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Abstract. In the copula theory universe the number of multivariate copu-
las is very limited. This is caused by both of non-trivial tasks - to check the
n-increasing property and to define the copula. We generalize the notion of
n-increasing property in terms of weak derivatives which allows us to sim-
plify the otherwise complex former method. Furthermore, we demonstrate
the applicability of our approach to the class of n-dimensional Archimedean
copulas. Finally, we present a method which allows us to obtain a class of
copulas as a solution of a boundary value problem in appropriate Sobolev
spaces.

1. Introduction. Copulas are a key instrument in many scientific areas
(see [16], [12], [13], [4], [14]). In the present article, using weak derivatives (i.e.
derivatives in the sense of the distribution theory) we consider two main problems.
At first we give two generalisations of the notion of an n-increasing function.
This allows us easy to obtain several fundamental statements. In particular,
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we consider the so called bivariate Archimedean copulas in order to apply our
approach. Another problem studied in the current work is the construction of

n-dimensional copulas by using values of their derivative
∂n

∂x1 . . . ∂xn
. For this,

we use the already generalized notion of an n-increasing function as well as results
of a variant of Goursat problem in n-dimensional cube in R

n.
The present paper is based on some results obtained in the articles [5]

and [6].
For the sake of brevity, in the exposure we use definitions about Sobolev

Spaces and all other related concepts as they were introduced in [1]. The following
notation is used frequently: In = [0, 1] × · · · × [0, 1] (n-multipliers).

2. n-increasing functions. Examples. In this section we generalise
the definition of n-increasing function so let us first recall the well-known form
of this notion.

Let n be a positive integer and let denote R
n
= R × · · · × R. For any

a = (a1, a2, . . . , an) ∈ R, b = (b1, b2, . . . , bn) ∈ R, such that a ≤ b (i.e. ak ≤ bk,
for all k = 1 . . . n), we denote with [a, b] the n-box

B = [a1, b1]× [a2, b2]× · · · × [an, bn].

The vertices of the n-box B are the points c = (c1, c2, . . . , cn) where each ck is
equal to either ak or bk. Let G ⊂ R

n
be a region and H : G → R be a real

function with domain G.
Then if B = [a, b] is an n-box all of whose vertices are in G, then the

H-volume of B is given by (see [16], Definition 2.10.1.)

(2.1) VH(B) =
∑

sgn(c)H(c),

where the sum is taken over all vertices c of B, and sgn(c) is given by

sgn(c) =

{
1, if ck = ak for an even number of k’s ,

−1, if ck = ak for an odd number of k’s .

The subsequent generalisations we perform are based on the two repre-
sentations of the formula (2.1) we obtain.

If the function H is a smooth function, then the formula (2.1) has the
representation

(2.2) VH(B) =

b1∫

a1

· · ·
bn∫

an

Hx1···xn(ξ1, . . . , ξn)dξ1 · · · dξn.
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For the second representation we introduce the first order difference by

∆bk
ak
H(x1, . . . , xk−1, xk, xk+1, . . . , xn)

=H(x1, . . . , xk−1, bk, xk+1, . . . , xn)−H(x1, . . . , xk−1, ak, xk+1, . . . , xn).
(2.3)

Then the H-volume of B is the nth order difference of H on B

(2.4) VH(B) = ∆b
aH(x) = ∆bn

an∆
bn−1

an−1
. . .∆b2

a2
∆b1

a1
H(x).

Remark 2.1. It is obvious that from (2.3) and (2.4) if H is a constant or
more general – ifH is a function of at most (n−1) variables then the corresponding
H-volume vanishes.

For an arbitrary x = (x1, . . . , xn) ∈ G, let us set in (2.3) and (2.4) ak = xk,
bk = xk + hk and ∆bk

ak
≡ ∆k

hk
, for k = 1, 2, . . . n, where h = (h1, . . . , hn) ∈ R

n is
fixed. Then the H-volume of the n-box with fixed vertex x, Bh = [x, x + h] (for
h enough small such that all of Bh vertices are in G), is given by

(2.5) VH(Bh) = ∆1
h1
∆2

h2
. . .∆n

hn
H(x).

Based on the above reasoning we will generalize the following main definition of
an n-increasing function.

We continue by assuming the following

Definition 2.2 (See Definition 2.10.2 from [16]). An n-place real function
H, with domain G ⊂ R

n
, is n-increasing if VH(B) ≥ 0 for all n-boxes B whose

vertices lie in G.

Further, in the case when H is a smooth function, by the mean value
theorem applied to (2.2) we obtain that H is n-increasing if and only if

VH(B) = Hx1···xn(x̄)(b1 − a1) · · · (bn − an) ≥ 0

for an appropriate x ∈ R
n, where we denoted Hx1,...,xn =

∂n

∂x1 . . . ∂xn
H.

Remark 2.3. a) If the derivative Hx1···xn exists and is non-negative in
G, then the non-negativity of the H-volume follows immediately from (2.2).

Conversely, assuming that

Hx1···xn(x̃) < 0,

for a given point x̃, then inequality would be valid in a neighbourhood V ∋ x̃ as
this derivative is continuous. This combined with the relation B ⊂ V contradicts
the fact that H is a n-increasing function.
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b) Therefore when H is a smooth function, then the condition
Hx1···xn ≥ 0, for each x ∈ G implies that H is a n-increasing function. For
example (see Example 2.22 from [16]) if we consider

H(x, y, z) =
(x+ 1)(ey − 1) sin z

x+ 2ey − 1
,

defined in {
(x, y, z)

∣∣ − 1 ≤ x ≤ 1, 0 ≤ y ≤ +∞, 0 ≤ z ≤ π

2

}
,

and by establishing that

∂3

∂x∂y∂z
H(x, y, z) ≥ 0,

we conclude that H is a 3-increasing function in its domain of definition.

Referring to the remark above, similar to the case of bivariate copulas
considered in [11], we obtain the following

Definition 2.4. A distribution H ∈ D
′(G), where G ⊂ R

n
is a domain,

is called weak n-increasing distribution in G if for any test function ϕ ≥ 0 in
D(G)

(2.6) (Hx1···xn , ϕ) ≥ 0.

Remark 2.5. It is proved in [11] that for H ∈ D
′(C) ∩ C0(G), the new

notion coincides with the classical Definition 2.2.

A disadvantage of Definition 2.4 relates to the search of weak derivatives of
non-smooth functions (see Example 2.7 from [11]). Apart from that this definition
does not take into account the fact that H belongs to a suitable Sobolev space
in the cases under consideration.

Based on formula (2.5) we give a new generalisation of Definition 2.2. For
f ∈ C∞

0 (Rn), we fix a vector h ∈ R
n and if we set

H̄(x) =

{
H(x), x ∈ G,

0, x /∈ G,

we conclude that
∫

Rn

[
H̄(x+ h)− H̄(x)

]
f(x)dx =

∫

Rn

H̄(z) [f(z − h)− f(z)] dz.
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Consequently under the notations introduced above we obtain

(2.7)

∫

Rn

∆1
h1

· · ·∆n
hn
H̄(x)f(x)dx =

∫

Rn

H̄(x)∆1
−h1

· · ·∆n
−hn

f(z)dz.

Now dividing by hi > 0, i = 1, . . . , n, and letting (h1, . . . , hn) −→
(0, . . . , 0), for f ≥ 0 and due to non-negativity of the left side of formula (2.7) we
obtain

(2.8) (−1)n
∫

G

H(z)fz1···zn(z)dz ≥ 0.

If we assume that H ∈ W 1,p(G), p > n, property (2.8) is immediately
generalised for non-negative functions f ∈ W n−1,p(G), where 1/p + 1/q = 1
(according to Theorem 3.22 and 3.9 from [1] under minimum requirements of the
boundary ∂G, which are obviously satisfied for G = In).

In order for us to properly state the result above we need to remind that
the notation

(µ, ν)

is used as a generalisation of the common scalar product of functions µ ∈ Lp,

ν ∈ Lq,
1

p
+

1

q
= 1 (see Paragraph 3.9 from [1]) in the case when µ ∈ W 1,p and

ν ∈ W−1,q (In fact the derivative
∂nf

∂x1 · · · ∂xn
of the function f ∈ W n−1,q belongs

to the latter space).

We say that a domain G satisfies the segment condition (see [1]) if every
x ∈ ∂G has a neighbourhood Ux and a non-zero vector yx such that if z ∈ G∩Ux,
then z + tyx ∈ G for 0 < t < 1 (we denote with ∂G the boundary of G).

Definition 2.6. We say that H ∈ W 1,p(G), where G satisfies the segment
condition, is a weakly n-increasing function in G, if

(2.9) (−1)n(H, fx1···xn) ≥ 0

for all f ≥ 0 in W n−1,q(G).

Remark 2.7. a) If the function H from the definition above is continuous
(for example when p > n this is true), then this condition leads to the common
Definition 2.2. Actually if we refer to (2.9) and assume that the expression on the



418 N. Chervenov, I. Iordanov, B. Kostadinov

left hand side is negative, then for ε > 0 sufficiently small, such that 0 < hk < ε,
for all k = 1, . . . , n, we have

∫

G

∆1
h1

· · ·∆n
hn
H(x)f(x)dx < 0,

(see (2.7)). Since H is continuous and f – non-negative, there is a x ∈ G such
that

∆1
h1

· · ·∆n
hn
H(x) < 0.

This implies that H is not an n-increasing function in the sense of Definition 2.2.
b) If in Definition 2.6 we assume that (2.9) is valid for smooth functions

f only, then this limited definition takes us to the initial one, referring to Theo-
rem 3.22 from [1].

Immediately after letting n tends to infinity in inequalities of the type
(2.9) we obtain the following propositions

Corollary 2.8. Let Hm ∈ W 1,p(G) be an n-increasing functions for
m = 1, 2, . . . in the domain G ⊂ R

n and let H ∈ W 1,p(G) be the limit of Hm in
W 1,p(G). Then H is weakly n-increasing funciton in G.

Corollary 2.9. Let Gm be a sub-domain of the domain G ⊂ R
n and let

the measure mes(G \ Gm) converge to zero when m → ∞. Let H ∈ W 1,p(G) be
a weakly n-increasing function in Gm. Then H is a weakly n-increasing function
in G.

Remark 2.10. If we aim to verify inequality (2.9) by transferring deriva-
tives from f to H using the Gauss formula (which does not require computations
of weak, but rather of classical derivatives) we need information of behaviour of
H, f and some of their derivatives over ∂G = ∂In (as well as the coordinates of
the unit normal vector to the boundary).

It is quite simple in the case when H vanishes on the sides of In passing
through the origin (e.g. as we proceed in the next section for the Archimedean
copulas). Then a variant of Definition 2.6 is valid, where f and its derivatives
vanish on the sides of In passing through the vertex (1, . . . , 1).

Lemma 2.11. The function H ∈ W 1,p(In) is weakly n-increasing func-
tion in In if the inequality

(−1)n(H, fx1···xn) ≥ 0

is fulfilled for all f ≥ 0 in W n−1,q(In) such that f and its derivatives vanish on
the sides of In passing through the vertex (1, . . . , 1).
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P r o o f. a) When n = 2 it is enough f to vanish on the sides of
I2 ≡ [0, 1] × [0, 1] passing through the vertex (1, 1). Indeed, for an arbitrary
f ≥ 0 belonging to C∞

0 (R2) lets consider

g(x, y) = f(x, y)− f(x, 1)− f(1, y) + f(1, 1).

Obviously g vanishes on x = 1 or y = 1, and belongs to C∞
0 (R2). Let K be a

constant, such that g +K ≥ 0 in I2. Therefore applying formula (2.7) for g +K
we observe non-negativity of the expression

(−1)2
∫

I2

H(x, y)(g(x, y) +K)xy(x, y) dx dy = (−1)2
∫

I2

H(x, y)fxy(x, y) dx dy,

as ∂xy(K +Σ) = 0.
b) In the case n ≥ 3 if f ∈ C∞

0 (Rn) and f ≥ 0, let us consider the function

(2.10) f∗(x1, . . . , xn) =

f(x1, . . . , xn)− f(1, x2, . . . , xn)−
m∑

k=1

(x1 − 1)k

k!
∂k
x1
f(1, x2, . . . , xn)

which vanishes together with its derivatives up to order m on the side {x1 = 1}
of In. Considering the side {x2 = 1} ∩ In, we set

(2.11) f∗∗(x1, . . . , xn) =

f∗(x1, . . . , xn)− f∗(x1, 1, x3, . . . , xn)−
m∑

s=1

(x2 − 1)s

s!
∂s
x2
f∗(x1, 1, x3, . . . , xn).

It is a matter of direct verification that the function f∗∗(x1, . . . , xn) vanishes on
the side {x1 = 1} ∩ In together with its derivatives of order up to m. To prove
this we observe first that by definition f∗(x1, . . . , xn) vanishes on {x1 = 1} and

then that all terms of the sum
m∑

s=1

(x2 − 1)s

s!
∂s
x2
f∗(x1, 1, x3, . . . , xn) vanish on the

side {x1 = 1} as

∂β
xk
∂s
x2
f∗(1, 1, x3, . . . , xn) = ∂s

x2
∂β
xk
f∗(1, 1, x3, . . . , xn)

vanish on {x1 = 1}. The last statement follows from the corresponding difference
quotients (for s = 0, 1, . . . m) with respect to the variable x2 in the point x2 = 1.
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After that we define

(2.12) f∗∗∗(x1, . . . , xn) = f∗∗(x1, . . . , xn)−

f∗∗(x1, x2, 1, x4, . . . , xn)−
m∑

r=1

(x3 − 1)r

r!
∂r
x3
f∗∗(x1, x2, 1, x4, . . . , xn).

Similarly, f∗∗∗, together with its derivatives of order up to m, vanish over
{x3 = 1} ∩ In as well as over {x1 = 1} ∩ In and {x2 = 1} ∩ In.

We continue the iterative process with the rest of the sides of In passing
through the vertex (1, . . . , 1) until we obtain the function

(2.13) g(x1, . . . , xn) = f(x1, . . . , xn) + Σ(x1, . . . , xn),

which vanishes together with its derivatives up to order m on the sides of In

passing through the vertex (1, . . . , 1), where with Σ(x1, . . . , xn) we denote the
mentioned functions above within the iterative process.

Unlike the case a) here the derivative

∂nΣ

∂x1 · · · ∂xn
might be different from zero. Let Kn be a constant, such that

(2.14)




(−1)n(Kn +Σ) ≥ 0,

(−1)n
(
−Kn +

∂n

∂x1 · · · ∂xn
Σ

)
≤ 0.

Therefore applying formula (2.7) for the non-negative function

j(x1, . . . , xn) = Kn(2− x1)

n∏

i=2

(1 + xi) + f(x1, . . . , xn) + Σ(x1, . . . , xn)

and letting (h1, . . . , hn) −→ (0, . . . , 0) we observe

(−1)n
∫

In

H(x1, . . . , xn)fx1...xn(x1, . . . , xn) dx1 . . . dxn

≥ (−1)n
∫

In

H(x1, . . . , xn)
(
Kn − Σx1...xn(x1, . . . , xn)

)
dx1 . . . dxn ≥ 0.
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The last inequality is valid when H ≥ 0 which requirement in the case of cumu-
lative distribution functions is fulfilled as they are grounded and non-decreasing
on each argument (see [16]).

In conclusion we note again that the argument from Remark 2.7a) is valid.
Basically if we have a non-negative function f ∈ C∞

0 (Rn) satisfying

(−1)n
∫

G

Hfx1···xndx1 · · · dxn < 0,

then

(−1)n
∫

H

(
fx1···xn −K +

∂nΣ

∂x1 · · · ∂xn

)
dx1 · · · dxn < 0

in terms of (2.14). This is where the conclusion of the sign of ∆1
h1

· · ·∆n
hn
H(x)

stems from. ✷

Example 2.12. a) (see [11] and Paragraph 2.2 from [16]). Let n = 2, we
consider the function

W (x1, x2) = max(x1 + x2 − 1, 0)

and let f ∈ C∞
0 (R2) vanish on the sides x = 1 and y = 1 of I2.

After applying the Gauss formula twice we immediately obtain

∫∫

I2

W (ξ1, ξ2)fx1x2
(ξ1, ξ2)dξ1dξ2 =

1√
2

∫

S

f(ξ1, ξ2) ds ≥ 0,

where S = {(x, y) ∈ I2 | x+ y− 1 = 0} and ds is the elementary arc length of S.
Hence W (x, y) is 2-increasing.

b) Let n ≥ 3, then the function

W n(x1, . . . , xn) = max(x1 + x2 + · · ·+ xn − n+ 1, 0),

(see Formula 2.10.8 and Exercise 2.34 from [16]) is n-increasing. Indeed, the
plane

x1 + · · ·+ xn = n− 1,

passes through the vertices of In, where n − 1 coordinates are 1 and one coor-
dinate is 0. The function W n coincides with x1 + · · · + xn − n + 1 > 0 in the
half-space non-containing the origin and defined by this plane. To prove that
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W n is not n-increasing let set in (2.9) f(x) =

n∏

k=1

xk when n is odd number or

f(x) = (1− x1)
n∏

k=2

xk when n is even number. Then we have

(−1)nfx1···xn < 0,

and by Definition (2.6) the statement follows.

3. Archimedean copulas. Archimedean copulas are an important
class of copulas which is considered and studied in details in many works (see
chapter 4 in [16], as well as [13], [7], [14], [9]). These copulas find a wide range of
applications as they are easy to construct and assess many nice properties. They
are obtained via a certain formula. Since boundary conditions are easily verified
a key point is whether the obtained function is n-increasing.

Let us recall the definition of copula. An n-dimensional copula (see [16])
is a function C : In −→ I such that

1) for every x ∈ In, C(x) = 0 if at least one coordinate of x is 0;

2) if all coordinates of x are 1 except xk , then C(x) = xk;

3) C is n-increasing.

Let ϕ be a continuous and strictly decreasing function from [0, 1] to
[0,+∞] such that ϕ(1) = 0 and let

ϕ[−1](t) =

{
ϕ−1(t), if 0 ≤ t ≤ ϕ(0),

0, if ϕ(0) ≤ t ≤ +∞,

be the pseudo-inverse of ϕ. In fact ϕ[−1](t) is continuous and non-increasing
function in [0,+∞] and strictly decreasing in [0, ϕ(0)]. If ϕ(0) = +∞, then ϕ[−1]

coincides with ϕ−1 (see Definition 4.1.1 and Figure 4.1 from [16]).
The main result in the case of bivariate copulas is given by Theorem 4.1.4

from [16], i.e. the function

C : [0, 1] × [0, 1] → [0, 1],

defined by the formula

(3.1) C(x1, x2) = ϕ[−1](ϕ(x1) + ϕ(x2)),
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is bivariate copula if and only if ϕ is convex.
Conditions of C over the boundary of I2 are trivially fulfilled (Lemma

4.1.2 from [16]) and it only needs to establish that C is a 2-increasing function.
We use Definition (2.6), though Definition (2.4) could be also applied.

To obtain the proof we consider some supporting statements referring to
approximation of functions. As usual, the regularisation kernel is defined by

(3.2) J(x) =




k exp

(
1

x2 − 1

)
, −1 ≤ x ≤ 1,

0, |x| ≥ 1,

where the constant k is such that

+∞∫

−∞

J(x)dx = 1.

By denoting

Jε(x) =
1

ε
J
(x
ε

)
,

we obtain the common definition of a regularization (see Paragraph 2.28 from
[1]):

(3.3) ϕε(x) = (Jε ∗ ϕ)(x) =
x+ε∫

x−ε

1

ε
J

(
x− y

ε

)
ϕ(y)dy,

where it is assumed that ϕ is integrable and equal to zero outside its domain of
definition (a subject of consideration in the respective case).

After changing variables y = x − εz we derive a new formula for the
regularization

(3.4) ϕε(x) =

1∫

−1

J(z)ϕ(x − εz)dz.

The properties of this approximation are well known (see Theorem 2.29
from [1]), from where we only note that ϕε ∈ C∞(R).

Lemma 3.1. Let ϕ be a monotonically decreasing function, i.e. for all
x1 and x2 of its domain of definition such that x1 < x2 follows ϕ(x1) > ϕ(x2).

Then ϕε is monotonically decreasing.
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P r o o f. Since we have

x1 − εz < x2 − εz, for all z ∈ [−1, 1], and for any ε > 0,

the statement follows from formula (3.4). ✷
Let ϕ be a convex function defined in the interval X ⊂ R, i.e. for every

interval [x1, x2] ⊂ X and each λ ∈ [0, 1] the requirement below is fulfilled

(3.5) ϕ((1 − λ)x1 + λx2) ≤ (1− λ)ϕ(x1) + λϕ(x2).

We need to point out that there is either an equality in (3.5) on the
segment [x1, x2] (when the graph of ϕ is the same as the respective chord) or the
inequality is strict in the interval (x1, x2) (see Proposition 6 from [8]).

Again from (3.4) it is concluded that:

Lemma 3.2. Let ϕ be a convex function. Then ϕε also is convex function.

P r o o f. We have that for ε > 0 and z ∈ [−1, 1] it is true that x1 − εz <
x2 − εz and

ϕ((1 − λ)(x1 − εz) + λ(x2 − εz)) ≤ (1− λ)ϕ(x1 − εz) + λϕ(x2 − εz).

Finally, we multiply by J(z) and integrate in respect of z in the interval [−1, 1]. ✷
For convenience we formulate the following:

Lemma 3.3. If y = f(x) and x = g(y) are one-to-one and mutually-
inverse functions (in accordance with the respective intervals of definition) and if
f is convex and decreasing, then g is convex and decreasing as well.

P r o o f. (See Paragraph 142, Proposition 4 from [8]). ✷

Remark 3.4. The properties of decreasing monotonicity and convexity
in the case of smooth function ϕ are expressed via the inequalities: ϕ′ < 0 and
ϕ′′ > 0 in the interval under consideration. These properties are transferred to
the approximations ϕε by formula (3.4) (the properties could be also derived
straight from (3.3), even in the case when ϕ is not differentiable).

Remark 3.5. In case of differentiable and strictly monotone functions f
and g (under notations from Lemma (3.3) the following properties are immedi-
ately verified):

∂g

∂y
=

1
∂f
∂x

< 0,

∂2g

∂y2
= − 1

(
∂f
∂x

)3 · ∂
2f

∂x2
> 0.
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Remark 3.6. If ϕ is strictly monotone, then ϕε is strictly monotone and
hence is invertible. Indeed, let x belong to the domain of ϕ and let yε = ϕε(x),
ε > 0. We could immediately verify that yε −→ ϕ(x) when ε → 0 (in the case
when we consider a continuous function ϕ).

We will need a more complicated result which is formulated in the follow-
ing lemma.

Lemma 3.7. Let ε > 0, η > 0 and let ϕ be a strictly monotone con-
tinuous function. Let x and xε belong to the domains of definition of ϕ and its
regularization ϕη, respectively. Let us set yε,η = ϕη(xε). Then if xε −→ x when
ε → 0, we have yε,η −→ y = ϕ(x) when ε, η → 0.

P r o o f. The proof follows from formula (3.4) and the estimates

|yε,η − y| ≤
1∫

−1

J(z)
∣∣ϕ(xε − ηz)− ϕ(x)

∣∣ dz

≤ sup
|z|≤1

∣∣ϕ(xε − ηz)− ϕ(x− ηz)
∣∣ + sup

|z|≤1

∣∣ϕ(x− ηz)− ϕ(x)
∣∣. ✷

Theorem 3.8. The function C from (3.1) is a bivariate copula if and
only if the function ϕ is convex.

P r o o f. We perform the proof in two steps using Definition 2.6.

Step 1. Let ϕ be a smooth function and a) ϕ(0) < +∞ or b) ϕ(0) = +∞.

In the case a) the line

l =
{
(x1, x2) ∈ I2

∣∣ ϕ(x1) + ϕ(x2) = ϕ(0)
}
,

is monotone decreasing and connects the points (0, 1) and (1, 0). In the area I2

below the line (i.e. the part of I2 that contains the origin (0, 0)) we have that

ϕ(x1) + ϕ(x2) > ϕ(0),

and consequently C(x1, x2) = 0 in this area, as well as on l. Above l the function
C is smooth. Let D be the part of I2 above that line. Then for f ∈ C∞

0 (R2)
which is zero when x1 = 1 or x2 = 1 and is non-negative, we have

∫∫

D

ϕ−1 (ϕ(ξ1) + ϕ(ξ2)) fx1x2
(ξ1, ξ2)dξ1dξ2
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=

∫

∂D

ϕ−1 (ϕ(ξ1) + ϕ(ξ2)) fx1
(ξ1, ξ2) cos(n, ξ2)ds

−
∫

D

∂

∂ξ2

[
ϕ−1 (ϕ(ξ1) + ϕ(ξ2)) fx1

(ξ1, ξ2)
]
dξ1dξ2

=

0∫

1

ξ1fx1
(ξ1, 1)dξ1 −

∫

∂D

∂

∂ξ2
ϕ−1 (ϕ(ξ1) + ϕ(ξ2)) f(ξ1, ξ2) cos(n, ξ1)ds

+

∫

D

∂2

∂ξ1∂ξ2

[
ϕ−1 (ϕ(ξ1) + ϕ(ξ2)) f(ξ1, ξ2)

]
dξ1dξ2,

where n is the unit outward pointing normal to ∂D and the equalities describing
the behaviour of C(x1, x2) on the boundary of I2 are taken into consideration,
i.e.

C(ξ1, 1) = ξ1, C(1, ξ2) = ξ2.

Thanks to properties from Remark 3.5 we instantly compute that

∂2

∂ξ1∂ξ2

[
ϕ−1 (ϕ(ξ1) + ϕ(ξ2))

]
=

d2

dt2
(ϕ−1(t))ϕ′(ξ1)ϕ

′(ξ2) > 0.

The rest of the last sum is of the form

x1f(x1, 1)
∣∣0
1
−

0∫

1

f(x1, 1)dx1 −
∫

l

∂

∂ξ2

[
ϕ−1 (ϕ(ξ1) + ϕ(ξ2))

]
cos(n, ξ1)ds > 0

keeping in mind that f(x1, 1) = 0 and

∂

∂ξ2

[
ϕ−1 (ϕ(ξ1) + ϕ(ξ2))

]
=

1
dϕ(t)
dt

ϕ′(ξ2) > 0

and cos(n, ξ1) < 0 over l.
In the case b) the proof is similar, but D coincides with I2 and the line l

is defined as {x2 = 0} ∩ I2.
Step 2. Let the function ϕ be continuous, strictly monotone, decreasing

and convex but not smooth.
Now we consider ϕε instead of ϕ and C2

ε = ϕ[−1]
ε

(
ϕε(x1) + ϕε(x2)

)
.

In Step 1 we verified that

(3.6)

∫

I2

C2
ε (x1, x2)fx1x2

(x1, x2) dx1dx2 ≥ 0
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for each f ∈ C∞
0 (R2), where it equals zero on the side {x1 = 1} and {x2 = 1} of

I2.
What we need to do now is to let ε tend to zero, i.e. ε → 0 in (3.6), so

that we conclude that C(x1, x2) is a 2-increasing function.
Let yε = ϕε(x1) + ϕε(x2). Then apparently yε → ϕ(x1) + ϕ(x2), when-

ever ε → 0. Applying Lemma 3.7 to (3.6), we obtain the requirement from
Definition 2.6. ✷

Remark 3.9. The main result concerning Theorem 3.8 could be estab-
lished by applying Definition 2.4.

At first let the function ϕ be twice differentiable and let t = ϕ(x1)+ϕ(x2).
For 0 ≤ t < 1 we have that

∂2C2

∂x1∂x2
=

∂2

∂x1∂x2

[
ϕ−1

(
ϕ(x1) + ϕ(x2)

)]
=

d2ϕ−1(t)

dt2
∂ϕ

∂x1

∂ϕ

∂x2
.

According to Remark 3.5 this expression is non-negative.

If t > 1, C2(x1, x2) = 0, then its derivative
∂2C2

∂x1∂x2
is zero.

Now we need to check the non-negativity of this derivative in the case
t = 1. In a neighbourhood of t = 1 the first derivative (in terms of the Theory of
Distributions) is equal to

d

dt
ϕ−1(t) =





dϕ−1

dt
, if t < 1,

0, if t ≥ 1.

According to

d2ϕ−1(t)

dt2
(t) =





d2

dt2
ϕ−1, if t < 1

[
0− lim

t→1
t<1

dϕ−1

dt
(t)

]
δ(t− 1), if t = 1

0, if t > 1,

where δ(t− 1) is the Dirac function with a support at the point 1.
The last distribution is non-negative since ϕ−1 is monotone and decreas-

ing, i.e. its derivative is positive.
However now we need to obtain the inequality (3.6), which requires a

double application of the Gauss formula, so that we can transfer the derivative
from C2 to f .
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The general case of n-dimensional Archimedean copulas refers to functions
(formula 4.6.1 from [16]),

(3.7) Cn(x1, . . . , xn) = ϕ[−1](ϕ(x1) + · · ·+ ϕ(xn)).

Definition 3.10 (See Definition 4.6.1 from [16]). A function g(t) is called
completely monotonic on an interval J , if it is continuous there and has deriva-
tives of all orders that alternate in sign, i.e., if it satisfies

(3.8) (−1)k
dk

dtk
g(t) ≥ 0

for all t in the interior of J and k = 0, 1, . . . ,m.

Lets note that if the pseudo-inverse ϕ[−1] of an Archimedean generator
ϕ is completely monotonic, then ϕ[−1] = ϕ−1. We establish the following (see
Theorem 4.6.2 from [16])

Theorem 3.11. Let ϕ be continuous and strictly decreasing function from
[0, 1] to [0,∞], such that ϕ(0) = ∞ and ϕ(1) = 0, and let ϕ−1 denote the inverse
of ϕ. If Cn(x1, . . . , xn) is a function from In to I given by by (3.7), then Cn is
a n-copula for all n ≥ 2 if and only if ϕ−1 is completely monotonic on [0,+∞).

P r o o f. We extend the continuous function Cn(x1, . . . , xn) as zero out-
side the sides of In that pass through the origin (0, . . . , 0). The function we
obtain is also continuous as Cn vanishes over these sides. In order to define the
regularization Cn

ε of Cn over In, we extend Cn as a continuous function outside
In in the first quadrant Rn

+. We denote again with Cn the obtained extension.

We use a mollifier, whose support is translated along the vector
(−1, . . . ,−1) (see Section 2 from [11] for n = 2). This assure the annihilation of
Cn
ε as well as all its derivatives over the sides of In passing through the origin

(0, . . . , 0).

At first, just as in the proof of Theorem 3.8, we verify the validity of
property

(3.9) (−1)n
∫

In

Cn
ε · fx1···xndx1 · · · dxn ≥ 0

for each function f ∈ C∞
0 (Rn), f ≥ 0. We use the result from Remark 2.11b)

which claims that we may presume that f vanishes, together with all its deriva-
tives, over the sides of In passing through the vertex (1, . . . , 1). After multiple
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applications of Gauss formula we represent the integral from the left hand side
of (3.9) in the form

∫

In

∂n

∂x1 · · · ∂xn
(Cn

ε ) · f(x1, . . . , xn)dx1 · · · dxn.

Due to the fact that the derivative from the last integral is equal to

(
∂nCn

∂x1 · · · ∂xn

)

ε

, ε > 0,

(see Theorem 1.6.1 from [10]). In the case of a smooth function ϕ (what we
assumed) we have

∂nCn

∂x1 · · · ∂xn
=

dnϕ−1

dtn
· ϕ′(x1) · · ·ϕ′(xn) ≥ 0,

so the inequality (3.9) is established.
To complete the proof we let n tend to infinity in (3.9) for ε → 0 just as

this was done in Theorem (3.8). ✷

Remark 3.12. The necessity of the convexity condition for the function
ϕ (ϕ′′ > 0 in the smooth case) could be established easily by the following counter-
example.

The function

ϕ(x) =

{
1− x2, x ≤ 1,

0, x ≥ 1.

is strictly decreasing and concave. We thus have

ϕ[−1](y) =

{√
1− y, y ≤ 1,

0, y ≥ 1.

Let we define
C̃ = ϕ[−1]

(
ϕ(x1) + ϕ(x2)

)
.

Then, as we have

ϕ(x1) + ϕ(x2) =





2− x21 − x22, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1

1− x21, 0 ≤ x1 ≤ 1, x2 ≥ 1

1− x22, x1 ≥ 1, 0 ≤ x2 ≤ 1
0, x1 ≥ 1, x2 ≥ 1,
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for (x1, x2) ∈ I2 \
{
x21 + x22 > 1

}
, we obtain

C̃(x1, x2) = ϕ[−1]
(
ϕ(x1) + ϕ(x2)

)

= ϕ[−1]
(
2− x21 − x22

)
=

√
1−

(
2− x21 − x22

)
=

√
x21 + x22 − 1.

Finally,

∂2C̃

∂x1∂x2
(x1, x2) = −x1x2

(
x21 + x22 − 1

)− 3

2

< 0,

for all (x1, x2) ∈ I2 \
{
x21 + x22 > 1

}
.

4. Construction of n-dimensional copulas. The present para-
graph summarises expositions in Paragraphs 4 and 5 from [11] concerning bivari-
ate copulas. A key result is the paper [6] referring to the Goursat problem over
the unit cube.

The main goal is to construct the function C(x1, . . . , xn) based on pre-
determined values of the derivative

(4.1)
∂nC

∂x1 . . . ∂xn
= f(x1, . . . , xn),

and the properties of C on the boundary of In. For convenience we recall the
definition of a copula C, namely

Definition 4.1. The function C : In −→ I is called a n-dimensional
copula or simply a n-copula, if the following criteria are met

1) C(u1, . . . , un) = 0, if uk = 0 for at least one index k = 1, . . . , n;

2) if all coordinates of u are 1 except uk, then

C(1, . . . , 1, uk, 1, . . . , 1) = uk;

3) C is n-increasing.

The function f from 4.1 cannot be an arbitrary element of the correspond-
ing proper space, it needs to fulfil certain conditions:

1) non-negativity in In (in the sense of the Theory of distributions – see 2.4),
so that condition 3) from Definition 4.1 is fulfilled,
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2) conditions on C that assure the necessary prerequisites in 2) from Defini-
tion 4.1.

Finally let us assume that the integrals below are defined and convergent.
Since (4.1) implies that

C(x1, . . . , xn) =

∫

Bx1,...,xn

f(ξ1, . . . , ξn) dξ1 . . . ξn,

where with Bx1,...,xn we denoted the n-box

Bx1,...,xn = [0, x1]× · · · × [0, xn], xi ∈ [0, 1], i = 1, . . . , n,

conditions about f (i.e. about C on the boundary of In, and more precisely
condition 2) from Definition 4.1) would have the form

(4.2)

∫

Bi

f(ξ1, . . . , ξn) dξ1 . . . dξn = xi,

where

Bi = [0, 1] × . . . × [0, xi]× . . . × [0, 1], xi ∈ [0, 1], i = 1, . . . , n.

We limit ourselves to the case when the required copula C, is continuous,
which in the context of the embedding theorem (see Theorem 4.12 from [1])
means that C ∈ W 1,p(In), p > n. From here it immediately follows that in terms
of (4.1), the right hand side f is an element of W 1−n,p(In). This imposes the
necessity to further consider the integrals in (4.2).

At first let us assume that f ∈ Lp(I
n). Then the main equation (4.1)

is fulfilled in terms of almost everywhere (a.e.) as well as the condition 3) from
Definition 4.1 if we assume f(x1, . . . , xn) ≥ 0. Under these conditions and from
Fubini’s theorem (see §1.54 in [1]) it follows that restrictions

gi(xi) = f(x1, . . . , xi, . . . , xn),

over the sets {
xi ∈ [0, 1]

∣∣ (x1, . . . , xi, . . . , xn) ∈ In
}
,

are from L1[0, 1] for almost all values of the rest of the variables

(x1, . . . , xi−1, ·, xi+1, . . . , xn) ∈ In.
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According to Paragraph 4, Theorem 2 from [15] means that, in terms of a.e., the
derivative of

(4.3)

xi∫

0

g(ξi) dξi,

is equal to g(xi) = f(x1, . . . , xn), i.e. (4.1) makes sense.

We generalise this situation under considerably weaker requirements of f .
The approach here is different than the one applied in [11] for bivariate copulas,
where additional local requirements over f have been imposed. In practice it turns
out that the additional requirements are of the same kind – see Remark 4.3.

In order to properly impose the requirements of the type (4.2) for
f ∈ W 1−n,p(In), we consider the existing and uniquely defined family of functions
{fα}, α – multi-index, fα ∈ Lp(I

n), |α| ≤ n− 1, such that

(
f, u

)
=

∑

0≤|α|≤n−1

(
∂αu, fα

)

for every u ∈ W n−1,q(In), where q is determined from the condition
1

p
+

1

q
= 1

(see Theorem 3.9 from [1] and pages 343 and 344 from [11]). By extending fα as
zero outside In, for the obtained f̃ ∈ W 1−n,p(Rn) we can define the regularization

(4.4) f̃ε(x1, . . . , xn) =
(
f̃ ∗ Jε

)
(x1, . . . , xn),

where Jε, ε > 0, is a mollifier (see Paragraph 2.28 from [1]). Using this regular-
ization we give requirements for f of the type (4.2). Instead of (4.2) we assume
that f ∈ W n−1,p(In) obeys the conditions below

(4.5) lim
ε→0

∫

Rn

f̃ε(ξ1, . . . , ξn)χBi
dξ1 . . . dξn = xi

for all i = 1, . . . , n and for each n-box

Bi = [0, 1] × . . .× [0, xi]× . . . × [0, 1], xi ∈ [0, 1],

where χBi
is the characteristic function of Bi.

The main result in this section is the following theorem.

Theorem 4.2. Let the function f ∈ W 1−n,p(In), p > n, be such that
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a) f satisfies the conditions

lim
ε→0

∫

Rn

f̃ε(ξ1, . . . , ξn)χBi
dξ1 . . . dξn = xi

for all i = 1, . . . , n and for each n-box Bi = [0, 1]× . . .× [0, xi]× . . .× [0, 1],
xi ∈ [0, 1];

b) f is non-negative in the sense of the theory of distributions, i.e.

(4.6) (f, ϕ) ≥ 0, for all ϕ ∈ W n−1,q
0 (In);

c) f satisfies the regularity condition (R) (which we formulate below).

Then there is in In a unique solution C ∈ W 1,p(In) of the problem

(4.7a) (−1)n
(
C,ϕx1...xn

)
= (f, ϕ), for each ϕ ∈ W n−1,q

0 (In),
1

q
+

1

p
= 1

(4.7b) C(1, . . . , 1, uk, 1, . . . , 1) = uk.

We do the proof in three steps:

I. There is a weak solution to the problem above, i.e. C ∈ Lq(I
n), for which

the boundary conditions 2) from Definition 4.1 may not be satisfied.

II. The Theorem regarding uniqueness of solutions from W 1,p(In).

III. Theorem for regularity of C, i.e. mainly when the condition (R) is satisfied
(see below), where it is established that the solution C ∈ W 1,p(In).

I. The proof of this step is similar to the one exposed in [11] for the case
n = 2 (applying the Hahn-Banach Theorem).

II. Let C ∈ W 1,p(In), p > n, be the difference of two weak solutions from
the problem in Theorem 4.2, i.e.

(4.8)
(
Cx1...xn , ϕ

)
= 0,

for every ϕ ∈ C∞
0 (In) and C ∈ C0(In) condition 1) of Definition 4.1.

We extend C as zero on the complement of the first quadrant of Rn and
then – as a continuous function in the first quadrant (see Paragraph 261 from [8]).
We denote again with C the obtained extension. (The last one could be avoided
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if we consider the restriction of C over the smaller cube Inh = [0, h]× . . .× [0, h],
where h → 1− 0. If we establish C = 0 in Inh , then we would obtain C = 0 in In

by continuity.)
The regularization Cε = C ∗ J̃ε now is well defined where again we use

mollifier J̃ε translated in the direction of (−1, . . . ,−1), so that the condition 1)
of Definition 4.1 applied for Cε is preserved.

From formula (4.8) for ϕ coinciding with the mollifier J̃ε it follows
(Cx1...xn)ε = 0. According to Theorem 1.6.1 from [12], the last one means that
in In

(4.9) (Cε)x1...xn = 0.

Immediately from here we obtain the following representation

(4.10) Cε(x1, . . . , xn) =

n∑

i=1

fi(x̂i),

where x̂i = (x1, . . . , xi−1, xi+1, . . . , xn).
For the k-th side of In, k = 1, . . . , n, it is fulfilled that

(4.11)

n∑

i=1

fi(x̂i)

∣∣∣∣
xk=0

= 0.

Only fk(x̂k) does not depend on xk, i.e. it depends on the rest of the n− 1 vari-
ables, while all other functions in the above sum depend on n−2 variables. After
differentiating with respect to (x1, . . . , xk−1, xk+1, . . . , xn), from this equation we
obtain that (fk)x1...xk−1xk+1...xn = 0. Therefore fk is equal to the sum of (n − 1)
functions in (n−2) variables. This is derived for each of the functions fi in (4.10)
when k = 1, 2, . . . , n, respectively. Then we consider the ”edges” of In, where 2 or
more variables are equal to 0. In the same way this leads to representation of fi
and thus of Cε as sums of functions in less variables and finally – sum of functions
in one variable. Last equalities of boundary conditions for (n−1) variables equal
to zero and arbitrary n-th variable show that sums of the derived functions in
one variable are constant and consequently so is Cε. Together with the boundary
conditions Cε = 0 over the sides passing through the origin, we find that Cε = 0
in In. Hence C = lim

ε→0
Cε = 0.

III. Let f̃m = {fm
α } be a smooth approximation of f = {fα}, fα ∈ Lp(F

n)

satisfying f̃m −→ f̃ W n−1,p(In). In fact we approximate in Lp(I
n) the terms

fα of the family represeting f . We may even consider that fm
α ∈ C∞

0 (In) (see
Theorem 2.1.9 from [1]).



n-dimensional copulas and weak derivatives 435

Let Cm denote the solution of the problem in Theorem 4.2 with right
hand side equal to fm instead of f . Since it is immediately obtained that

∂x1...xnC
m =

∑

|α|≤n−1

(−1)|α|∂αf
m
α ,

upon integration (and with respect to the boundary conditions) we find that

(4.12) Cm(x1, . . . , xn) =
∑

|α|≤m−1

(−1)|α|Dα′

fm
α ,

where for each multi-index α ∈ N
n, N = {0, 1, 2, . . .} it is set that

(4.13)

{
α′ = (α′

1, . . . , α
′
n) = (α1 − 1, . . . , αn − 1)

D
α′

= D
α′

1 . . .Dα′

n ,

where for each i = 1, . . . , n

(4.14) D
α′

i

i ϕ =





xi∫

0

ϕ(x1, . . . , xn)dxi, whenever α′
i = −1,

ϕ(x1, . . . , xn), whenever α′
i = 0,

∂
α′

i

i ϕ, whenever α′
i > 0.

In [6] this notation is illustrated when n = 3.
Now we are in position to formulate the regularity condition (R).
(R): Let us assume that the functions fα, representing f satisfy

(4.15) ∂xi
D

α′

fα ∈ Lp(I
n), i = 1, . . . , n, |α| ≤ n− 1,

where

∂iD
α′

ϕ =

{
ϕ, whenever α′

i = −1

∂xi
D

α′

iϕ, whenever α′
i ≥ 0.

Immediately under these conditions from (4.12) it is obtained that the
norms

(4.16) ‖(Cm)xi
‖Lp(In) ≤ K,

are bounded by a constant K, which does not depend on m.
Now since the problem under consideration is linear and the boundary

conditions – homogeneous, the corollary that C ∈ W 1,p(In) is obtained by the
Banack-Saks Theorem (see [2]), which claims that the average values of a suitable
sequence of Cm converges strongly (i.e. in the norm of W 1,p(In)) to a limit C.
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Remark 4.3. Let us compare the condition (R) with the local require-
ments (25 a-c) from [11]. Let n = 2 and let us also assume that the function

z(x, y) = ∂x

y∫

0

f(x, η)dη

belongs to Lp(I
n). Let ξ and η be the dual variables of x and y and if we transfer

the conditions of z and f to their Fourier transformations (see [3] or [11]) from
the equality zy = ∂xf(x, y) we establish (after some extensions of the functions

under consideration in the entire space) the relation: ẑ =
ξ

η
f̂(ξ, η).

Therefore the local conditions considered in [11] are equivalent (in some
sense) to the condition (R).
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