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Abstract. We consider univariate real polynomials with all real roots and
with two sign changes in the sequence of their coefficients which are all non-
vanishing. Assume that one of the changes is between the linear and the
constant term. By Descartes’ rule of signs, such degree d polynomials have
2 positive and d − 2 negative roots. We consider the possible sequences of
the moduli of their roots on the real positive half-axis. When these moduli
are distinct, we give the exhaustive answer to the question which positions
can the moduli of the two positive roots occupy.

1. Introduction. In the present text we consider real univariate poly-
nomials. A monic degree d polynomial Q is representable in the form

Q :=
d∑

j=0

ajx
j , aj ∈ R, ad = 1. The polynomial Q is hyperbolic if it has d

2020 Mathematics Subject Classification: 26C10.
Key words: real polynomial in one variable, hyperbolic polynomial, sign pattern, Descartes’

rule of signs.



2 V. P. Kostov

real roots counted with multiplicity. We are interested in the generic case when
all coefficients aj are non-zero and the moduli of all roots are distinct.

Descartes’ rule of signs (see [1, 2, 3, 4, 7, 8, 9, 16, 17]) states that the
number pos of positive roots of Q is majorized by the number c̃ of sign changes
in its sequence of coefficients. When applying this rule to Q(−x), one deduces
that the number neg of negative roots is majorized by the number p̃ of sign
preservations. As pos+neg = c̃+p̃ = d, one finds that for hyperbolic polynomials,
pos = c̃ and neg = p̃. Moreover sgn(a0) = (−1)pos.

The tropical version of Descartes’ rule of signs is suggested in [6]. The
problem treated in the present paper is part of a more general problem about
real univariate, but not necessarily hyperbolic polynomials, considered in [5] (see
also the references therein).

Definition 1. The signs of the coefficients of the polynomial Q form the
sign pattern σ(Q) := (sgn(ad), sgn(ad−1), . . ., sgn(a0)). For monic polynomials,
one has sgn(ad) = + and knowing the sign pattern is the same as knowing the
corresponding change-preservation pattern which is a d-vector whose jth compo-
nent is c (resp. p) if ad+1−jad−j < 0 (resp. if ad+1−jad−j > 0). Example: for
d = 5, the sign pattern (+,−,−,+,−,+) corresponds to the change-preservation
pattern cpccc.

Given a generic monic hyperbolic polynomial Q, one can consider the
moduli of its roots which are d distinct numbers on the positive half-axis and mark
the positions of the moduli of the negative roots. Below we denote the positive
roots by α1 < · · · < αpos and the moduli of negative roots by γ1 < · · · < γneg. The
definition of order (in the sense of order of moduli of roots) and the corresponding
notation should be clear from the following example:

Example 1. Suppose that d = 7, pos = 4 and neg = 3. Suppose that

γ1 < α1 < γ2 < γ3 < α2 < α3 < α4.

Then we say that the moduli of the roots of the polynomial define the order
NPNNPPP , i. e. the letters N and P indicate the relative positions of the
moduli of the negative and positive roots on the positive half-axis.

Definition 2. (1) Given two d-vectors – a change-preservation pattern
and an order – we say that they are compatible if the number of letters c (resp.
p) of the former is equal to the number of letters P (resp. N) of the latter.

(2) A compatible couple (change-preservation pattern, order) (we say cou-
ple for short) is realizable if there exists a monic generic hyperbolic polynomial
whose signs of the coefficients and whose order of the moduli of roots define the
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given couple. In this case we also say that the first of the components of the
couple is realizable by the second one and vice versa.

The present paper studies realizability of couples, a question for which
Descartes’ rule of signs provides no information.

Definition 3. For each change-preservation pattern (or sign pattern)
one defines its corresponding canonical order as follows. One reads the change-
preservation pattern from the right and to each letter c (resp. p) one puts into
correspondence the letter P (resp. N). Example: for d = 5, to the change-
preservation pattern ccpcp (or, equivalently, to the sign pattern (+,−,+,+,−,−))
corresponds the canonical order NPNPP .

Each change-preservation or sign pattern is realizable with its canonical
order, see [11, Proposition 1]. When a change-preservation or sign pattern is
realizable only with its corresponding canonical order, it is called canonical.

Remarks 1. (1) It is shown in [12] that canonical are exactly these
change-preservation patterns which have no isolated sign change and no isolated
sign preservation, i. e. which contain no three consecutive components PNP
or NPN . Hence canonical are exactly these sign patterns which have no four
consecutive signs (+,+,−,−), (−,−,+,+), (+,−,−,+) or (−,+,+,−).

(2) An order realizable with a single sign pattern is called rigid. It turns
out that rigid are exactly the trivial orders (when all roots are of the same sign)
and the orders in which moduli of positive and negative roots alternate, see [13].

In what follows we denote by Σi1,i2,...,is , s = c̃+1, i1+ · · ·+is = d+1, sign
patterns beginning with i1 signs + followed by i2 signs − followed by i3 signs +
etc. Couples in which the sign pattern has just one sign change (i. e. c̃ = 1) have
been considered in [10, Theorem 1 and Corollary 1]. The result of [10] reads:

Theorem 1. The sign pattern Σm,n, 1 ≤ n ≤ m, is realizable with and
only with orders such that α1 < γ2n−1. For 1 ≤ m ≤ n, it is realizable with and
only with orders such that γd−2m < α1.

In the particular case m = n, Theorem 1 imposes no restriction on α1, so
in this case all compatible couples are realizable.

Remarks 2. (1) There exist two commuting involutions acting on sign
and change-preservation patterns and orders:

im : Q(x) 7→ (−1)dQ(−x) and ir : Q(x) 7→ xdQ(1/x)/Q(0).

The involution im exchanges the letters c and p, the letters P and N and the
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numbers c̃ and p̃. The involution ir reads change-preservation patterns and orders
from the right. It preserves the numbers c̃ and p̃. The factors (−1)d and 1/Q(0)
are introduced to preserve the set of monic polynomials. Obviously, a given
couple C is realizable/non-realizable together with the remaining one or three
couples obtained under the Z2×Z2-action defined by im and ir. One has always
im(C) 6= C, but one could have ir(C) = C or imir(C) = C.

(2) Using the involution im one can reduce the study of realizability of
couples to the case c̃ ≤ d/2. The sign patterns Σ1,d and Σd,1 are canonical. For
m > 1 and n > 1, couples with sign patterns Σm,n have just one sign change,
and it is isolated. In this sense they are the closest to the couples with canonical
sign pattern.

In this paper we give the exhaustive answer to the question of realizability
of couples with sign patterns of the form Σm,n,1, i. e. with two sign changes one
of which (for n > 1) is isolated. This is the second simplest case when the sign
pattern is not canonical. (Partial results on it are obtained in [10].) One can
observe that ir(Σm,n,1) = Σ1,n,m.

Notation 1. We remind that for c̃ = 2, we denote by α1 < α2 the positive
roots and by 0 < γ1 < · · · < γd−2 the moduli of the negative roots. For a monic
hyperbolic polynomial Q realizing a couple C with sign pattern Σm,n,1, we denote
by ν(Q) or ν(C) the index j such that γj < α2 < γj+1.

Theorem 2. (A) Suppose that m > n.

(1) If n = 1, then the sign pattern Σm,n,1 is canonical.

(2) If n ≥ 4, then a couple C is realizable if and only if α1 < γ1 and
ν(C) ≤ 2n− 2.

(3) If n = 2 or 3, then a couple C is realizable if and only if either α1 < γ1
and ν(C) ≤ 2n− 2 or γ1 < α1 < α2 < γ2 < · · · < γd−2.

(B) Suppose that m = n > 1. (If m = n = 1, then there are no negative roots
and one has α1 < α2.)

(4) If m = n ≥ 4, then a couple is realizable if and only if α1 < γ1.

(5) If m = n = 2 or m = n = 3, then a couple is realizable if and only if
either α1 < γ1 or γ1 < α1 < α2 < γ2 < · · · < γd−2.

(C) Suppose that m < n.

(6) If m = 1 and n ≥ 3, the sign pattern Σ1,n,1 is canonical.

(7) If m ≥ 2 and n ≥ 5, then a couple C is realizable if and only if α1 < γ1
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and ν(C) ≥ d− 2m = n−m.

(8) The necessary and sufficient conditions for realizability of the remain-
ing sign patterns are as follows:

The sign pattern Σ1,2,1 is realizable with all three orders NPP , PNP and
PPN .

The sign pattern Σ2,3,1 is realizable with and only with the orders NPPNN ,
PPNNN , PNPNN , PNNPN and PNNNP .

The sign pattern Σ2,4,1 is realizable with and only with the orders
PNNPNN , PNNNPN and PNNNNP .

The sign pattern Σ3,4,1 is realizable with and only with the orders
PPNNNNN , PNPNNNN , PNNPNNN , PNNNPNN , PNNNNPN and
PNNNNNP .

The rest of the paper contains the proof of Theorem 2.

2. Proof of part (A) of Theorem 2. Part (1) of Theorem 2 needs
no proof, see part (1) of Remarks 1. For m > n, Theorems 3 and 4 of [10] say
that either ν(Q) ≤ 2n − 1 or γ1 < α1 < α2 < γ2. The latter possibility exists
only for n = 2 and n = 3, and it is realizable. All cases when ν(Q) ≤ 2n− 2 and
α1 < γ1 are also realizable. We prove here that the case ν(Q) = 2n − 1 is not
realizable from which parts (2) and (3) of Theorem 2 follow.

Theorem 3. For m > n ≥ 2, there exists no monic hyperbolic polynomial
Q defining the sign pattern Σm,n,1 and with ν(Q) = 2n− 1.

P r o o f. We remind that m+ n = d and Q =

d∑
j=0

ajx
j , ad = 1. The set

A of hyperbolic polynomials defining the sign pattern Σm,n,1 (this is a subset of
Oa0 . . . ad−1) is open and connected, see [14, Theorems 2 and 3]. One knows that
the subset of A of polynomials with ν(.) ≤ 2n−2 is non-empty ([10, Theorem 4]).
If its subset of polynomials with ν(.) = 2n−1 is also non-empty, then by continuity
there exists a polynomial Q with α2 = γ2n−1 (all other moduli of roots being
distinct and α1 < γ1). One can perform a linear change x 7→ gx, g > 0, to obtain
the condition α2 = γ2n−1 = 1. So now we concentrate on proving the following
theorem from which Theorem 3 follows:

Theorem 4. For m > n ≥ 2, there exists no monic hyperbolic polynomial
defining the sign pattern Σm,n,1 and with roots α1, α2 and −γi, where

0 < α1 < γ1 ≤ · · · ≤ γ2n−2 ≤ 1 = γ2n−1 = α2 < γ2n ≤ · · · ≤ γd−2. 2
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P r o o f o f T h e o r e m 4. We prove Theorem 4 first in the particular
case m = n+ 1:

Proposition 1. There exists no monic hyperbolic polynomial defining the
sign pattern Σn+1,n,1 and with roots α1, α2 and −γi, where

0 < α1 < γ1 ≤ · · · ≤ γ2n−2 ≤ 1 = γ2n−1 = α2.

The proposition is proved after the proof of Theorem 4. The proof of
Theorem 4 is performed by induction on m, where the induction base is the case
m = n+ 1, see Proposition 1.

Lemma 1. Suppose that d ≥ 3 and σ(Q) = Σm,n,1. Set Q = (x+ γi)Q1,
1 ≤ i ≤ d − 2. Then σ(Q1) = Σm1,n1,1, where either m1 = m, n1 = n − 1 or
m1 = m− 1, n1 = n.

P r o o f. Indeed, it is clear that Q1(0) > 0. If the coefficient of x in Q1 is
positive, then the one in Q is also positive and the polynomial Q cannot define
the sign pattern Σm,n,1. Hence Q1 defines a sign pattern of the form Σm1,n1,1,
m1+n1 = m+n−1 = d−1. If n1 > n (resp. if n1 < n−1), then the coefficient of
xn+1 in Q is negative (resp. the coefficient of xn is positive) and the sign pattern
of Q is not Σm,n,1. 2

Suppose that m > n + 1. Define the polynomial Q1 as in Lemma 1. If
n1 = n − 1, then by [10, Theorem 4], ν(Q1) ≤ 2n − 3, so ν(Q) ≤ 2n − 3. This
means that α2 < γ2n−2 – a contradiction. If n1 = n, then by induction hypothesis
such a polynomial Q1 does not exist, so Q does not exist either. 2

P r o o f o f P r o p o s i t i o n 1. Suppose that there exists a polynomial of
the form

Q :=

2n+1∑
j=0

tjx
j = (x2 − 1)R, R := x2n−1 + b2n−2x

2n−2 + · · ·+ b0

defining the sign pattern Σn+1,n,1, where the roots of the factor R are α1,
−γ1, . . ., −γ2n−2, γi ∈ (0, 1]. Then

tj = bj−2 − bj .

We represent the polynomial R in the form

R = (x− α1)(x
2n−2 + e1x

2n−3 + · · ·+ e2n−2),

where ej is the jth elementary symmetric polynomial of the quantities γ1, . . .,
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γ2n−2. Hence

(2.1)
bn−1 = −α1en−1 + en and bn+1 = −α1en−3 + en−2, so

tn+1 = −α1en−1 + en + α1en−3 − en−2.
As t0 > 0 and t1 < 0, one obtains that b0 < 0 and b1 > 0, i. e. the factor R
defines the sign pattern Σ2n−1,1. On the other hand

b0 = −α1γ1 · · · γ2n−2 and b1 = −b0(1/α1 − 1/γ1 − · · · − 1/γ2n−2), therefore

(2.2) 1/α1 − 1/γ1 − · · · − 1/γ2n−2 > 0.

Lemma 2. (1) For γj ∈ (0, 1], it is impossible to simultaneously have the
inequality tn+1 > 0 (see (2.1)) and the equality

(2.3) 1/α1 − 1/γ1 − · · · − 1/γ2n−2 = 0.

(2) For γj ∈ (0, 1], it is impossible to simultaneously have the inequality
tn+1 > 0 and the inequality (2.2).

Part (2) of the lemma finishes the proof of Proposition 1. 2

P r o o f o f L e m m a 2. Part (1). Indeed, the condition tn+1 > 0 is
equivalent to

(2.4) −en−1 + en−3 − (1/α1)(en−2 − en) > 0.

Substituting G := 1/γ1 + · · ·+1/γ2n−2 for 1/α1 in the last inequality one obtains

(2.5) τ := −en−1 + en−3 −G(en−2 − en) > 0.

Set I := {1; 2; . . . ; 2n − 2}. Denote by Y a fixed product of n − 3 quantities γi
with distinct indices (hence a summand of en−3) and by J the (n − 3)-tuple of
these indices. Further we write Y (J). Set K := I \ J . The coefficient of Y (J) in

en−3 equals 1. There are exactly

(
n+ 1

2

)
products of n − 1 quantities γj with

distinct indices whose (n − 1)-tuple contains the (n − 3)-tuple J . Indeed, the
remaining two indices must be among the n+ 1 indices of the set K.

On the other hand in the sum
∑
J⊂I

 ∑
k,`∈K,k<`

γkγ`

Y (J) each summand

of en−1 is counted

(
n− 1

2

)
times. Therefore one can write

en−3 =
∑
J⊂I

Y (J) and en−1 =
∑
J⊂I

S2(J)Y (J)/

(
n− 1

2

)
, S2(J) :=

∑
k,`∈K,k<`

γkγ`.
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One can similarly set

en−2 =
∑
J⊂I

S1(J)Y (J)/(n− 2), S1(J) :=
∑
k∈K

γk and

en =
∑
J⊂I

S3(J)Y (J)/

(
n

3

)
, S3(J) :=

∑
k,`,m∈K,k<`<m

γkγ`γm.

The inequality γiγjγk ≤ (γ2i + γ2j )γk/2 implies that each term in the sum S3(J)
either equals a product of terms of S1(J) and S2(J) or is majorized by the half-
sum of such terms. Counting the terms in these three sums yields

(2.6) S3(J)/

(
n+ 1

3

)
≤ (S1(J)/(n+ 1))

(
S2(J)/

(
n+ 1

2

))
,

so for the coefficient S of Y (J) in the product −G(en−2− en) (see (2.5)) one gets

(2.7)

S :=−S1(J)/(n− 2) + S3(J)/

(
n

3

)

≤ −S1(J)

(
1/(n− 2)− S2(J)

(
n+ 1

3

)
/(n+ 1)

(
n

3

)(
n+ 1

2

))
.

The following inequalities hold true:

(2.8) GS1(J) > S1(J)
∑
j∈K

1/γj ≥ (n+ 1)2

(we apply the inequality between the mean arithmetic and the mean harmonic
here). One finds directly that

(2.9)

(
n+ 1

3

)
/(n+ 1)

(
n

3

)(
n+ 1

2

)
= 1/(n− 2)

(
n+ 1

2

)
.

Consider the product Y (J) in the different terms of the left hand-side of (2.5).
Its coefficient equals

κ :=−S2(J)/

(
n− 1

2

)
+ 1−GS1(J)/(n− 2) +GS3(J)/

(
n

3

)

< −S2(J)/

(
n+ 1

2

)
+ 1−GS1(J)/(n− 2) +GS1(J)S2(J)/(n− 2)

(
n+ 1

2

)

= (1− S2(J)/

(
n+ 1

2

)
)(1−GS1(J)/(n− 2)).



On Descartes’ rule of signs for hyperbolic polynomials 9

For the first term of the second line we use the inequality

(
n+ 1

2

)
>

(
n− 1

2

)
;

for the rightmost term of the second line we use (2.6) and (2.9). The second
factor is negative, see (2.8). The first factor is non-negative, because γi ∈ (0, 1].
Hence κ < 0. This is the case of κ defined for any product Y (J), so τ < 0. This
contradicts (2.5).

Part (2). For fixed quantities γi ∈ (0, 1], the left-hand side of (2.4) de-
creases as 1/α1 increases. This follows from en−2 ≥ en. To prove the latter
inequality we denote by Z(J∗) the product of (n− 2) quantities γj with distinct
indices whose (n− 2)-tuple is denoted by J∗. Then

en =
∑
J∗⊂I

 ∑
k,`∈I\J∗,k<`

γkγ`

 /

(
n

2

)Z(J∗).

The numerator of the coefficient of Z(J∗) contains

(
n

2

)
summands which are

≤ 1. Hence en ≤
∑
J∗⊂I

Z(J∗) = en−2 and part (2) follows from part (1). 2

3. Proof of part (B) of Theorem 2. One knows (see the lines after
Theorem 1) that for c̃ = 1, all sign patterns Σn,n are realizable with all possible
orders. Hence there exist degree d−1 polynomials Q[ with roots −γ1, . . ., −γd−2
and α2, where α2 < γ1 or γk < α2 < γk+1, 1 ≤ k ≤ d − 3, or γd−2 < α2. One
constructs then Q in the form (x− α1)Q[, where α1 > 0 is very close to 0. Thus
the respective coefficients of the polynomials xQ[ and Q (except their constant
terms) have the same signs and one has σ(Q) = Σn,n,1. Therefore any order in
which α1 < γ1 is realizable with the sign pattern Σn,n,1.

On the other hand for c̃ = 2 and n ≥ 4, one has α1 < γ1, while for n = 2
and n = 3, if γ1 < α1, then γ1 < α1 < α2 < γ2 < · · · < γd−2 and this order is
realizable with the sign pattern Σn,n,1, see [10, Theorem 3]. This proves part (B).

4. Proof of part (C) of Theorem 2. Part (6) of the theorem follows
from part (1) of Remarks 1.

To prove parts (7) and (8) of Theorem 2 we use some lemmas whose
proofs are given in Section 5.

Lemma 3. For a polynomial P defining the sign pattern Σn−1,n,1, n ≥ 5,
one has ν(P ) ≥ 1. All couples C with sign pattern Σn−1,n,1, n ≥ 5, and ν(C) ≥ 1
are realizable.
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Remark 1. Lemma 3 does not hold for n = 4 as shown by the following
example:

P := (x+ 1.01)5(x− 1)(x− 0.1)

= x7 + 3.95x6 + 4.746x5 − 0.41309x4 − 5.11019095x3

−3.642011005x2 − 0.63580905x+ 0.105101005.

If one perturbs the five-fold root at −1.01 to obtain five distinct real roots close
to it, one gets a polynomial P with ν(P ) = 0.

Lemma 4. If for the hyperbolic polynomial Q, one has σ(Q) = Σ2,n,1,
n ≥ 4, then ν(Q) ≥ n− 2.

Lemma 5. If for the hyperbolic polynomial Q, one has σ(Q) = Σ3,5,1,
then ν(Q) ≥ 2.

We prove part (7) of Theorem 2 by induction on n and m. The proof of
part (7) for Σ2,5,1, Σ3,5,1 and Σ4,5,1 follows from Lemmas 4, 5 and 3 respectively.
We observe that part (7) is true for couples with sign patterns Σ1,n,1 (which are
canonical).

Suppose that part (7) is proved

for n ≤ n0 (n0 ≥ 5), 1 ≤ m ≤ n0 − 1 and

for n = n0 + 1, 1 ≤ m ≤ m0 (1 ≤ m0 ≤ n0 − 1).

Consider a couple C with sign pattern Σm0+1,n0+1,1. If m0 = n0 − 1, then we
apply Lemma 3.

Suppose that 1 ≤ m0 ≤ n0 − 2. We apply Lemma 1. We represent a
polynomial Q (with σ(Q) = Σm0+1,n0+1,1) realizing the couple C in the form
(x+ γ1)Q1. If σ(Q1) = Σm0,n0+1,1, then by inductive assumption we get

ν(Q1) ≥ n0 + 1−m0 > n0 + 1− (m0 + 1), so ν(Q) ≥ n0 + 1− (m0 + 1).

If σ(Q1) = Σm0+1,n0,1, then ν(Q1) ≥ n0 − (m0 + 1) which for m0 ≤ n0 − 2
is positive. In this case, as γ1 is the smallest of moduli of negative roots, the
inequality ν(Q1) ≥ 1 implies γ2 < α2 and ν(Q) = ν(Q1) + 1 ≥ n0 + 1− (m0 + 1).
This proves part (7).

Part (8). The claim about Σ1,2,1 follows from [10, Example 2].

The statement about Σ2,3,1 results from [10, Theorems 3 and 4] (for the
orders NPPNN , PNNNP , PNNPN , PNPNN and the ones with which it is
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not realizable). It results for the order PPNNN from the following example:

(x+ 1.3)(x+ 1.2)(x+ 1.1)(x− 1)(x− 0.5)

= x5 + 2.1x4 − 0.59x3 − 2.949x2 − 0.419x+ 0.858.

The result concerning the sign pattern Σ2,4,1 is proved in [15, Subsection 3.2].

Realizability of the sign pattern Σ3,4,1 with the order PPNNNNN fol-
lows from Remark 1. Its realizability with the orders PNPNNNN , PNNPNNN ,
PNNNPNN , PNNNNPN and PNNNNNP , as well as its non-realizability
with the remaining orders, can be deduced from [10, Theorems 3 and 4].

5. Proofs of Lemmas 3, 4 and 5.
P r o o f o f L e m m a 3. The second claim of the lemma follows from [10,

Part (2) of Theorem 4], so we prove only its first claim. One has to show that there
exists no polynomial P with σ(P ) = Σn−1,n,1 and ν(P ) = 0. Suppose that such
a polynomial exists. Then there exists also a polynomial P with σ(P ) = Σn−1,n,1
and such that α2 = γ1 = 1 (this is proved exactly as in the beginning of the proof
of Theorem 3). Set

U :=
2n−3∏
j=1

(x+ γj) =
2n−3∑
j=0

u2n−3−jx
j , uj > 0, so

P = (x2 − (1 + α1)x+ α1)U =
2n−1∑
j=0

p2n−1−jx
j .

Thus

pn−1 = un−1 − (1 + α1)un−2 + α1un−3.

We set uj := ej + ej−1, where ej is the jth elementary symmetric polynomial of
the quantities γ2, . . ., γ2n−3, with e0 = 1 and e−1 = 0. Hence

(5.1)
en−1 + en−2 − (1 + α1)(en−2 + en−3) + α1(en−3 + en−4) < 0, i. e.

en−1 − α1en−2 − en−3 + α1en−4 < 0.

We apply a reasoning similar to the one used in the proof of Lemma 2. Namely,
we prove that it is impossible to have simultaneously (5.1) and

(5.2) 1/α1 >
2n−3∑
j=2

1/γj .
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To this end we first show that one cannot have at the same time (5.1) and

(5.3) 1/α1 =
2n−3∑
j=2

1/γj .

So suppose that the couple of conditions (5.1) and (5.3) is possible. Set 1/α1 =

S−1 :=
2n−3∑
j=2

1/γj . This means that

(5.4) S−1(en−1 − en−3)− en−2 + en−4 < 0.

Set I := {2; 3; . . . ; 2n − 3}. Denote by Y a fixed product of n − 4 quantities γi
with distinct indices (hence a summand of en−4) and by J the (n − 4)-tuple of
these indices. Further we write Y (J). Set K := I \ J . The coefficient of Y (J)

in en−4 equals 1. There are exactly

(
n

2

)
products of n − 2 quantities γj with

distinct indices whose (n − 2)-tuple contains the (n − 4)-tuple J . Indeed, the
remaining two indices must be among the n indices of the set K.

On the other hand, in the sum
∑
J⊂I

(
∑

k,`∈K,k<`

γkγ`)Y (J) each summand of

en−2 is counted

(
n− 2

2

)
times. Therefore one can write

en−4 =
∑
J⊂I

Y (J) and en−2 =
∑
J⊂I

S2(J)Y (J)/

(
n− 2

2

)
, S2(J) :=

∑
k,`∈K,k<`

γkγ`.

One can similarly set

en−3 =
∑
J⊂I

S1(J)Y (J)/(n− 3), S1(J) :=
∑
k∈K

γk and

en−1 =
∑
J⊂I

S3(J)Y (J)/

(
n− 1

3

)
, S3(J) :=

∑
k,`,m∈K,k<`<m

γkγ`γm.

For a given (n− 4)-tuple J , the coefficient of Y (J) in the left hand-side of (5.4)
equals

φ := S−1(S3(J)− S1(J))− S2(J) + 1.

The quantity S1(J) (resp. S3(J)) contains n (resp.

(
n

3

)
) terms. As all quantities

γj , j ≥ 2, are > 1, one has

S3(J) > S1(J)

(
n

3

)
/n.
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Hence

φ >

(
n
3

)
− n(
n
3

) S3(J)S−1 − S2(J) + 1.

We set S−1(J) =
∑
j∈K

1/γj . One has

S3(J)S−1 > S3(J)S−1(J) ≥
(
n

3

)
nS2(J)/

(
n

2

)
and

(
n
3

)
− n(
n
3

) ·
(
n
3

)
n(

n
2

) =
n

n− 1
· (n− 1)(n− 2)− 6

3
=: ψ.

Thus

φ > (ψ − 1)S2(J) + 1.

For n ≥ 5, one has ψ > 1 and φ > 0. Summing up over all sets J one obtains a
contradiction with (5.4).

If one supposes that (5.1) and (5.2) are valid simultaneously, then one
again arrives at a contradiction with (5.4). Indeed, if in the product S−1(en−1 −
en−3) (see (5.4)) one replaces S−1 by a larger positive quantity, then the left-hand
side of (5.4) increases. This is due to the fact that the symmetric elementary
polynomials en−1 and en−3 contain one and the same number of summands, but
the quantities γj are > 1, so en−1 > en−3. 2

P r o o f o f L e m m a 4. We use the involution ir (see part (1) of Re-
marks 2) and consider polynomials defining the sign pattern Σ1,n,2 instead of
Σ2,n,1. We denote again the positive roots by α1 < α2 and the moduli of the
negative roots by γ1 < · · · < γn. One has γn < α2 (see [10, Theorem 3] and
part (1) of Remarks 2). In the new setting we have to prove that no hyperbolic
polynomial Q with σ(Q) = Σ1,n,2 has the property γ3 < α1.

Suppose that such a polynomial exists, so γ1, γ2, γ3 ∈ (0, α1). We set

A1 := α1 + α2, A−1 := 1/α1 + 1/α2, A−2 := 1/α1α2

G1 := γ1 + γ2 + γ3 G−1 := 1/γ1 + 1/γ2 + 1/γ3, H1 := γ4 + · · ·+ γn,

H−1 := 1/γ4 + · · ·+ 1/γn L−2 :=
∑

1≤i<j≤n
1/γiγj , δ := α1α2γ1 · · · γn.
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The coefficients of xn+1 and x2 of Q are given by

cn+1 := −A1 +G1 +H1 and

c2 := (−A−1(G−1 +H−1) +A−2 + L−2)δ.

We show that it is impossible to have simultaneously the inequalities

(5.5)
γi ≤ α1, i = 1, 2, 3, γj ≥ α1, j ≥ 4

cn+1 ≤ 0 and c2 < 0.

Suppose that these inequalities except the last one hold true. We show that then
the minimal possible value of c2/δ is positive. Fix the sum g12 := γ1 + γ2. The
terms in the expression for c2/δ containing γ1 or γ2 are:

((−A−1 + 1/γ3 +H−1)g12 + 1)/γ1γ2 =: η/γ1γ2.

As γ3 ≤ α1 and H−1 ≥ 1/γ4, the quantity η is not smaller than

(−1/α2 + 1/γ4)g12 + 1 = (γ1α2 + γ2α2 + (α2 − γ1 − γ2)γ4)/α2γ4.

Conditions (5.5) except the last of them imply α2 > γ1 + γ2. Hence η > 0. This
means that for fixed g12, the quantity c2/δ is minimal when 1/γ1γ2 is minimal,
i. e. when γ1 = γ2. In the same way one obtains that minimality of c2/δ is
possible only for γ1 = γ2 = γ3 which we suppose to hold true from now on.

Fix the sum A1. The condition cn+1 ≤ 0 implies

A1 ≥ 3γ1 +H1 ≥ 3γ1 + γ4.

The terms containing α1 or α2 in c2/δ are:

(−A1(3/γ1 +H−1) + 1)A−2 ≤ (−A1(3/γ1 + 1/γ4) + 1)A−2

= (−A1(3γ4 + γ1) + γ1γ4)A−2/γ1γ4 < (−(3γ4 + γ1)(3γ1 + γ4) + γ1γ4)A−2/γ1γ4

= (−3γ24 − 9γ1γ4 − 3γ21)A−2/γ1γ4 < 0.

This expression is minimal when A−2 is maximal, i. e. when α1 = γ1. In this
case the coefficient which multiplies 1/α2 in the quantity c2/δ equals

−3/γ1 −H−1 + 1/γ1 = −2/γ1 −H−1 < 0,

so c2/δ is minimal when 1/α2 is maximal, i. e. when α2 is minimal, so cn+1 = 0

and α2 = H1 + 2γ1. Set H−2 :=
∑

4≤i<j≤n
1/γiγj . Thus we have

L−2 = 3/γ21 + (3/γ1)H−1 +H−2 and
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c2/δ = −(1/γ1 + 1/(H1 + 2γ1))(3/γ1 +H−1)

+1/γ1(H1 + 2γ1) + 3/γ21 + (3/γ1)H−1 +H−2

= −2/γ1(H1 + 2γ1) + (2/γ1)H−1 −H−1/(H1 + 2γ1) +H−2.

For n = 4, the term H−2 is absent, one has H1 = γ4, H−1 = 1/γ4, so

c2/δ = −2/γ1(γ4 + 2γ1) + 2/γ1γ4 − 1/γ4(γ4 + 2γ1) = 3/γ4(γ4 + 2γ1) > 0.

For n ≥ 5, one gets H−1 > 1/(H1 + 2γ1) and H−2(H1 + 2γ1) > H−1, so again
c2/δ > 0. Thus one cannot have all conditions (5.5) fulfilled at the same time
which proves the lemma. 2

P r o o f o f L e m m a 5. As in the proof of Lemma 4 we use the involution
ir (see part (1) of Remarks 2). We consider polynomials defining the sign pattern
Σ1,5,3 instead of Σ3,5,1. Thus for the positive roots α1 < α2 and for the moduli
of the negative roots γ1 < · · · < γ6 one has γ6 < α2 (see [10, Theorem 3] and
part (1) of Remarks 2). We have to show that no hyperbolic polynomial Q with
σ(Q) = Σ1,5,3 satisfies γ5 < α1.

Suppose that such a polynomial exists, so γ1, . . ., γ5 ∈ (0, α1). Making a
linear change x 7→ bx, b > 0, one obtains the condition α1 = 1. We set

A1 := α1 + α2, A−1 := 1/α1 + 1/α2, A−2 := 1/α1α2

H1 :=

6∑
j=1

γj H−1 :=

6∑
j=1

1/γj , H−2 :=
∑

1≤i<j≤6
1/γiγj ,

H−3 :=
∑

1≤i<j<k≤6
1/γiγjγk, and δ := α1α2γ1 · · · γ6.

The coefficients of x7 and x3 of Q are equal to

c7 := −A1 +H1 and

c3 := (−A−1H−2 +A−2H−1 +H−3)δ.

We show that it is impossible to simultaneously obtain the conditions

γ1 ≤ · · · ≤ γ5 ≤ 1 ≤ γ6, c7 < 0 and c3 < 0.

We prove that for fixed sum g1 := γ1 + γ2, the quantity c3/δ is minimal for
γ1 = γ2. To this end we set

g−1 := 1/γ1 + 1/γ2 = g1/γ1γ2, G−1 := 1/γ3 + · · ·+ 1/γ6, G−2 :=
∑

3≤i<j≤6
1/γiγj
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and observe that the terms in c3/δ containing γ1 or γ2 are:

−A−1(1/γ1γ2 + g−1G−1) +A−2g−1 + (1/γ1γ2)G−1 + g−1G−2

= (−A−1(1 + g1G−1) +A−2g1 +G−1 + g1G−2)/γ1γ2

= ((−A−1 +G−1) + g1(−A−1G−1 +A−2 +G−2))/γ1γ2.

Obviously −A−1 +G−1 > 1/γ3 + 1/γ4 ≥ 2/γ4. Notice that g1 ≤ 2. We show that

(5.6) 1/γ4 −A−1G−1 +A−2 +G−2 ≥ 0

which means that c3/δ is minimal when γ1γ2 is maximal, i. e. when γ1 = γ2.
Inequality (5.6) results from the two inequalities

(1/α2)G−1 ≤ 1/γ3γ6 + 1/γ4γ6 + 1/γ5γ6 +A−2 and

G−1 ≤ 1/γ4 + 1/γ3γ4 + 1/γ3γ5 + 1/γ4γ5.

The first of them follows from 1/γiγ6 ≥ 1/γiα2, i = 3, 4, 5 and 1/α2γ6 ≤ 1/α2.
The second results from

G−1 ≤ 1/γ3 + 1/γ4 + 2/γ5 ≤ 1/γ4 + 1/γ3γ4 + 1/γ3γ5 + 1/γ4γ5.

It should be noticed that if instead of γ1 and γ2 one chooses other two quantities
γi and γj , 1 ≤ i < j ≤ 5, the proof that c3/δ is minimal for γi = γj can be
performed in the same way.

Thus one needs to consider only the situation γ1 = · · · = γ5 in which case

c3/δ = −(1 + 1/α2)(10/γ21 + 5/γ1γ6) + (1/α2)(5/γ1 + 1/γ6) + 10/γ31 + 10/γ21γ6.

The coefficient of 1/α2 is

(−10/γ21 + 5/γ1) + (−5/γ1γ6 + 1/γ6) < 0.

Hence c3/δ is minimal when α2 is minimal, i. e. when α2 = 5γ1 + γ6− 1. Further
we shorten the notation as follows: we set a := α2, r := γ1 and w := γ6. Hence
0 < r ≤ 1 ≤ w ≤ a. For a = 5r + w − 1, we compute the product

ar3wc3/δ = (5r + w − 1)r3wc3/δ =: −2K.

One obtains

K = 12r3 + 25r2w + 5rw2 − 25r2 − 30rw − 5w2 + 5r + 5w

= −(1− r)(12r2 + 25rw + 5w2 − 5r − 5w)− 8r2 < 0.

The minimal possible value of c3/δ being positive, one cannot have c7 < 0 and
c3 < 0 at the same time. This proves the lemma. 2
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