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Abstract. One of the classical problems in the subject of group algebras
is that of deducing Wedderburn decomposition of a finite semisimple group
algebra. In this short note, we discuss how to check whether a matrix ring
over a finite field is a Wedderburn component of the Wedderburn decompo-
sition of a group algebra or not. Finally, we formulate an open problem in
this direction.

1. Introduction and Main results. Let G be a finite group. Let
Fq be a Galois field containing q = pk elements, where p is a prime such that
p - |G|. Let FqG denote the group algebra generated by Fq and G. We refer to
[11] for a nice survey on group algebras. Since p - |G|, the group algebra FqG
is semisimple. Therefore, the well-known Wedderburn-Artin theorem (see [11])
implies that

(1) FqG ' ⊕t
i=1Mni(Fqi).
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The above decomposition of FqG is known as Wedderburn decomposition (WD).
Here t is unknown, Fqi , for each i, is an unknown finite extension of Fq and n′is
are also unknowns. In the subject of semisimple group algebras, deducing the
WD is a very important and extensively studied reserach problem (see [1, 2, 3,
4, 7, 12, 13, 14, 15, 16, 17, 18, 19]).

In the last few years, a lot of work has been done in the computation
of WD of semisimple group algebras of non-metabelian groups (groups whose
derived subgroup is non-abelian). This is because the study of WD of metabelian
and normally monomial groups have been completed in [3, 4]. To the best of
our knowledge, the largest non-metabelian groups (apart from symmetric and
quaternion groups) studied till now for computing WD are that of order 144,
168, 360 (see [15, 2, 1]). For the larger groups, it is becoming more and more
difficult to uniquely characterize the WD. To see this, we note from (1) using
dimension formula that

(2) |G| =
t∑

i=1

(n2
i × [Fqi : Fq]),

where [Fqi : Fq] denotes the degree of extension of Fqi over Fq. Let S be the
exponent of the group G, i.e., the lcm of the orders of its elements. Clearly, p - S.
Over Fq, let ℘ be the primitive Sth root of unity. Consequently, Fq(℘) denotes
the splitting over Fq. Furthermore, we denote the set

TFq = {d | ϕ(℘) = ℘d, ∀ ϕ ∈ GL(Fq(℘)/Fq)}.

Here GL(Fq(℘)/Fq) represents the Galois group of Fq(℘) over Fq. Using [8, The-
orem 2.21], one can characterize the set TFq . More precisely, we have

(3) TFq = {1, q, . . . , qy−1} mod S,

where y is the order of q. For a p′-element a ∈ G, we define γg =
∑
g1∈Cg

g1. Here

Cg denotes the conjugacy class of g in G. Then, the cyclotomic Fq-class of γg can
be represented as

(4) SFq(γg) = {γgd | d ∈ TFq}.

Next, we recall that [Fqi : Fq] and t can be deduced by computing the cyclotomic
Fq-classes of the group G (see Propositions 1 and 2). Therefore, it remains to
deduce the exact Wedderburn components (or values of n′is) in (2). This is a
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very uphill task as the size of the group increases. To understand this statement
clearly, let us consider the example of the only non-metabelian group G of order
150. It can be shown that the group G ' (C5×C5)oS3, where S3 is a symmetric
group on 3 symbols and C5 is a cyclic group of order 5, is non-metabelian since
its derived subgroup is G′ ' (C5 × C5) o C3, which is non-abelian. Also, this
group has 13 conjugacy classes. Let S be the exponent of the group G, which is
30. Also, let p be such that pk ≡ 1 mod 30. Before proceeding further, let us
recall a result from [6].

Proposition 1 ([6, Proposition 1.2]). The simple components of a semisim-
ple group algebra FqG are in 1-1 correspondence with the set of cyclotomic Fq-
classes in G.

Since the Galois group of any finite field is cyclic, [6, Theorem 1.3] gives:

Proposition 2. Let L be the number of cyclotomic Fq-classes in G. If
κ1, κ2, · · · , κL denote the simple components of the center of semisimple group
algebra FqG and S1,S2, · · · ,SL are the cyclotomic Fq-classes of G, then |Si| =
[κi : Fq] for every i with a suitable ordering of the indices.

It follows from (3) that for the group G, we have

TFq = {1, q, . . . , qy−1} mod 30 = {1}

as pk ≡ 1 mod 30. Consequently, (4) derives that SFq(γg) = {γg} for any g ∈ G.
This along with Proposition 2 yields that 1 = |Si| = [κi : Fq]. In other words, we
must have κi = Fq for each i or Fqi = Fq in (2) for each i. As G has 13 conjugacy
classes, Proposition 1 confirms that t in (2) is 13. Therefore, at this point, we
rewrite (1) and (2) as

(5) FqG ' ⊕13
i=1Mni(Fq), where 150 =

13∑
i=1

n2
i .

Next, using the normal subgroups of G, one can easily compute several n′is ap-
pearing in (5). To see this, we need the following result. Its proof can be found
in [11].

Proposition 3. Let FqG be a semisimple group algebra and N be a nor-
mal subgroup of G. Then FqG ∼= Fq

(
G/N

)
⊕ ∆(G,N), where ∆(G,N) denotes

an ideal of FqG generated by the set {n − 1 : n ∈ N}. Furthermore, if N = G′

(commutator subgroup), then every component in the decomposition of ∆(G,N)
must be non-commutative.
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We already know that G′ ' (C5 × C5) o C3, which means G/G′ ' C2.
Also, it is straight-forward to note that FqC2 ' Fq ⊕ Fq. Therefore, this and
Proposition 3 along with (5) imply that

(6) FqG ' F2
q ⊕11

i=1 Mni(Fq), where 148 =
11∑
i=1

n2
i , ni ≥ 2.

The important thing about taking N = G′ is that it limits ni ≥ 2 in (6), which
is ni ≥ 1 in (5), since every component in the decomposition of ∆(G,G′) must
be non-commutative. Next, by construction, we note that G has another normal
subgroup N1 isomorphic to C5 × C3, where G/N1 ' S3. At this stage, we recall
from [22] that FqS3 ' F2

q ⊕ M2(Fq). Substituting this in (6) after applying
Proposition 3 with N = N1 to reach at

(7) FqG ' F2
q ⊕M2(Fq)⊕10

i=1 Mni(Fq), where 144 =
10∑
i=1

n2
i , ni ≥ 2.

To this end, we emphasize that Proposition 3 can no longer be helpful in further
determining the remaining n′is in (7) as G has no other non-trivial normal sub-
groups except the two discussed above. We note that (7) have 12 possible choices

of n′is fulfilling 144 =
10∑
i=1

n2
i , ni ≥ 2. These are

(27, 4, 6, 8), (25, 33, 4, 9), (25, 3, 4, 52, 7), (24, 33, 4, 6, 7),

(23, 34, 42, 8), (23, 3, 43, 53), (23, 46, 6), (22, 34, 54),

(8) (22, 33, 43, 5, 6), (2, 36, 52, 6), (38, 62), (37, 42, 7).

Next, we recall an important result from [5, Proposition 1]. This result shows
that if FqG ' ⊕t

i=1Mni(Fqi), then p - |ni| for any i. If p = 7, then p7 ≡ 1
mod 30, (i.e., q = p4 in our case), which means that 7 must not appear in WD
of the group algebra FqG. Consequently, the 12 choices in (8) are reduced to the
following 9 choices:

(27, 4, 6, 8), (25, 33, 4, 9), (23, 34, 42, 8), (23, 3, 43, 53), (23, 46, 6),

(9) (22, 34, 54), (22, 33, 43, 5, 6), (2, 36, 52, 6), (38, 62).
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Finally, we observe that Propositions 1–3 and [5, Proposition 1] are no longer
useful for uniquely deducing the Wedderburn components in (7). At this stage,
we invoke a very important result from [12, Lemma 2.1] that will be enough to
uniquely identify the Wedderburn components of a group algebra.

Lemma 4. Let A1 and A2 denote the semisimple algebras having finite
dimensions over Fq. Further, let Ψ be an onto map between A1 and A2, then we
must have

A1 ' A3 ⊕A2,

where A3 denotes a semisimple Fq-algebra.

If we show that M3(Fq) and M6(Fq) must be the Wedderburn components
of FqG, and M5(Fq) must not be the Wedderburn component of FqG, then we are
sure from (9) that (38, 62) is the only choice of ni’s that fulfils this condition. In
this regard, Lemma 4 can be very useful. For this, if one can show that the maps
Ψ1 : FqG → M3(Fq) and Ψ2 : FqG → M6(Fq) are onto algebra homomorphisms,
then Lemma 4 guarantees that M3(Fq) and M6(Fq) must be the Wedderburn
components of FqG. Moreover, if one can show that the map Ψ3 : FqG→M5(Fq)
is not an onto algebra homomorphisms, then Lemma 4 guarantees that M5(Fq)
must not be the Wedderburn component of FqG.

Thus, the main problem of this paper is discussed as follows:

Problem 5. Let G be a finite group and let Fq be a field with q = pk

elements, where p is a prime. Let Ψ be an algebra homomorphism, where

Ψ : FqG→Mn(Fqz),

z ≥ 1 and Fqz represents an extension field of degree z over Fq. Then find out
the values of n for which Ψ is onto.

It is trivial to note that n ≤
√
|G|
z

for Ψ to be onto. By [5, Proposition

1], we know that p - n. Therefore, if n is a multiple of p, then the map Ψ is never
onto. Consequently, a partial answer to Problem 5 is known. Furthermore, if
z > 1, then we know the following important result.

Lemma 6 ([23]). Let p and p′ be two primes. Let Fq be a field with
q = pk1 elements and let Fq′ be a field with q′ = (p′)k2 elements, where k1, k2 ≥ 1.
Let both the group algebras FqG,Fq′G be semisimple. Suppose that

FqG ∼= ⊕t
i=1M(ni,Fq), ni ≥ 1
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and M
(
n,F(q′)z

)
is a Wedderburn component of the group algebra Fq′G for some

z ≥ 1 and any positive integer n, i.e.,

Fq′G ∼= ⊕s−1
i=1M(mi,Fq′i

)⊕M(n,F(q′)z), mi ≥ 1.

Here Fq′i
is a field extension of Fq′. Then M (n,Fq) must be a Wedderburn com-

ponent of the group algebra FqG and it appears atleast z times in the Wedderburn
decomposition of FqG.

The above lemma clearly indicates that for z > 1, if Ψ in Problem 5 is
onto, then whenever Fq̄ acts as a splitting field for some prime power q̄, the map

Ψ′ : Fq̄G→Mn(Fq̄)

must be onto. In other words, Lemma 6 guarantees that the dimensions of matrix
algebras over extensions of the base field must be the multiples of the dimensions
of matrix algebras over the base field. This means, for z > 1, one can categorize
the possible values of n for which the map Ψ in Problem 5 is not onto by looking
at the values of n whenever z = 1. Therefore, in the rest of the paper, we always
assume that z = 1.

In the direction of fully solving Problem 5, we give a conjecture and
discuss certain examples in the support of our conjecture. Before proposing
the conjecture, we discuss an important notation. Let Φ : G → GLn−1(Fq)
be a homomorphism, where n ≥ 3. For any a ∈ G, let Φ∗ be a lifting map
Φ∗ : G ↪→ GLn(Fq) defined as

Φ∗(a) =

[
φ(a) 0

0 1

]
.

Conjecture 7. Let G be a finite non-abelian group and let Fq be a field
with q = pk elements, where p is a prime. Suppose Φ′ : G→ GLn(Fq) is a group
homomorphism such that Φ′ is one-one and Φ′ is not a lifting map. Then the map
Φ′ can be extended to an onto algebra homomorphism between FqG and Mn(Fq).

Let us first see what happens if Φ′ is a lifting map in Conjecture 7. If Φ′ is a

lifting map, then Φ′(a) =

[
φ′′(a) 0

0 1

]
for every a ∈ G, where Φ′′ : G→ GLn−1(Fq)

is a homomorphism. In this situation, we note that the element

[
Φ′′(a) 1

0 1

]
∈

Mn(Fq) for any a ∈ G have no pre-image under any extension of Φ′ as a homo-
morphism between FqG and Mn(Fq). This is because on adding/multiplying any
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two elements a and b in the group algebra FqG, Φ′(a + b)/Φ′(a ∗ b) is always of

the form

[
r1 0
0 r2

]
, where r1 and r2 are elements of Fq. Thus, Φ′ can never be

onto.
Next, in the support of our conjecture, we discuss few examples. Let us

begin with S3 and q = 5. We know that S3 = {x, y : x2 = y3 = 1, xyx−1 = y2}.
To define any map from S3, it is enough to define it on x and y, as they are the
generators of S3. Let us define Φ′ : S3 → GL2(F5) as

Φ′(x) =

[
4 0
0 1

]
, Φ′(y) =

[
2 1
3 1

]
.

One can note that the map Φ′ is one-one homomorphism. This map can be
linearly extended to onto algebra homomorphism between F5S3 and M2(F5). Our
argument is supported by [22] as M2(F5) is a Wedderburn component of F5S3.
However, if we define a lifting Φ∗ of Φ′ as

Φ∗(x) =

4 0 0
0 1 0
0 0 1

 , Φ∗(y) =

2 1 0
3 1 0
0 0 1

 .
In this case, although Φ∗ is one-one, but it cannot be linearly extended to onto
algebra homomorphism between F5S3 and M3(F5), since M3(F5) is not a Wed-
derburn component of F5S3.

Our next example is related to alternating group A5. We know that
A5 = {x, y : x3 = y2 = (yx)5 = 1} and we take p = 5 (here we are not considering
semisimple group algebra). Let us define Φ′ : A5 → GL3(F5) as

Φ′(x) =

4 0 1
1 1 2
2 1 0

 , Φ′(y) =

1 0 3
1 4 4
0 0 4

 .
One can note that the map Φ′ is one-one homomorphism. This map can be
linearly extended to onto algebra homomorphism between F5A5 and M4(F5).
This is true as M3(F5) is a Wedderburn component of F5A5 (see [10]).

Next, we discuss about the Wedderburn components of the group algebras
of groups SL2(Fp) for primes 3 ≤ p ≤ 7 and An for 6 ≤ n ≤ 7 (the group algebra
of the group A5 is already discussed above). For G = SL2(F3), one can see that
there exists a one-one map from G to GL2(F5) as the matrices[

2 1
0 1

]
,

[
0 2
1 2

]
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generates a subgroup in SL2(F3) isomorphic to G. This means by Conjecture 7,
M2(F5) is a Wedderburn component of FqG, which is true (see [9]). Similarly,
we can show that M3(F5) is a Wedderburn component of FqG by using our
conjecture.

For G = SL2(F5), one can see that there are no one-one maps from G
to GL2(F5) and G to GL3(F5). In this case, Conjecture 7 is not applicable.
However, we note that M2(F5) and M3(F5) are not the Wedderburn components
of FqG, which is true (see [21]). Also, we can show that M4(F5) is a Wedderburn
component of FqG by using our conjecture.

For G = SL2(F7), one can see that there is no one-one map from G to
GL2(F11). Consequently, M2(F11) is not the Wedderburn component of FqG (this
result is verified through GAP). Also, we can show that M3(F11) and M4(F11)
are Wedderburn components of FqG by using our conjecture.

For G = A6 and p = 7, one can see that there are no one-one maps from
G to GL2(F7) and G to GL3(F7). Also, [2] implies that M2(F7) and M3(F7) are
not the Wedderburn components of FqG. Further, we can show that M5(F7) is
the Wedderburn component of F7G by using our conjecture.

For G = A7 and p = 11, one can see that there are no one-one maps
from G to GL2(F11) and G to GL3(F11). Also, it is confirmed through GAP that
M2(F11) and M3(F11) are not the Wedderburn components of F11G.

Finally, we end this section by discussing an important observation related
to our conjecture. We remark that the conditions given in the conjecture are only
sufficient but not necessary. This means that if there is no such one-one group
homomorphism Φ′ : G → GLn(Fq), then still Mn(Fq) may be the Wedderburn
component of FqG. For example, in case of G = SL2(F7), there is no one-
one homomorphism from G to GL3(F11), but still M3(F11) is the Wedderburn
component of F11G (this is verified by GAP).

2. Discussion. We have discussed several ways to deduce the Wed-
derburn components of a semisimple group algebra. In this direction, we have
formulated a conjecture and provided many examples in the support of our con-
jecture. A positive answer to this conjecture would give a new way of determining
the Wedderburn components of a semisimple group algebra.
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