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METHODS FOR CONSTRUCTING SELF-DUAL CODES

Stefka Hristova Buyuklieva

The purpose of this paper is to present some topics of the theory of self-dual codes.
We have included some known results for binary, ternary and quaternary codes. We
describe new methods for constructing self-dual codes over finite fields of q elements
for q = 2t, t = 1, 2, ..., and q = 3.

1. Introduction. Self-dual codes are an important class of codes (i) for practical

reasons, since many of the best codes known are of this type, and (ii) for theoretical

reasons, because of their connections with groups, lattices and designs.

A linear [n, k] code C is a k-dimensional vector subspace of the vector space Fn
q , where

Fq is the finite field of q elements. The parameter n is called length of C. The elements

of C are called codewords and the (Hamming) weight of a codeword is the number of

its non-zero coordinates. The minimum weight of C is the smallest weight among all

non-zero codewords of C. An [n, k, d; q] code is an [n, k] code over Fq of minimum weight

d. A matrix which rows form a basis of C is called a generator matrix of this code. The

weight enumerator W (y) of a code C is given by W (y) =
∑n

i=0
Aiy

i where Ai is the

number of codewords of weight i in C. Let (u, v) : Fn
q × Fn

q → Fq be an inner product

in the linear space Fn
q . Then if C is an [n, k] linear code, C⊥ = {u ∈ Fn

q : (u, v) = 0

for all v ∈ C}. If C ⊆ C⊥, C is termed self-orthogonal and if C = C⊥, C is self-dual.

If C is self-dual, then k = 1

2
n. The codes with the largest minimum distanse among all

self-dual codes of given length are named extremal self-dual codes.

Let M be an n×n monomial matrix over Fq, containing exactly one nonzero element

from Fq in each row and column. ThenM sends a code C over Fq into the equivalent code

C′ = {uM : u ∈ C}. The set of all monomials such that C′ = C forms the automorphism

group Aut(C) of the code C. The action of M preserves weights and inner products, so

that if C is self-orthogonal, so is C′. We usually specifyM as a permutation of coordinates

followed by multiplication by a diagonal matrix. If M ∈ Aut(C) is a monomial matrix,

which contains only 1’s and 0’s, we can specify it as a permutation of the n coordinates

of C and consider as an element of the simmetric group Sn. We call it a permutation

automorphism of C. If C is a binary code all automorphisms of C are permutation

automorphisms.

A theorem of Gleason and Pierce (see [17]) implies that a self-dual code over Fq can

only have all weights divisible by some integer t > 1 in five cases:
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I q=2, t=2;
II q=2, t=4;
III q=3, t=3;
IV q=4, t=2;
V q arbitrary, t=2 and weight enumerator (x2 + (q − 1)y2)n/2.

The length of a self-dual code must be even. If q = 2 or 4 there is no other restriction

on the length, and such codes have even weight and are of types I and IV, respectively.

If q = 2 and the weight of every codeword is a multiple of 4, then n must be divisible by

eight; these are type II codes. Finally, if q = 3 then the weights are multiples of 3, and

n must be divisible by four: these are type III codes. The type I and type II codes are

also named singly even and doubly even self-dual codes.

The paper is organized as follows. Section 2 is devoted to binary self-dual codes.

We describe known methods for constructing such codes. In Section 3 we present some

results about quaternary self-dual codes. In Section 4 we prove some properties of the

ternary self-dual codes with a permutation automorphism of order 3 without fixed points.

We give a construction technique to obtain such codes. Finally, in Section 5 we give a

construction method for self-dual codes over Fq for q = 2t which possess an automorphism

of order 2 without fixed points. This method is an extension of the method from [1] for

the case q = 2.

2. Binary self-dual codes. The enumeration of binary self-dual codes of length

n ≤ 32 has been carried out in a series of papers: Pless [20] for n ≤ 20; Pless and Sloane

[21] for n = 22, 24; Conway and Pless [5] for n = 26 to 30 and Type II of length 32.

For any greater length there exist a large number of such codes; for example, there are

at least 17 000 inequivalent type II codes of length 40 [5]. However extremal codes seem

relatively rare among these codes. In particular, there is one extremal self-dual doubly

even code of length 8, two of length 16, one of length 24, and five of length 32. A list

of possible weight enumerators of extremal binary self-dual codes of length up to 72 is

given by Conway and Sloane in [7]. A lot of papers have provided constructions for some

of the unknown codes. To obtain new extremal self-dual codes, some authors use the

connection between self-dual codes and symmetric designs [13], [12], Hadamard matrices

[19], [23], self-dual codes of smaller lengths [2], [4]. A method for constructing binary

self-dual codes via an automorphism of odd prime order is given by Huffman and Yorgov

[10], [24], [25]. In [4] we give a construction technique for binary self-dual codes with an

automorphism of order 2 without fixed points.

Doubly even binary codes (type II codes) up through length 32 have been classified

by the technique of complete enumeration in [5], [20], [21]. In [5] the 85 type II codes

of length 32 were enumerated. For doubly even self-dual codes it is well known that

d ≤ 4[ n
24
]+4 for all n. A long-standing open question is the existence of a [72,36,16] doubly

even code. Using Hadamard matrices, Tonchev [23], Ozeki [19] and other authors have

found extremal doubly even self-dual codes. Kapralov and Tonchev [13] have obtained

doubly even [64,32,12] codes from symmetric designs. Huffman [10] has shown that any

type II [48,24,12] code with a nontrivial automorphism of odd order is equivalent to
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the extended quadratic residue code of this length. Yorgov has found all inequivalent

extremal doubly-even codes of length n with an automorphism of odd prime order p

for n = 40, p > 5 [24]; n = 56, p = 13 [25]; n = 64, p = 31 [26]. All doubly-even

[40,20,8] self-dual codes with an automorphism of odd order were constructed by Yorgov

and Ziapkov [27].

Although the type I codes of length 32 have not been classified, it is shown in [7] that

there are precisely three inequivalent [32,16,8] extremal type I codes. For the singly even

codes d ≤ 4[ n
24
]+4+ ǫ, where ǫ = −2 if n = 2, 4 or 6, ǫ = 2 if n ≡ 22(mod 24), and ǫ = 0

otherwise. The classification of extremal double circulant self-dual codes of length up to

62, and of lengths 64 to 72, is given in [9] and [8], respectively. Huffman and Tonchev

have constructed [50,25,10] self-dual codes from quasi-symmetric 2-(49,9,6) designs. All

inequivalent extremal singly-even self-dual codes of length 40 with an automorphism of

odd prime order are in [3]. Many extremal codes of lengths 42 and 44 are obtained using

this technique [2,22].

3. Quaternary self-dual codes. We will consider two types of inner product in

the vector space Fn
4 over the quaternary field F4 = {0, 1, ω, ω2}, where ω2 +ω+1 = 0 is

the Euclidean inner product (u, v) = uv =
∑n

i=1
uivi, and the Hermitian inner product

(u, v) =
∑n

i=1
uiv

2
i . We will call the quaternary self-dual codes with respect to Hermitian

inner product Hermitian self-dual codes. For these codes we have d ≤ 2[n
6
]+2 [16]. Codes

meeting this bound exist at lengths 2, 4, 6, 8, 10, 14, 16, 18, 20, 22, 28 and 30. They

do not exist at lengths 12, 24, 102, 108, 114, 120, 122 and n ≥ 126. The remaining

lengths (26, 32, 34, . . . ) are undecided. The indecomposable Hermitian self-dual codes

of length ≤ 16 were found in [16] and [6]. The long-standing question of the existence

of a [24,12,10] code was settled in the negative by Lam and Pless [15]. In Section 5 we

give a method for constructing quaternary self-dual codes which possess a permutation

automorphism of order 2 without fixed points.

4. Ternary self-dual codes. Self-dual codes over F3 are particularly interesting

because they include the length 12 Golay code, quadratic residue codes, and symmetry

codes. Ternary self-dual codes (type III codes) exist if and only if n is a multiple of

4. The codes with a length less than or equal to 20 have been completely classified in

[6], [18]. Leon, Pless and Sloane [14] give a partial enumeration of the self-dual codes of

length 24, making use of the complete list of Hadamard matrices of order 24, and show

that there are precisely two codes with minimum distance 9. For the ternary self-dual

codes we have d ≤ 3[ n
12
] + 3. Codes meeting this bound exist at lengths 4, 8, 12, 16, 20,

24, 28, 32, 36, 40, 44, 48, 56, 60 and 64. Such codes do not exist at lengths 72, 96, 120

and all n ≥ 144. The existence of extremal codes in the remaining cases (n = 52, 68, 76,

. . . , 140) is undecided.

Huffman [11] has given a method for constructing ternary self-dual codes with an

automorphism of prime order p 6= 3. In this section we introduce a construction technique

for ternary self-dual codes with a permutation automorphism of order 3 without fixed

points. To prove some properties of these codes, we use the theory of finitely generated
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modules.

Let C be a ternary self-dual code of length n and σ = (1, 2, 3)(4, 5, 6) . . . (n−2, n−1, n)

be an automorphism of C. Obviously, n must be divisible by 3, and since for ternary

self-dual codes n must by divisible by 4, we have n = 12t. Hence the dimension of C is

6t.

We can consider C as an F3[x]-module using σ by setting f ∗ v = vf(σ) for all

f ∈ F3[x] and all v ∈ C. Then C is a finitely generated torsion module. For v ∈ C we

set Ann(v) = {f ∈ F3[x], f ∗ v = 0}. Obviously Ann(v) is an ideal of F3[x] generated

by (x − 1)3 = x3 − 1, (x − 1)2 = x2 + x + 1 or (x − 1) for any v ∈ C. So there

exist vectors v1, . . . , vl in C such that C = C1 ⊕ C2 ⊕ . . . ⊕ Cl, where Ci is a cyclic

submodule of C, generated by vi. Let Ann(v1) = Ann(v2) = . . . = Ann(vs) = 〈x3 − 1〉,

Ann(vs+1) = Ann(vs+2) = . . . = Ann(vs+m) = 〈x2 + x + 1〉, and Ann(vs+m+1) =

. . . = Ann(vl) = 〈x − 1〉. Hence wi = λivi + µiviσ + νiviσ
2, λi, µi, νi ∈ F3, for any

vector wi ∈ Ci, i = 1, . . . , s, wi = λivi + µiviσ, λi, µi ∈ F3, for any vector wi ∈ Ci,

i = s+ 1, . . . , s+m, and wi = λivi for wi ∈ Ci, i = s+m+ 1, . . . , l. It follows that for

any vector v from C

v = w1 +w2 + . . .+wl =

s
∑

i=1

(λivi + µiviσ+ νiviσ
2) +

s+m
∑

i=s+1

(λivi + µiviσ) +

l
∑

i=s+m+1

λivi.

The vectors v1, v1σ, v1σ
2, v2, v2σ, v2σ

2, . . . , vs, vsσ, vsσ
2, vs+1, vs+1σ, . . . , vs+m,

vs+mσ, vs+m+1, . . . , vl are linearly independant and so they form a basis of C. Therefore

6t = dimC = 3s+ 2m+ (l − s−m) = 2s+m+ l.

Lemma 4.1.F (C) = {v ∈ C : (x−1)∗v = 0} and F ′(C) = {v ∈ C : (x−1)2 ∗v = 0}

are linear subspaces of C of dimensions l and 6t− s, respectively.

Proof. Let w ∈ F (C) and

w =

s
∑

i=1

(λivi + µiviσ + νiviσ
2) +

s+m
∑

i=s+1

(λivi + µiviσ) +

l
∑

i=s+m+1

λivi.

Then

wσ =

s
∑

i=1

(λiviσ + µiviσ
2 + νiviσ

3) +

s+m
∑

i=s+1

(λiviσ + µiviσ
2) +

l
∑

i=s+m+1

λiviσ

=

s
∑

i=1

(λiviσ + µiviσ
2 + νivi) +

s+m
∑

i=s+1

(λiviσ − µivi − µiviσ) +

l
∑

i=s+m+1

λivi = w.

It follows that λi = µi = νi for i = 1, . . . , s, and λi = −µi for i = s+ 1, . . . , s +m, and

hence

w =
s

∑

i=1

λi(vi + viσ + viσ
2) +

s+m
∑

i=s+1

λi(vi − viσ) +
l

∑

i=s+m+1

vi.

16



Since the vectors v1 + v1σ+ v1σ
2, . . ., vs + vsσ+ vsσ

2, vs+1 − vs+1σ, . . . , vs+m − vs+mσ,

vs+m+1, . . . , vl are linearly independant, they form a basis of F (C). It follows that

dimF (C) = l.

Let w ∈ F ′(C). Then

0 = w + wσ + wσ2 =

s
∑

i=1

(λi + µi + νi)(vi + viσ + viσ
2).

It follows that λi + µi + νi = 0 for i = 1, . . . , s, and so

w =

s
∑

i=1

λi(vi − viσ) +

s
∑

i=1

νi(viσ − viσ
2) +

s+m
∑

i=s+1

(λivi + µiviσ) +

l
∑

i=s+m+1

λivi.

It is easy to see that the vectors v1 − v1σ, v1σ − v1σ
2, . . . , vs − vsσ, vsσ − vsσ

2, vs+1,

vs+1σ, . . . , vs+m, vs+mσ, vs+m+1, . . . , vl are linearly independant and belong to F ′(C).

Hence they form a basis of F ′(C).

For the dimension of F ′(C) we have dimF ′(C) = 2s+2m+(l− s−m) = s+m+ l =

6t− s.

Let us consider the map φ : C → F 4t
3 defined by φ(v) = (β1 + β2 + β3, . . . , βn−2 +

βn−1 + βn) for v = (β1, β2, . . . , βn) ∈ C. Obviously, φ is a homomorphism.

Lemma 4.2.φ(C) is a self-orthogonal [4t, s] ternary code with a basis φ(v1), . . . , φ(vs)

and Kerφ = F ′(C).

Proof. For the kernel of the map φ we obtain Kerφ = {v = (β1, β2, . . . , βn) ∈ C :

φ(v) = 0} = {v ∈ C : β3i−2 + β3i−1 + β3i = 0, i = 1, . . . , 4t} = {v ∈ C : v + vσ + vσ2 =

0, i = 1, . . . , 4t} = F ′(C). It follows that dimφ(C) = dimC−dimKerφ = 6t−6t+s = s.

Let α1φ(v1) + · · ·+ αsφ(vs) = 0. Then φ(α1v1 + · · ·+ αsvs) = 0 and so v = α1v1 +

· · ·+ αsvs ∈ Kerφ = F ′(C). Thus

v =

s
∑

i=1

λi(vi − viσ) +

s
∑

i=1

µi(viσ − viσ
2) +

s+m
∑

i=s+1

(λivi + µiviσ) +

l
∑

i=s+m+1

λivi

and we have αi = λi = µi = 0. Hence the vectors φ(v1), . . . , φ(vs) are linearly indepen-

dant and therefore they form a basis of φ(C).

Let v = (α1, α2, . . . , αn) and w = (β1, β2, . . . , βn) are vectors from C. Since C is a

self-dual code we have (φ(v), φ(w)) =
∑4t

i=1
(α3i−2 + α3i−1 + α3i)(β3i−2 + β3i−1 + β3i) =

(v, w) + (v, wσ) + (v, wσ2) = 0. This proves that φ(C) is a self-orthogonal [4t, s] code.

For w ∈ F (C) we obviously have w = (α1, α1, α1, . . . , α4t, α4t, α4t). This allows us

to define the map π : F (C) → F 4t
3 by π(w) = (α1, α2, . . . , α4t). The “contracted” code

C′′ = π(F (C)) has length 4t and dimension l.

Lemma 4.3.C′′ = (φ(C))⊥ and so l = 4t− s, m = 2t− s.

Proof. Let (α1, . . . , α4t) = π(v) ∈ C′′ and (γ1, . . . , γ4t) = φ(w) = (β1 + β2 +

β3, . . . , βn−2 + βn−1 + βn) ∈ φ(C), where v = (α1, α1, α1, . . . , α4t, α4t, α4t) and w =
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(β1, β2, . . . , βn) are vectors from C. Then (π(v), φ(w)) = (v, w) = 0. Hense the vectors

in C′′ are orthogonal to the vectors from φ(C).

Let u = (δ1, . . . , δ4t) ∈ φ(C)⊥. Then (w, π−1u) =
∑4t

i=1
(β3i−2 + β3i−1 + β3i)δi =

(φ(w), u) = 0 for all w ∈ C. Hence π−1(u) ∈ C and so u ∈ C′′ and thus C′′ = (φ(C))⊥.

It follows that dimC′′+dimφ(C) = 4t and hence dimC′′ = l = 4t−dimφ(C) = 4t−s.

Since l +m+ 2s = 6t we have m = 6t− l − 2s = 6t− 4t+ s− 2s = 2t− s.

Let C1 be a self-orthogonal [4t, s] ternary code and C2 be its dual code. Let τ1, τ2 :

C1 → F 12t
3 , and ψ : C2 → F 12t

3 are the maps defined by

τ1(v) = (α1, 0, 0, α2, 0, 0, . . . , α4t, 0, 0), τ2(v) = (0, α1, 0, 0, α2, 0, . . . , 0, α4t, 0)

for v = (α1, α2, . . . , α4t) ∈ C1 and ψ(w) = (β1, β1, β1, . . . , β4t, β4t, β4t) for

w = (β1, β2, . . . , β4t) ∈ C2. Let C3 is a self-dual [4t, 2t] subcode of C2 containing C1, and

θ : C2 → F 12t
3 be the map defined by θ(w) = (β1, 2β1, 0, . . . , β4t, 2β4t, 0).

Theorem 4.4.C = τ1(C1) + τ2(C1) + ψ(C2) + θ(C3) is a self-dual [12t, 6t] ternary

code.

Proof. Since τ1, τ2, θ and ψ are monomorphisms the dimensions of codes τ1(C1),

τ2(C1), ψ(C2), and θ(C3) are s, s, 4t − s and 2t, respectively. Obviously, τ1(C1) ∩

τ2(C1) = {0}, and (τ1(C1) + τ2(C1)) ∩ ψ(C2) = {0} and therefore the dimension of

τ1(C1)+ τ2(C1)+ψ(C2) is 2s+4t− s = 4t+ s. v ∈ (τ1(C1)+ τ2(C1)+ψ(C2))∩ θ(C3) iff

v = (α1, 2α1, 0, . . . , α4t, 2α4t, 0) ∈ θ(C1). Hence (τ1(C1)+τ2(C1)+ψ(C2))∩θ(C3) = θ(C1)

and dim(τ1(C1) + τ2(C1) + ψ(C2) + θ(C3)) = 4t+ s+ 2t− s = 6t.

For v1, v2 ∈ C1, w1, w2 ∈ C2, u1, u2 ∈ C3 we have (τ1(v1), τ1(v2))=(v1, v2)=0,

(τ2(v1), τ2(v2))=(v1, v2)=0, (ψ(w1), ψ(w2)) = 3(w1, w2) = 0, (θ(u1), θ(u2)) = (u1, u2) +

2(u1, u2) = 0, (τ1(v1), τ2(v2))=0, (τ1(v1), ψ(w1))=(v1, w1)=0, (τ1(v1), θ(u1))=(v1, u1)=0,

(τ2(v1), ψ(w1)) = (v1, w1) = 0, (τ2(v1), θ(u1)) = 2(v1, u1) = 0, (ψ(w1), θ(u1)) = (w1, u1)+

2(w1, u1) = 0, It follows that all vectors in C are orthogonal to each other and thus C is

a self-dual code.

Example. Let t = 1, C1 = {0} and so C2 = F 4
3 , and C3 be the self-dual [4,2,3] code

with generator matrix
(

1 1 1 0
0 1 2 1

)

Using the construction method from Theorem 4.4 we obtain the ternary self-dual [12,6,3]

code 4E3(12) [18].

5. Self-dual codes over GF (2t) with a monomial automorphism of order

2 without fixed points. In this section we consider self-dual codes over finite fields

with 2t elements for t ≥ 1 with respect to the Euclidean inner product (u, v) = uv =
∑n

i=1
uivi (Euclidian codes), and with respect to the Hermitian inner product (u, v) =

uv =
∑n

i=1
uiv

√
q

i (Hermitian codes) for q ≥ 4. We prove two theorems. The first one

gives some important properties of self-dual codes over GF (2t) with an automorphism

of order 2 without fixed points. The second theorem gives us a method for constructing

such codes.
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Theorem 5.1.Let C be a self-dual [n, k = n
2
] code over the field Fq for q = 2t and

σ = (1, 2)(3, 4) . . . (n − 1, n) be a monomial automorphism of C. Let φ : C → F k
q be

the map defined by φ(v) = (α1 + α2, . . . , αn−1 + αn) for v = (α1, . . . , αn) ∈ C. Then

φ is a homomorphism, C′ = Imφ is a self-orthogonal [k, s] code and C′′ = π(Kerφ) =

(φ(C))⊥, where π : Kerφ → F k
q is the map defined by π(v) = (α1, . . . , αk) for v =

(α1, α1, . . . , αk, αk) ∈ Kerφ.

Proof. Clearly φ is linear and hence φ is a homomorphism. Thus φ(C) is a [k, s] code

for some s. To show it is self-orthogonal, let v = (α1, . . . , αn) and w = (β1, . . . , βn) be

codewords in C. Then (φ(v), φ(w)) =
∑k

i=1
(α2i−1 +α2i)(β2i−1 + β2i)

m =
∑k

i=1
(α2i−1 +

α2i)(β
m
2i−1 + βm

2i ) =
∑k

i=1
(α2i−1β

m
2i−1 + α2iβ

m
2i ) +

∑k
i=1

(α2i−1β
m
2i + α2iβ

m
2i−1) = (v, w) +

(v, wσ) = 0 as wσ ∈ C, where m = 1 for Euclidian codes and m = 2t−1 for Hermitian

codes.

As (α1, α2, . . . , αn) ∈ Kerφ iff α2i−1 = α2i for 1 ≤ i ≤ k, Kerφ = C1 = {(β1, β1, β2,

β2, . . . , βk, βk) ∈ C}. Let v1, . . . , vt be a basis of C1 and extend this to a basis v1, . . . , vt,

vt+1, . . . , vk of C. Define C2 to be the code with basis vt+1, . . . , vk. Thus C = C1 ⊕ C2.

Since C1 = Kerφ, φ(C) = φ(C2). Furthermore the restriction of φ to C2 is one-to-one as

Kerφ = C1 and C1 ∩ C2 = {0}. Therefore s = dim Imφ = dimC2 = k − t or s+ t = k.

The map π : Kerφ → F k
2 is clearly one-to-one linear map, and thus dimC′′ =

dimKerφ = t. As dimC′ = s and s + t = k, to prove that C′′ = (C′)⊥, it suffices to

show that a vector in C′ is orthogonal to a vector in C′′. Let v = (α1, . . . , αn) ∈ C and

w = (β1, β1, β2, β2, . . . , βk, βk) ∈ Kerφ. Then (φ(v), π(w)) =
∑k

i=1
(α2i−1 + α2i)β

m
i =

(v, w) = 0, m = 1 or m = 2t−1.

Theorem 5.2.Let C′ be a self-orthogonal [k, s, d′] code, C′′ be its dual code and ψ :

C′′ → F 2k
2 be the map defined by ψ(v) = (α1, α1, . . . , αk, αk) for v = (α1, α2, . . . , αk) ∈

C′′. Let M = {(j1, j2), (j3, j4), . . . , (j2r−1, j2r)} be a set of r pairs of different co-

ordinates of the code C′, 0 ≤ 2r ≤ k, and τ : C′ → F 2k
2 be the map defined by

τ(v) = (α′
1, α

′′
1 , . . . , α

′
k, α

′′
k) for v = (α1, α2, . . . , αk) ∈ C′, where (α′

i, α
′′
i ) = (αi, 0) for

i 6= jl, l = 1, 2, . . . , 2r, and (α′
j2i−1

, α′′
j2i−1

, α
prime

j2i
, α′′

j2i ) = (αj2i−1
+ αj2i , αj2i , αj2i−1

+

αj2i , αj2i−1
, ) for i = 1, . . . , r. Then C = τ(C′) + ψ(C′′) is a self-dual [2k, k] code and

σ = (1, 2)(3, 4) . . . (2k − 1, 2k) is an automorphism of C.

Proof. If u, v ∈ C′′ then (ψ(u), ψ(v)) = (u, v) + (u, v) = 0. Let u = (α1, . . . , αk), v =

(β1, . . . , βk) ∈ C′, and w = (γ1, . . . , γk) ∈ C′′. As α′
j2i−1

β′
j2i−1

+ α′′
j2i−1

β′′
j2i−1

+ α′
j2i
β′
j2i

+

α′′
j2i
β′′
j2i

= (αj2i−1
+ αj2i )(βj2i−1

+ βj2i )
m + αj2iβ

m
j2i

+ (αj2i−1
+ αj2i )(βj2i−1

+ βj2i)
m +

αj2i−1
βm
j2i−1

= αj2iβ
m
j2i + αj2i−1

βm
j2i−1

for i = 1, . . . , r, and α′
iβ

′
i + α′′

i β
′′
i = αiβi for i 6= jl,

l = 1, 2, . . . , 2r, we have (τ(u), τ(v)) = (u, v) = 0.

It follows from the definition of τ that α′
i + α′′

i = αi for i = 1, 2 . . . k. Hence

(τ(u), ψ(w)) = (α′
1 + α′′

1 )γ
m
1 + . . . + (α′

k + α′′
k)γ

m
k = α1γ

m
1 + . . . + αkγ

m
k = (u, v) = 0

(m = 1 or 2t−1). Therefore the code C is self-orthogonal.

Since τ and ψ are monomorphisms the dimensions of the codes τ(C′) and ψ(C′′) are

s and k− s respectively. Obviously τ(C′)∩ ψ(C′′) = {0} and therefore the dimension of

C is s+ k − s = k. Hence the code C is self-dual.
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As ψ(w)σ = ψ(w) ∈ C for w ∈ C′′ and τ(v)σ = τ(v) + ψ(v) ∈ C for v ∈ C′ we have

uσ = τ(v) + ψ(v) + ψ(w) = τ(v) + ψ(v + w) ∈ C for u = τ(v) + ψ(w) ∈ C. Therefore σ

is an automorphism of C of order 2.

Examples. For s = 0 we have C′ = {0} and C′′ = F k
q . Using these codes and

Theorem 2 we obtain the [2k, k, 2] self-dual codes ek2 which have generator matrix (Ik|Ik)

where Ik is the identity matrix. These codes are self-dual under the two types of inner

product.
Let k be even and C′ be the code {00 . . .0, 11 . . .1}. If we use theorem 2 we can

construct a self-dual [2k, k, 4] code with a generator matrix






1111 ...

1111 ...

...

...1111

1010 ...1010






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МЕТОДИ ЗА КОНСТРУИРАНЕ НА САМОДУАЛНИ КОДОВЕ

Стефка Христова Буюклиева

Целта на тази статия е да представи някои аспекти от теорията на самодуалните

кодове. Включени са някои известни резултати за кодове над полета с 2, 3 и

4 елемента. Описан е и нов метод за конструиране на самодуални кодове над

крайни полета с q елемента за q = 2t, t = 1, 2 . . ., и q = 3.
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