
(SV − 2h det(V )I),

where the matrix V = (Vij) is given by

(2.11) Vij =
1

Ljj

(
h,ij −

2∑

l=1

Γl
ijh,l

)
, 1 ≤ i, j ≤ 2,

(2.12) P = S2 − 2hS tr(V ) + 4h2 det(V ) 6= 0,

(2.13) Γj
ij =

Lii,j

2Lii
, for all i, j and Γj

ii = −Lii

Ljj
Γi
ij, 1 ≤ i 6= j ≤ 2.

Also,

(2.14) gij = 〈X,i,X,j〉 = Lij −
2h

S
VjiLii −

2h

S
VijLjj +

(
2h

S

)2 2∑

l=1

VilVjlLll.

The following result is a direct consequence of Theorem 2.11.

Theorem 2.12. Let M ⊂ R
3 be a connected orientable Riemann. Then

X : M → R
3 is an immersion if, and only if, there exist a holomorphic function

g : M → C∞ and a differentiable function h : M → R
+
∞, such that X(M) is

locally parametrized by

(2.15) X(z) = (g, 0) − 2h

S

(
g′

|g′|2 (h,1 + ih,2),−1

)
,

where z = u1 + iu2 ∈ C, R+
∞ = R

+ ∪ {+∞}, g′(z) 6= 0 ∀z ∈ C,

(2.16) S =
(h,1)

2 + (h,2)
2

|g′|2 + 1.

Moreover, the Gauss map is given by

(2.17) N = e3 +
2

S

(
g′

|g′|2 (h,1 + ih,2),−1

)
.

The Weingarten matrix is given by (2.10) with

(2.18) P = −S2 + 2S(1 − γ) + 4h2det(V ) and γ =
h△ h

|g′|2 − S + 1.

The matrix V = (Vij) is defined by

(2.19) Vij =
1

|g′|2

(
h,ij −

2∑

l=1

Γl
ijh,l

)
, 1 ≤ i, j ≤ 2,

where

(2.20) Γi
ii =

|g′|,i
|g′| and Γi

ij =
|g′|,j
|g′| = −Γj

ii, 1 ≤ i 6= j ≤ 2.
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P r o o f. Note that X : M → R
3 is an immersion if, and only if, X(M)

is an envelope of a congruence of spheres where an envelope is contained in C∞.
From Theorem 2.11 there exist a function h : M → R

+
∞ and an orthogonal

parametrization of the plane. In fact, considering the holomorphic function g :
M → C∞ and Y (z) = (g(z), 0) we have Y,1(z) = (g′, 0) and Y,2(z) = (ig′, 0). From
the Cauchy-Riemann equations, we get L11 = L22 = |g′|2 and L12 = 0, thus, the
parametrization Y is orthogonal. By using (2.7)–(2.10), we obtain (2.15)–(2.18).
Also, utilizing (2.11) and (2.13) one has (2.19) and (2.20). This completes the
proof of Theorem. ✷

3. Weierstrass type representation for RIMC-surfaces in R
3.

In this section we present the main result which provides a Weierstrass type
representation for RIMC-surfaces in R

3 in terms of a meromorphic function and
a holomorphic function.

Theorem 3.1. Let M ⊂ R
3 be a connected orientable Riemann. Then M

is a RIMC-surface if, and only if, there exist a holomorphic and a meromorphic
function g, f : M → C∞, respectively, such that X(M) is locally parametrized by

(3.1) X(z) = (g, 0) − |g′|(1 + |f |2)
|f ′|S

(
g′

|g′|

(
(1 + |f |2)

2|f ′|

(
F ′

F

)
+

ff ′

|f ′|

)
,−1

)
,

where

(3.2) S =

∣∣∣∣
(1 + |f |2)

2|f ′|

(
F ′

F

)
+

ff ′

|f ′|

∣∣∣∣
2

+ 1, F =
g′

f ′ .

The regularity condition is given by

(3.3) P = −4

(
1 + |f |2
2|f ′|

)4

|A|2 6= 0, A =
F ′′

F
− 3

2

(
F ′

F

)2

− F ′f ′′

Ff ′ .

Moreover, the first and the second fundamental form of X are given by

(3.4) Ẽ = G̃ = −|g′|2P
S2

, F̃ = 0,

ẽ = −|g′|2
S2

(
−S(V11 − V22) +

2|f ′|
|g′|(1 + |f |2)P

)
,

f̃ =
2|g′|2V12

S
,(3.5)

g̃ = −|g′|2
S2

(
S(V11 − V22) +

2|f ′|
|g′|(1 + |f |2)P

)
,

where

(3.6) V12 =
(1 + |f |2)
2|f ′||g′| 〈1, iA〉 , V11 − V22 =

(1 + |f |2)
|f ′||g′| 〈1, A〉 .
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To prove the Theorem 3.1 we need the followings Lemmas.

Lemma 3.2. Let g be a holomorphic function of z = u1 + iu2, such that
the function h(u1, u2) satisfies

(3.7) h△h = |g′|2S,
where S is given by (2.16). Then there exist a meromorphic function f such that

(3.8) h =
|g′|(1 + |f |2)

2|f ′| .

P r o o f. Considering h = eφ and differentiating this expression we obtain
that △h = h(△φ+ |∇φ|2), hence, h△h = h2(△φ+ |∇φ|2). Using this expression
and the fact that h△h = |g′|2S, it follows that
(3.9) △φ = |g′|2e−2φ.

Since, g is a holomorphic function we can rewrite (3.9) as

(3.10) △(φ− ln |g′|) = e−2(φ−ln |g′|).

Denoting ν = φ − ln|g′| in (3.10) we obtain the Liouville equation △ν = e−2ν ,
whose solution is given by

ν = ln

(
1 + |f |2
2|f ′|

)
,

where f is a meromorphic function. Consequently,

φ = ν + ln |g′| = ln

( |g′|(1 + |f |2)
2|f ′|

)
,

thus, we get (3.8) and the proof of Lemma is complete. ✷

Lemma 3.3. If f and g are holomorphic functions and h =
1

2
|F |(1+|f |2),

where F =
g′

f ′ . Then the coefficients of matrix V = (Vij) defined in (2.19) are

given by

V11 =
1

|g′|2
(
h|F ′|2
|F |2 +

h〈F,F ′′〉
|F |2 − 2h〈F,F ′〉2

|F |4 +
〈F,F ′〉〈f, f ′〉

|F | + |F ||f ′|2

+
h

|F |4 〈F, iF
′〉2 + 1

|F | 〈F, iF
′〉〈f, if ′〉 − h

|f ′|2|F |2 〈Ff ′, F ′f ′′〉
)
,

(3.11)

V12 =
h

|g′|2

〈
1, i

(
F ′′

F
− 3

2

(
F ′

F

)2

− F ′f ′′

Ff ′

)〉
,(3.12)
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V22 =
1

|g′|2
(
h|F ′|2
|F |2 − h〈F,F ′′〉

|F |2 − 2h〈F, iF ′〉2
|F |4 +

〈F, iF ′〉〈f, if ′〉
|F | + |F ||f ′|2

+
h

|F |4 〈F,F
′〉2 + 1

|F | 〈F,F
′〉〈f, f ′〉+ h

|f ′|2|F |2 〈Ff ′, F ′f ′′〉
)
.(3.13)

Moreover,

V11 − V22 =
2h

|g′|2

〈
1,

F ′′

F
− 3

2

(
F ′

F

)2

− F ′f ′′

Ff ′

〉
.(3.14)

P r o o f. Differentiating h and using the properties given in (2.1) we obtain

(3.15) h,1 =
〈F,F ′〉
|F |2 h+ |F |〈f, f ′〉, h,2 =

〈F, iF ′〉
|F |2 h+ |F |〈f, if ′〉,

h,11 =
|F ′|2h+ 〈F,F ′′〉h+ 〈F,F ′〉h,1

|F |2 − 2h〈F,F ′〉2
|F |4 +

〈F,F ′〉〈f, f ′〉
|F |

+|F ||f ′|2 + |F |〈f, f ′′〉,

h,22 =
|F ′|2h− 〈F,F ′′〉h+ 〈F, iF ′〉h,2

|F |2 − 2h〈F, iF ′〉2
|F |4 +

〈F, iF ′〉〈f, if ′〉
|F |(3.16)

+|F ||f ′|2 − |F |〈f, f ′′〉,

h,12 =
〈F, iF ′′〉h+ 〈F,F ′〉h,2

|F |2 − 2h〈F,F ′〉〈F, iF ′〉
|F |4 +

〈F, iF ′〉〈f, f ′〉
|F |

+|F |〈f, if ′′〉,

h,1 + ih,2 =
h

|F |2FF ′ + |F |ff ′,(3.17)

h,11 − h,22 + 2ih,12 =
2hFF ′′

|F |2 − h(FF ′)2

|F |4 +
2FF ′ff ′

|F | + 2|F |ff ′′.(3.18)

In addition, from (2.19) and (2.20), the coefficients of matrix V are given by

V11 =
1

|g′|2 (h,11 − 〈B + iD, 1〉),

V12 =
1

|g′|2 (h,12 − 〈B + iD, i〉),(3.19)

V22 =
1

|g′|2 (h,22 + 〈B + iD, 1〉),

where

B =
〈|g′|,1 + i|g′|,2, h,1 − ih,2〉

|g′| and D =
〈|g′|,1 + i|g′|,2, i(h,1 − ih,2)〉

|g′| .
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From expressions (2.1) we have

(3.20) |g′|,1 + i|g′|,2 =
g′g′′

|g′| , B + iD =
g′g′′

|g′|2 (h,1 + ih,2),

and since g′ = Ff ′ it follows that,

(3.21)
g′g′′

|g′|2 =
FF ′|f ′|2 + |F |2f ′f ′′

|F |2|f ′|2 .

So, by using (3.17), (3.20) and (3.21) we get

B + iD =
h(FF ′)2

|F |4 +
FF ′ff ′

|F | +
hFF ′f ′f ′′

|f ′|2|F |2 + |F |ff ′′.(3.22)

Therefore, (3.11)–(3.13) it follows from (3.15), (3.16), (3.19) and (3.22). Finally,
utilizing (3.11) and (3.13) after simplification we obtain

V11 − V22 =
2h

|g′|2

(〈
1,

F ′′

F

〉
− 3

2

(〈
1,

F ′

F

〉2

−
〈
1,

iF ′

F

〉2
)

−
〈
1,

F ′f ′′

Ff ′

〉)
,

note that the last expression is equivalent to (3.14), this completes the proof. ✷
We will now prove Theorem 3.1.

P r o o f. Since F =
g′

f ′ , inserting (3.8) and (3.17) into (2.15) we get (3.1).

Note that (2.16) can be written as S =
1

|g′|2 |h,1 + ih,2|2 + 1, hence, substituting

(3.17) in this expression it follows (3.2). Since M is a RIMC-surface one has that

γ = 1, thus, from (2.18) we have (h,11 + h,22)
2 =

|g′|4S2

h2
.

Therefore

(h,11 − h,22)
2 =

|g′|4S2

h2
− 4h,11h,22

and

(3.23) |h,11 − h,22 + 2ih,12|2 =
|g′|4S2

h2
− 4h,11h,22 + 4h2,12.

On the other hand, we obtain through (3.19) that
(3.24)

det(V ) =
1

|g′|4
(
h,11h,22 − h2,12 − |B + iD|2 + 〈B + iD, h,11 − h,22 + 2ih,12〉

)
,

inserting this expression in (2.18) one has

P = − 4h2

|g′|4 |B + iD|2 − h2

|g′|4
[ |g′|4S2

h2
− 4h,11h,22 + 4h2,12

]
(3.25)

+
4h2

|g′|4 〈B + iD, h,11 − h,22 + 2ih,12〉,
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and by using (3.23) into (3.25) we get

P = − 4h2

|g′|4

(
|B + iD|2 − 〈B + iD, h,11 − h,22 + 2ih,12〉

+
1

4
|h,11 − h,22 + 2ih,12|2

)
,

which can be rewritten as

(3.26) P = − 4h2

|g′|4
∣∣∣∣B + iD − 1

2
(h,11 − h,22 + 2ih,12)

∣∣∣∣
2

.

Also, (3.18) and (3.22) ensure that

(3.27) B + iD − 1

2
(h,11 − h,22 + 2ih,12) = h

(
−F ′′

F
+

3

2

(
F ′

F

)2

+
F ′f ′′

Ff ′

)
,

substituting this expression into (3.26) we have that

P = − 4h4

|g′|4

∣∣∣∣∣
F

′′

F
− 3

2

(
F ′

F

)2

− F ′f ′′

Ff ′

∣∣∣∣∣

2

, denoting A =
F

′′

F
− 3

2

(
F ′

F

)2

− F ′f ′′

Ff ′

and by using (3.8) it follows (3.3). We observe that the expressions (2.19) and
(2.20) ensure that the coefficients of the matrix V satisfy △h = |g′|2tr(V ).
On the other hand, from (2.18) we get htr(V ) = γ+S−1, by using this expression
together with (2.14), (2.18) and (2.20) one has that the first fundamental form
of X is given by

Ẽ = g11 =
|g′|2
S2

(−P + (1− γ)(2S − 4hV11)),

F̃ = g12 =
−4h|g′|2V12

S2
(1− γ),(3.28)

G̃ = g22 =
|g′|2
S2

(−P + (1− γ)(2S − 4hV22)),

by using the fact that γ = 1 into (3.28) we get (3.4). Similarly, from (2.10),
(2.12), (2.18) and (3.28) one has that the second fundamental form of X is given
by

ẽ = −2|g′|2
S2

(V11(2− 2γ − S) + 2hdet(V )),

f̃ = −2|g′|2
S2

V12(2− 2γ − S),(3.29)

g̃ = −2|g′|2
S2

(V22(2− 2γ − S) + 2hdet(V )).

Finally, since γ = 1, substituting (3.8) in the expressions (3.29), (3.12), (3.14) we
obtain (3.5) and (3.6). Thus, the proof of Theorem is complete. ✷
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Fig. 1. f(z) = z, g(z) = ez

Fig. 2. f(z) = sinh z, g(z) = cosh z

By using the representation (3.1) given in Theorem 3.1 we give the fol-
lowing RIMC-surfaces, see Figures 1 and 2.

4. RIMC-surfaces parametrized by lines of curvature. The
following result provides a characterization of RIMC-surfaces parametrized by
lines of curvature.

Corollary 4.1. Under the same conditions as in Theorem 3.1, the RIMC-
surface X given by (3.1) is parametrized by lines of curvature if, and only if,

(4.1) S(g)− S(f) = c, c ∈ Rr {0}.
P r o o f. By Theorem 3.1 we have that a RIMC-surfaceM is parametrized

by lines of curvature if and only if V12 = 0, hence, through (3.6), this condition
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is equivalent to

(4.2) A =
F ′′

F
− 3

2

(
F ′

F

)2

− F ′f ′′

Ff ′ = c, c ∈ Rr {0}.

By using the fact that F =
g′

f ′ and after elementary calculations we show that

(4.2) is equivalent to (4.1). ✷

Corollary 4.2. Let f and g holomorphic functions given by

f = z1

∫
Be

−
∫ (

B +
c

2B

)
dz

dz + z2, g = z3

∫
Be

∫ (
B − c

2B

)
dz

dz + z4

where B is a non-zero holomorphic function. Then the RIMC-surfaces X given
by (3.1) are parametrized by lines by curvature.

P r o o f. Putting
f ′′

f ′ = A − B,
g′′

g′
= A + B and substituting these

expressions in (4.1), we get 2B′ − 2AB = c. From this expression we have

f ′′

f ′ =
B′

B
− c

2B
−B,

g′′

g′
=

B′

B
− c

2B
+B.

By integration follows the result. ✷

Remark 4.3. By the properties of the Schwarzian derivative (see [16])
one has that if f, g : C → C then

i) S(f) = S(g) if and only if g =
z1f(z) + z2
z3f(z) + z4

, where zj ∈ C, with z1z4−z2z3 6= 0.

ii) In particular S(f) = 0 if and only if f(z) =
z1z + z2
z3z + z4

.

Proposition 4.4. Let f and g meromorphic and holomorphic functions
respectively given by

i) f(z) =
z1z + z2
z3z + z4

, g(z) =
z5e

√
−2cz + z6

z7e
√
−2cz + z8

,

ii) f(z) =
z5e

√
2cz + z6

z7e
√
2cz + z8

, g(z) =
z1z + z2
z3z + z4

,

iii) f(z) =
z1e

w1z + z2
z3ew1z + z4

, g(z) =
z5e

w2z + z6
z7ew2z + z8

, w2
1 − w2

2 = 2c,

where z1z4−z2z3 6= 0, z5z8−z6z7 6= 0, c ∈ Rr{0}, w1, w2, zj ∈ C, j = 1, · · · , 8.
Then the RIMC-surfaces X given by (3.1) are parameterized by lines of curvature.
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P r o o f. From Corollary 4.1 we have that a RIMC-surface M is parame-
terized by lines of curvature if and only if the functions f and g satisfies (4.1).
Thus, our problem is reduced to find the solutions of (4.1). In order to determine
solutions to the equation (4.1) we consider the following cases:

a) If S(f) = 0 and S(g) = c = S(e
√
−2cz), then by Remark 4.3, we obtain the

solutions are given by i).

b) If S(f) = −c = S(e
√
2cz) and S(g) = 0, then by Remark 4.3, we obtain the

solutions are given by ii).

c) If S(f) = −w2
1

2
= S(ew1z) and S(g) = −w2

2

2
= S(ew2z), then by Remark 4.3,

the solutions are given by iii). ✷

By using the representation (3.1) given in Theorem 3.1 we get the follow-
ing examples of RIMC-surfaces parameterized by lines of curvature.

Example 1. Considering z1 = z2 = −i, z3 = 1, z4 = −1, z5 =
1√
2
, z6 =

z7 = 0, z8 = 1, w1 = 2, w2 =
√
2, c = 1 in item iii) of Proposition 4.4, we have

f(z) = −i coth z, g(z) =
1√
2
e
√
2z.

Now, using these functions in (3.1) we get a RIMC-surface parametrized by lines
of curvature (see Fig. 3).

Fig. 3. RIMC-surface parametrized by lines of curvature

Example 2. Considering z1 =
1

2
, z2 = z3 = 0, z4 = 1, z5 =

1√
2
, z6 =

z7 = 0, z8 = 1, w1 = 2, w2 =
√
2, c = 1 in item iii) of Proposition 4.4, we have

f(z) =
1

2
e2z , g(z) =

1√
2
e
√
2z.

Now, using these functions in (3.1) we get a RIMC-surface parametrized by lines
of curvature (see Fig. 4).
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Fig. 4. RIMC-surface parametrized by lines of curvature

Example 3. Considering z1 =
1

2
+i, z2 = z3 = 0, z4 = 1, z5 = −

√
2i, z6 =

z7 = 0, z8 = 1, c =
1

4
in item i) of Proposition 4.4, we have

f(z) =

(
1

2
+ i

)
z, g(z) = −

√
2ie

√
2

2
iz.

Now, using these functions in (3.1) we get a RIMC-surface parametrized by lines
of curvature (see Fig. 5).

Fig. 5. RIMC-surface parametrized by lines of curvature

Example 4. Considering z1 = 1, z2 = z3 = 0, z4 = 1, z5 = z6 =

−2
√
8i− 1, z7 =

√
65, z8 = −

√
65, w1 = 2(1 + i), w2 =

√
8i+ 1, c = −1

2
in item

iii) of Proposition 4.4, we have

f(z) = e2(1+i)z , g(z) = − 2√
8i+ 1

coth

(√
8i+ 1

2

)
z.



358 A. M. V. Corro, C. M. C. Riveros, K. V. Fernandes

Now, using these functions in (3.1) we get a RIMC-surface parametrized by lines
of curvature (see Fig. 6).

Fig. 6. RIMC-surface parametrized by lines of curvature

Example 5. Considering z1 = z2 = i, z3 = 1, z4 = −1, z5 = z6 =

−4
√
1 + 2i, z7 =

√
5, z8 = −

√
5, w1 =

i− 1

2
, w2 =

√
1− 2i

2
, c = −1

8
in item

iii) of Proposition 4.4, we have

f(z) = i coth

(
i− 1

4

)
z, g(z) = − 4√

1− 2i
coth

(√
1− 2i

4

)
z.

Now, using these functions in (3.1) we get a RIMC-surface parametrized by lines
of curvature (see Fig. 7).

Fig. 7. RIMC-surface parametrized by lines of curvature

5. Solutions of the Calapso equation. The next result provides
solutions for the Calapso equation and we will see that these solutions depend on
a holomorphic function and a meromorphic function.
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Proposition 5.1. Let X be a RIMC-surface, f and g meromorphic and
holomorphic functions respectively satisfying (4.1). Then the function

(5.1) ω =

√
2c(1 + |f |2)

S|f ′| where S =

∣∣∣∣
(1 + |f |2)

2|f ′|

(
g′′

g′
− f ′′

f ′

)
+

ff ′

|f ′|

∣∣∣∣
2

+ 1,

is a solution for the Calapso equation.

P r o o f. From Remak 2.1 and Theorem 3.1 we get

Ẽ = G̃ =
4c2

S2|g′|2h
4 = e2ϕ.

Since, ω =
√
2Heϕ, where H is the mean curvature of X and H =

1

h
, eϕ =

2c

S|g′|h
2 one has that ω =

2c
√
2h

S|g′| , by using (3.8) we obtain (5.1), thus, the proof

is complete. ✷

Proposition 5.2. Let B be a holomorphic function and f given by

f = z1

∫
Be

−
∫ (

B +
c

2B

)
dz

dz + z2, z1, z2 ∈ C.

Then the function ω given by ω =

√
2c(1 + |f |2)

S|z1Be−
∫
(B+ c

2B
)dz |

where

S =
|e

∫
(B+ c

2B
)dz|2

|z1|2
∣∣∣1 + |f |2 + z1f̄e

−
∫
(B+ c

2B
)dz
∣∣∣
2
+1 is a solution for the Calapso

equation.

P r o o f. The proof follows from Corollary 4.2 and Proposition 5.1. ✷

The following result provides explicit solutions of the Calapso equation.

Proposition 5.3. The functions ωj given by
i) α = z1z4 − z2z3 6= 0, zj ∈ C,

ω1 =
c
√
2|α|

(
|z1z + z2|2 + |z3z + z4|2

)
∣∣∣(|z1z+z2|2+|z3z+z4|2)

(√
−2c(−z7e

√
−2cz+z8)

2(z7e
√

−2cz+z8)
+ z3

z3z+z4

)
−α(z1z+z2

z3z+z4
)
∣∣∣
2
+|α|2

,

ii) β = z5z8 − z6z7 6= 0, zj ∈ C, A = z5e
√
2cz + z6, B = z7e

√
2cz + z8,

ω2 =
2c
√

|c||βe
√
2cz|

(
|A|2 + |B|2

)
∣∣∣(|A|2 + |B|2)

(√
2c(−z7e

√
2cz+z8)

2B + z3
z3z+z4

)
+

√
2cβe

√
2czA

B

∣∣∣
2

+ 2|c||βe
√
2cz|2

,
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iii) α = z1z4 − z2z3 6= 0, zj , wj ∈ C, A = z1e
w1z + z2, B = z3e

w1z + z4,
w2
1 − w2

2 = 2c.

ω3 =
c
√
2|w1αe

w1z|
(
|A|2 + |B|2

)
∣∣∣(|A|2 + |B|2)

(
w2(−z7e

w2z+z8)
2(z7ew2z+z8)

− w1(−z3e
w1z+z4)

2B

)
− w1αe

w1zA
B

∣∣∣
2
+ |w1αew1z|2

.

are solutions for the Calapso equation.

P r o o f. The proof is a direct consequence from Propositions 4.4 and
5.1. ✷

For the paper [3] we have that for each isothermic surface parametrized
by lines of curvature we have a solution of the Calapso equation, in the next
we prove that this solution is associated with another solution of the Calapso
equation. Before we present the following definition.

Definition 5.4. Let M be a surface with principal curvatures k1 and k2.
The skew curvature of M (see [15]) is given by

(5.2) H ′ =
1

2
(k1 − k2).

Proposition 5.5. Let X(u1, u2) be an isothermic surface parametrized
by lines of curvature with first fundamental form given by

I = e2ϕ(du21 + du22).

Then the function Ω =
√
2eϕH ′ is a solution of the Calapso equation, where H ′

is the skew curvature of X.

P r o o f. Differentiating the first equation of (2.5) with respect to variable
u2 and the second equation with respect to u1, adding and subtracting these
expressions we obtain

ω,12

ω
= ϕ,12 + ϕ,1ϕ,2 ,

Ω,12

Ω
= −ϕ,12 + ϕ,1ϕ,2.

Calculating the Laplacian of these expressions and using the third equation of
(2.5), we have

△
(ω,12

ω

)
−△

(
Ω,12

Ω

)
= 2△(ϕ,12) = 2(△ϕ),12 = (Ω2 − ω2),12.

This equation is equivalent to

△
(ω,12

ω

)
+ (ω2),12 = △

(
Ω,12

Ω

)
+ (Ω2),12
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Since ω is solution of the Calapso equation then Ω is also the solution of the
Calapso equation, finally using the equations (2.4) and (5.2) we obtain the re-
sult. ✷

Proposition 5.6. Let f be a holomorphic function. Then the function

(5.3) Ω =
2
√
2|f ′|

1 + |f |2

is a solution of the Calapso equation.

P r o o f. Given a holomorphic function f there exists a function g such
that equation (49) is satisfied. From Proposition 5.5 we have that the function
Ω =

√
2eϕH ′ is a solution of the Calapso equation, using (3.3)–(3.6) and (3.8),

we obtain that

H ′ =
c|g′|(1 + |f |2)

S|f ′|e2ϕ , eϕ =
2ch2

S|g′| .

From these expressions follows the result. ✷

Remark 5.7. By Proposition 5.6, for each holomorphic function f we
obtain a solution of the Calapso equation.

It is known that rigid motions of R3 and inversions preserve the property
of a surface being isothermic, as an application we obtain the following result.

Proposition 5.8. Let X(u1, u2) be an isothermic surface parametrized
by lines of curvature with Gauss map N(u1, u2) and first fundamental form given
by

I = e2ϕ(du21 + du22).

Then for all vector V ∈ R
3 the function

ω̃ =
√
2eϕ

(
H + 2

〈X + V,N〉
〈X + V,X + V 〉

)

is a solution of the Calapso equation where H is the mean curvature of X.

P r o o f. Considering an inversion of X: Y =
X + V

〈X + V,X + V 〉 , we get

that the first fundamental form and the mean curvature of Y are given by

(5.4) Ĩ =
e2ϕ

〈X + V,X + V 〉2 (du
2
1+ du22), H̃ = 〈X +V,X+V 〉H +2〈X+V,N〉.
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From Remark 2.1, we obtain that ω̃ =

√
2eϕ

〈X + V,X + V 〉H̃ is a solution of the

Calapso equation, using (5.4) follows the result. ✷

Remark 5.9. Using this proposition can be obtained new explicit solu-
tions of the Calapso equation in terms of the solutions already obtained previ-
ously. This work can be used to classify RIMC-surfaces with additional geometric
properties, can also be used to obtain explicit solutions of the Calapso equation
associated with new classes of isothermic surfaces, future work in this directions
will be present.
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