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Abstract. A local convergence analysis is developed for Newton’s method
in order to approximate a solution of a generalized equations in a Banach
space setting. The convergence conditions are based on generalized conti-
nuity conditions on the Fréchet dervative of the operator involved and the
Aubin property. The specialized cases of our results extend earlier ones using
similar information.

1. Introduction. A plethora of applications from diverse disciplines
can be reduced using Mathematical Modelling to solving the generalized equation
of the form

(1.1) g(x) +G(x) 3 0.

Here, B1, B2 are denoting Banach spaces, g : B1 −→ B2 is a continuously dif-
ferentiable operator, and G : B1 ⇒ B2 is a set-valued operator with a closed
nonempty graph [12, 13]. The local convergence analysis of the Newton’s method

(1.2) g(xn) + g′(xn)(xn+1 − xn) +G(xn+1) 3 0, n = 0, 1, 2, . . .
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for approximating a solution x∗ ∈ B1 of the generalized equation (1.1) when
G = 0 or not has be given in [1, 2, 3, 4, 6, 7, 11, 14] under various conditions
such as Lipschitz, Hölder continuity on the Fréchet derivative of the operator g.
Such conditions are important in the convergence of Newton’s method, since they
control the derivative [5, 8, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

The local convergence analysis of Newton’s method (1.2) is revisited us-
ing the Aubin property which is related to metric regularity as it is shown by
Dontchev and Rockafellar in [12, 13]. It turns out that even in the specialization
of Newton’s method (1.2), when G = 0 the following advantages are obtained

(1) Larger radius of convergence.
(2) Tighter error distances on ‖xn − x∗‖ and
(3) An at least as precise information on the location of the solution.
Moreover, we make a special comment on the notable study by Cibulka et

al. [9], where the semi-local convergence analysis of the method (1.2) is developed
under Lipschitz continuouty conditions and Kantorovich-type assumptions are
utilized. However, a direct comparison is not possible, since our results are local.
Moreover, we use generalized Lipschitz-type conditions in our analysis in order
to include a larger class of problems. However, our approach can certainly be
applied to the semi-local case.

The rest of the paper includes: Preliminaries in Section 2; the local con-
vergence in Section 3 and the special cases and numerical examples in Section 4.

2. Preliminaries. We assume familiarity with the concepts of graph
(gph G), the domain (dom), the range (rge) and the inverse G−1 of a set-valued
operator G [1, 2, 3]. Moreover, we use d, e which are the standard notations for
the distance and excess, respectively between two subsets of B1. Let R > 0.

Define the linearization error for some continuously differentiable function
f : [0, R) −→ (−∞),+∞)

ef (v1, v2) = f(v2)− f(v1)− f ′(v1)(v2 − v1)

for each v1, v2 ∈ [0, R),

Ef (u1, u2) = g(u2)− g(u2)− f ′(u1)(u2 − u1)

for each u1, u2 ∈ B1 and

Eg+G,x∗(v) = g(x) + f ′(x)(v − x∗) +G(v)

for each x, v ∈ B1.
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The definition of the Aubin property and the following version of the con-
traction mapping principle are given in order to make the article as self contained
as possible. More information can be found in [8, 11, 12].

The notation U(x, α) is used to denote an open ball centered at x ∈ B1

and of radius α > 0. Moreover, U [x, α] stands for the closure of U(x, α).

Definition 2.1 ([13]). Let ỹ ∈ B2 for x̃ ∈ B1. Then, the inverse operator
G−1 of G is said to have the Aubin property at (ỹ, x̃) with modulus c, provided
that x̃ ∈ G−1(ỹ), if gphG−1 is locally closed at (ỹ, x̃), for x̃ ∈ G−1(ỹ), and there
exist constants a, b > 0 so that

e−1(G−1(y) ∩ U [x̃, a], G−1(y1)) ≤ c‖y − y1‖

for each y, y1 ∈ U [ỹ, b].

Theorem 2.2 ([10]). Let Ψ : B1 ⇒ B1 be a set-valued operator and
z ∈ B1. Suppose:
There exist scalars β > 0 and p ∈ (0, 1) so that gphΨ∩(U [z, β]×U [z, β]) is closed
and

(i) d(z,Ψ(z)) ≤ β(1− p)

(ii) e(Ψ(x) ∩ U [z, β],Ψ(z1)) ≤ p‖x− z1‖ for each x, z1 ∈ U [z, β].

Then, there exists z∗ ∈ U [z, β] so that z∗ ∈ Ψ(z∗), i.e. Ψ admits a fixed point in
U [z, β].

3. Local Convergence. It is worth noticing that the Aubin property
is related to the metric regularity [13]. Consequently, the results are provided
in terms of metric regularity. But first, we need a relationship between different
types of majorant conditions.

Assume R > 0.

Definition 3.1. A function h0 : [0, R) −→ (−∞,+∞) which is continu-
ous and non-decreasing is said to be a center-majorant function for g on U(x∗, R)
with modulus c1 if for each y ∈ U [x∗, R]

(A1) c1‖g′(y)− g′(x∗)‖ ≤ h0(‖y − x∗‖).
(A2) The function h0(t)−1 has a smallest zero denoted by ρ which satisfies

ρ ∈ (0, R].

Definition 3.2. A function h = h(h0) : [0, ρ) −→ (−∞,+∞) which is
continuous and non-decreasing is said to be a restricted -majorant function for g
on U(x∗, ρ) with modulus c1 if for each θ ∈ [0, 1], y ∈ U(x∗, ρ)



4 I. K. Argyros, S. George

(A3) c1‖g′(y)− g′(x∗ + θ(y − x∗))‖ ≤ h((1− θ)‖y − x∗‖).

Notice that the function h0 depends on x∗ and ρ̄, where as the function
h relies on x∗, ρ and h0.

(A4) Assume:

(3.1) h0(s) ≤ h(s) for each s ∈ [0, ρ).

Definition 3.3. A function h1 : [0, R) −→ (−∞,+∞) which is continu-
ous and non-decreasing is said to be a majorant function for g on U(x∗, ρ) with
modulus c1 > 0 if for each θ ∈ [0, 1], y ∈ U(x∗, ρ̄).

(A3)′ c1‖g′(y)− g′(x∗ + θ(y − x∗))‖ ≤ h1((1− θ)‖y − x∗‖).

It follows by these definitions that

(3.2) h0(s) ≤ h1(s) and h(s) ≤ h1(s) for each s ∈ [0, ρ).

Thus, the results in the literature using only h1 (see e.g.[11, 14, 15] for
G = 0) can be replaced by the pair (h0, h) resulting to finer error distances, a
larger convergence radius and a more precise and larger uniqueness radius for the
solution x∗. These advantages are obtained under the same computational cost,
since in practice the computation of the function h1 requires that of h0 and h as
special cases.

Define the Newton iteration for solving the equation h(s) = 0 given by

s0 = ‖x0 − x∗‖

sn+1 =

∣∣∣∣∣
∫ 1
0 h̄((1− θ)sn)dθsn

1− h0(sn)

∣∣∣∣∣(3.3)

and for each n = 0, 1, 2, . . ., where h̄ =

{
h0 n = 0
h n = 1, 2, 3 . . .

.

Furthermore, define the set-valued operator Ψx : B1 ⇒ B1 by

(3.4) Ψx(v) = E−1g+G,x∗(Eg(x, v)− Eg(x∗, v)),

where

(3.5) E−1g+G,x∗(w) = {w1 ∈ B1 : w ∈ Eg+G,x∗(w1)}.

(A5) The set valued operator v −→ E−1g+H,x∗(v) posesses the Aubin prop-
erty at zero for x∗, with modulus c1 and related parameters a1, b1 > 0.
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Define the function ϕ : R −→ R by

ϕ(s) =

[∫ 1

0
h((1− θ)s)dθ + h0(s)

]
s− b1.

It follows by this definition that ϕ(0) = −b1 < 0 and lim
s−→+∞

ϕ(s) = +∞. Then,

by the intermediate value theorem the equation ϕ(s) = 0 has solutions in (0,+∞).
Denote by ρ0 the smallest such solution.

(A6) ρ0 ≤ ρ.

Two auxiliary results are needed.

Lemma 3.4. Assume the conditions (A1)–(A5) are valid. Then, the
following items are also valid:

(i) c1‖Eg(z, x∗)‖ ≤ eh(‖x∗ − z‖, 0), for each z ∈ U(x∗, ρ0) and
(ii) ‖Eg(z, v)− Eg(x∗, v)‖ ≤ b1, for each U(x∗, s) and s ∈ [0, ρ0).

P r o o f. Notice that for each θ ∈ [0, 1] :

‖x∗ + (1− θ)(z − x∗)− x∗‖ = (1− θ)‖z − x∗‖ ≤ ‖z − x∗‖ < ρ0,

thus, x∗ + (1 − θ)(z − x∗) ∈ U(x∗, ρ0). By the definition of the operator Eg, we
can first write

c1‖Eg(z, x∗)‖ ≤ c1
∫ 1

0
‖g′(z)− g′(x∗ + (1− θ)(z − x∗)‖‖z − x∗‖dθ

leading to (i) by integration by parts and the definition of the function eh. More-
over, from the definition of ρ0, Eg and the conditions (A1) and (A5) we get in
turn for z ∈ U(x∗, s) and v ∈ U(x∗, s)

‖Eg(z, v)− Eg(x∗, v)‖ ≤ ‖Eg(z, x∗)‖+ ‖g′(z)− g′(x∗)‖‖v − x∗‖

≤ [eh(‖z − x∗‖, 0) + h0(‖v − x∗‖)]‖v − x∗‖

≤
[∫ 1

0
h((1− θ)ρ0)dθ + h0(ρ0)

]
ρ0 = b1.

2

(A7) The equation

∫ 1

0
h((1−θ)s)dθ+h0(s)−1 = 0 has a smallest solution

ρ1 ∈ (0, ρ0).

Define the radius
ρ∗ = min{a1, ρ1}.
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Notice that if z ∈ Ψx(z), then

g(x) + f ′(x)(z − x) +G(z) 3 0.

Lemma 3.5. Assume that the conditions (A1)–(A7) are valid. Then, the
conditions of the Theorem 2.2 are also valid if

β =

∫ 1
0 h((1− θ)s)dθ
s(1− h0(s))

‖x∗ − x‖

and
p := h0(‖x∗ − x‖) ∈ [0, 1)

for x ∈ U(x∗, s) and s ∈ (0, ρ∗). Moreover, there exists z ∈ Ψx(z) so that

‖x∗ − z‖ ≤
∫ 1
0 h((1− θ)s)dθ
s(1− h0(s))

‖x∗ − x‖.

P r o o f. Notice that by the choice of x and ρ∗, p ∈ [0, 1). By the
definitions (3.4) and the excess e and since

x∗ ∈ L−1g+G,x∗(θ) ∩ U [x∗, a1]

and Eg(x∗, x∗) = 0 it follows

d(x∗,Ψx(x∗) ≤ c1‖Eg(x, x∗)‖ ≤ eg(‖x∗ − x‖, 0).

The definition of eg and β give

eg(‖x∗ − x‖, 0)

1− h0(‖x∗ − x‖)
≤
∫ 1
0 h((1− θ)s)dθ
s(1− h0(s))

‖x∗ − x‖

showing item (i) of the Theorem 2.2. Moreover, we have that for x ∈ U(x∗, s), ρ <
ρ∗ < a1. Then, by (3.4)

e(ψx(z) ∩ U [x∗, β],Ψx(u))

= e(L−1g+G,x∗(Eg(x, z)− Eg(x∗, z)) ∩ U [x∗, a1]

= L−1g+G,x∗(Eg(x, z)− Eg(x∗, z)).

But β < ρ∗ and z, u ∈ U [x∗, β], so we have z, u ∈ U [x∗, ρ∗]. Consequently, by the
Lemma 3.4 and (A6) we obtain in turn

‖Eg(x, z)− Eg(x∗, z)‖ ≤ b1,
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‖Eg(x, u)− Eg(x∗, u)‖ ≤ b1,

and

e(ψx(z) ∩ U [x∗, β],Ψx(u))

≤ c1‖Eg(x, z)− Eg(x∗, z)− Eg(x, u) + Eg(x∗, u)‖
≤ c1‖g′(x)− g′(x∗)‖‖u− z‖

= ≤ h0(‖x− x∗‖)‖u− z‖,

showing the item (ii) in the Theorem 2.2. Moreover, xn+1 ∈ Ψ(xn+1) exists and
satisfies (1.2).

Define the sequence {sn} given by the formula (3.6). Notice that

s1 − s0 =

(∫ 1
0 h0((1− θ)s0)dθ

1− h0(s0)

)
s0 ≤ 0,

so 0 ≤ s1 ≤ s0. It follows by this definition and a simple inductive argument that

sn+1 − sn =

(∫ 1
0 h̄((1− θ)sn)dθ

1− h0(sn)

)
sn ≤ 0.

Thus, the sequence {sn} is non-decreasing and bounded from below by 0
and as such it converges to some s̄ ∈ [0, s0]. By letting n −→ +∞ in the definition
of the sequence {sn}, we get

s̄(1− h0(s̄)) =

∫ 1

0
h((1− θ)s̄)dθs̄.

If s̄ 6= 0, then ∫ 1

0
h((1− θ)s̄)dθ + h0(s̄) = 1

for s̄ ∈ (0, s0) so, s̄ < ρ1. Hence, s̄ = lim
n−→+∞

sn = 0. Therefore, the sequence

{sn} is convergent to zero. 2

Notice that by its definition this sequence is non-increasing if the function

µ(s) =

∫ 1
0 h((1− θ)s)dθ
s(1− h0(s))

is non-increasing in (0, ρ1).

(A8) The equation

∫ 1

0
h0(θs)ds− 1 = 0 has a smallest solution δ ∈ (0, ρ̄).
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Define the parameter γ > 0 by

γ = min{c1b1, δ, ρ0}.

The isolation of x∗ as a solution of the equation (1.1) is determined in the next
result.

Proposition 3.6. Assume that the conditions (A1) and (A5) are valid
and the set valued operator v −→ L−1g+G,x∗(v) is single valued in U(0, b1). Then,
the equation (1.1) is uniquely solvable by x∗ in the ball U(x∗, δ).

P r o o f. Suppose that x̄ ∈ U(x∗, γ) for 0 < ‖x̄− x∗‖ < γ is a solution of
the equation (1.1). Let z = x∗ + θ(x̄− x∗). Then, by the condition (A1) and the
definition of the parameters γ and ρ0, we get in turn

c1‖Eg(x∗, x̄)‖ ≤
∫ 1

0
c1‖g′(x∗ + θ(x̄− x∗))− g′(x∗)‖‖x̄− x∗‖dθ

≤
∫ 1

0
h0(θ‖x̄− x∗‖‖x̄− x∗‖dθ

≤ h0(‖x̄− x∗‖)‖x̄− x∗‖
< ‖x̄− x∗‖

and

‖Eg(x∗, x̄)‖ =
‖x̄− x∗‖

c1
≤ b1.

But x̄ solves equation (1.1) and

0 ∈ g(x̄) +G(x̄) = Eg(x∗, x̄) + Lg+G,x∗(x̄).

Thus, −Eg(x∗, x̄) ∈ Lg+G,x∗(x̄) and consequently x̄ ∈ L−1g+G,x∗(−Eg(x∗, x̄)).
Moreover, the condition (A6) gives

e(L−1g+G,x∗(0) ∩ U [x∗, a1], L
−1
g+G,x∗(−Eg(x∗, x̄)) ≤ c1‖Eg(x∗, x̄).

Then, since ‖Eg(x∗, x̄)‖ ≤ b1,

x∗ ∈ L−1g+G,x∗(0) ∩ U [x∗, a1],

x̄ ∈ Lg+G,x∗(−Eg(x∗, x̄))

and the hypothesis that the operator u −→ L−1g+G,x∗(u) is single value in U(0, b1).
It follows

L−1g+G,x∗(0) ∩ U [x∗, a1] = {x∗}
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and
L−1g+G,x∗(−Eg(x∗, x̄)) = {x̄},

leading to
‖x̄− x∗‖ ≤ c1‖Eg(x∗, x̄)‖ < ‖x̄− x∗‖.

Hence, we conclude x̄ = x∗. 2
The local convergence for the Newton’s method (1.2) follows in the next

result.

Theorem 3.7. Assume that the conditions (A1)–(A7) are valid and choose
x0 ∈ U(x∗, s0) − {x∗} for ‖x0 − x∗‖ ≤ s0 < ρ∗. Then, there exists a sequence
{xn} ∈ U(x∗, ρ∗) generated by the Newton’s method (1.2) convergent to x∗ and so
that ‖x∗− xn+1‖ ≤ sn+1 for n = 0, 1, 2, . . .. Additionally, if there exists r ∈ [0, ρ̄)
satisfying the equation ∫ 1

0
h((1− θ)r)dθ + h0(r)− 1 = 0,

then, ρ∗ = r is the largest convergence radius for the Newton’s method (1.2).
Moreover, under the conditions of the Proposition 3.6, the sequence {xn} is unique
and x∗ is also the unique solution of the equation (1.1) in the open ball U(x∗, γ).

P r o o f. Mathematical induction shall establish that there exists xn+1 ∈
Ψxn(xn+1) so that

(3.6) ‖x∗ − xn‖ ≤ sn

for n = 0, 1, 2, . . .. By hypothesis x0 ∈ U(x0, s0). Then, since ‖x0 − x∗‖ ≤
s0 < ρ∗ by the Lemma 3.5 and the definition of the sequence {sn} there exists
x1 ∈ Ψx0(x1) and the estimates (3.6) are valid if n = 0. Assume that there exist
xj ∈ U(x∗, ρ∗), j = 0, 1, 2, . . . , n satisfying (3.6). Then, again by the Lemma 3.5
there exists xn+1 ∈ Ψxn(xn+1) which satisfies the first estimate in (3.6). But,
then we have, since ‖x∗ − xn‖ ≤ sn that

‖x∗ − xn+1‖ ≤
∫ 1
0 h̄((1− θ)sn)dθ‖xn − x∗‖

1− h0(sn)

≤
∫ 1
0 h̄((1− θ)sn)dθsn

1− h0(sn)
= sn+1.

Thus, the induction for the assertion (3.6) is completed. The proof of the part
about the largest radius is standard and can be found e.g. in [14].
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In order to show the uniqueness of the sequence {xn}, assume there ex-
ist yn+1, xn+1 ∈ U(x∗, sn) ⊂ U [x∗, ρ∗] so that yn+1 ∈ Ψxn(yn+1) and xn+1 ∈
Ψxn(xn+1). But the operator u −→ Lg+G,x∗(u) is single valued in the open
ball U(0, b1) so by part (ii) of Lemma 3.4, we deduce yn+1 ∈ Ψxn(yn+1) and
xn+1 ∈ Ψxn(xn+1). Assume yn+1 6= xn+1. Then, it follows as in Lemma 3.4 that

‖yn+1 − xn+1‖ = e(Ψxn(yn+1) ∩ U [x∗, sn],Ψxn(xn+1))

≤ (1− h0(‖xn − x∗‖))‖yn+1 − xn+1‖
< ‖yn+1 − xn+1‖,

which is a contradiction. Therefore, we conclude that yn+1 = xn+1, for n =
0, 1, 2, . . .. 2

Remark 3.8. We used the same constant c1 in Definition 3.1, Definition
3.2 and Definition 3.3 for simplicity although they differ in general. If we were
to use d1, d2 and d3 instead of c1, respectively in these definitions, then d =
max{d1, d2} can be used instead of c1 in the aforementioned results.

4. Special cases.
Special case 1 (Lipschitz). Let G = 0 and c1 = 1. Define functions

h0(s) =
`0
2
s2 − s, h(s) =

`

2
s2 − s and h1(s) =

`1
2
s2 − s for some Lipschitz

constants `0, ` and `1. Then, we have

(4.1) `0 ≤ `1 and ` ≤ `1.

Thus, h0(s) ≤ h1(s), h(s) ≤ h1(s), h
′
0(s) ≤ h′1(s), and h′(s) ≤ h′1(s) for each

s ∈ [0, ρ). According to Theorem 3.7, the radius ρ∗ can be found if we solve the
equation

`s

2(1− `0s)
= 1,

so

ρ∗ =
2

2`0 + `

or
`s

2(1− `s)
= 1 (by (A3))

so

(4.2) ρ∗ =
2

3`
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and

ρ∗ ≤ ρ∗0.

The Newton iteration (3.3) becomes

(4.3) sn+1 =
`s2n

2(1− `sn)
.

If only the function h1 is used we must solve the equation

`1s

2(1− `1s)
= 1

resulting to

ρ∗1 =
2

3`1
.

The value of ρ∗1 is attributed to Traub [27] and Rheinboldt [21]. The
corresponding iteration is

s̄n+1 =
`1s̄

2
n

2(1− `1s̄n)
.

Notice that

ρ∗1 ≤ ρ∗

and

sn ≤ s̄n,

for n = 1, 2, . . .. Moreover, the radius of the uniqueness ball using (h0, h) is
2

`

which is at least as large than the one using h− 1 which is
2

`1
,

2

`1
<

2

`
.

Special case 2 (G = 0 and c1 = 1). Define the functions

h0(s) = H ′0(s)−H ′0(0)

h((1− θ)s) = H ′(s)−H ′(θs)

and

h1((1− θ)s) = H ′1(s)−H ′1(θs),

where H0, H,H1 are twice continuously differentiable functions satisfying:

H0(0) = H(0) = H1(0) = 0, H ′0(0) = H ′(0) = H ′1(0) = −1
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and all three H functions being convex and strictly increasing. Then, we have

h0(s) ≤ h1(s) and h(s) ≤ h1(s).

Therefore, the local results using only the function H1 (see [4, 15]) are
improved if instead the functions (H0, H) are utilized with advantages (1)–(3) as
stated in the introduction (see also Special case 1). Here, we also assume

H0(s) ≤ H(s).

Otherwise the preceding results hold with H0, H replaced by the function h2
which is defined to be the largest of h0 and h on the interval [0, R).

Notice also that if h(s) ≤ h0(s) or H(s) ≤ H0(s). Then, clearly the results
hold with h0 or H0 replacing h or H.
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