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A SIMPLE WAY OF COMPUTING THE MATRIX
EXPONENTIAL
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This paper deals with a simple way of computing the matrix exponential. This
elementary approach can be applied in the University courses on ordinary differential
equations. The advantage of this approach is the avoidance of computation of the
Jordan normal form of a real constant coefficient matrix, as well as the method of
indefinite coefficients.

As it is well known, the solution of the system of ordinary differential equations

(1) Zl = ASC,I: (xla"'axn)v
l‘(O) = X9,%0 € an
A- nxn real-valued matrix with constant elements is expressed by the formula z = e*tz.

In computing the matrix exponential we must find at first a real Jordan normal form
of the matrix A. The corresponding computations are rather heavy. Another way to solve
the Cauchy problem (1) is to use the method of the indefinite coefficients. In this case we
have to solve a linear system of algebraic equations containing n? unknown coefficients.
Certainly, a tiresome work has to be done too.

The aim of this report is to comment and to develop another way of computing e“*
proposed at first in [1] (see also [2]).

Our starting point will be the Euler approach for solving a linear ordinary differential
equation with constant coefficients. Euler looked for a solution of the type e* and
concluded that A satisfied an algebraic equation (characteristic equation).

Imitating his approach we consider the characteristic equation of the matrix A:

A

(2) p(\) =det(A — \E) = ap\" + a1 \"" ' 4... +a, =0,

apg = (—1)".
According to the famous Hamilton-Cayley theorem, the matrix A satisfies (2), i.e.
(3) a()A"JralA"_l ++anE:0

and FE is the unit matrix in R".
Having in mind (3) we conclude that the matrix exponential e#? is a solution of the
following matrix differential equation:

(4) L® = qp®™ + a0V + .. +a,E=0.
Moreover, ® = e satisfies the next Cauchy data:
(5) ®(0) = E,9'(0) = A,..., "D (0) = AL,
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So our main problem is to find another solution in a simpler form of (4), (5). This “new”
solution will coincide with e4? due to the next proposition.

Proposition 1. The homogeneous Cauchy problem L® = 0, ®(0) =0, ..., ®"~1(0) =
0 possesses the unique matriz solution ® = 0.

The proof is obvious as if ® = (ai;)7';; then La;; =0, a;;(0) = ... = aE}I_l)(O) =0

and the Cauchy problem for the previous scalar equation possesses the trivial solution 0
only.

Suppose now that the functions {p1,...,p,} form a real basis of solutions of the
scalar differential equation
(6) L{pj) =0,1 <j<n.

Then the matrix ¢; A7~! satisfies the matrix ordinary differential equation L(p;4771) =
0, i.e.

(7) 0=> Lip;A™) :L(Z%Aj_l)-

j=1
Having in mind that the matrix function ®(t) = 2?21 ¢ A7~ satisfies the Cauchy data

B(0) = > ()1, @D (0) = 3 itV (0) 47!
j=1 j=1
we conclude that if ¢;, 1 < j < n, are such that
(8) L(pj) = 0,¢(0) = 81,0 Si <n—1
(0;,i+1 stands for the Kronecker symbol) then
eAt = (plE + ...+ (‘Dn_lAnil.
This our main result.

Theorem 1. Let ¢;, 1 < j < n satisfy the Cauchy problems (8). Then e/t =
n=l . pi-1
Zj:l ¥j .

Of course, {1, ..., pn} is a very special basis for the linear ordinary differential equa-
tion (8) and to find it we must solve n-Cauchy problems. So assume that {t¢1,...,1¥,}
is another real basis of the solutions of the same scalar equation (8):L(¢;) = 0. Denote
by W, (t), Wy (t) the Wronsky matrices corresponding to the two basises.

Then we have that

o1 =cui(t) + ...+ cintn(t), c1; =const. €R
(9) .
On = C1th1(t) + ...+ cun¥Pn(t), cnj =const. € R
Certainly, for each j, 1 < j<n—1:

o = e + .+ )

@Szj) = Cnl’(ﬂy) + ...+ Cnnw»slj)-
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901 (pn

AsW,(t)=| o and
(pgnfl) o (p%nfl)
C11 Cin
C == )
Cnl Cnn

det C # 0, we can use the next assertion.

Proposition 2. Let {¢1,...,0n}, {t1,...,0¥n} be two real basises of solutions of
the scalar differential equation Lz =0 for which (9) holds.

Then W, (t) = Wy (t)C* and C* is the adjoint matriz of C.

So we conclude that C* = (W, (0))7!, i.e.

C = (Wi(0)~! = (W (0)"

as W,(0) = E.

Thus C maps the basis {1, ...,1,} onto the basis {¢1,...,¢n}.

We shall summarize the results just obtained in the next form, useful for applications.

1. We solve the algebraic equation (2).

2. We write down a real basis of solutions of the scalar differential equation Lz = 0,

namely {wla s 7wn}

3. We compute the constant coefficient matrix
-1

Gu0) w(0) .. ¥ Y(0)
(WJl(O))* =1 ...
Pa(0) (0) ... #TV(0)
and write the basis (@1, ..., p,) given by
1 (8
L =)
¥n Un

Then et = o1 E + @A+ ...+ @, A" L.
As the students p. 1,2 are familiar with minor technical difficulty can only arrise in

p- 3.
a

) 2 ), b # 0. Its eigenvalues
are A2 = a £ib. Then z(t) = Aie* cos bt + Bie*sin bt is the general solution of the
scalar equation Lx = 0 with A;, Bj-arbitrary constants.

Let #(0) = 1, 2/(0) = 0. Then z;(t) = e*(cos bt — ¢sin bt). In a similar way

2(0) =0, 2/(0) = 1 = xa(t) = & sin bt.

Example 1. Consider the real valued matrix A = (

At _  at cos bt sin bt
Thus, e =21 () E + 224 = ( —sin bt cos bt )

Example 2. Consider the matrix

-1 1 0
A= 0 -1 4
1 0 —4
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Its eigenvalues are A = 0, Ag;3 = —3. Then ¢ (¢) = 1, ¥a(t) = e 3%, ¥3(t) = te3! form
a basis of the corresponding scalar differential equation. Obviously,

1 0 0 L [9 0 0
wWi0)={1 -3 9 ,(Vt/;(o))*lz§ 6 —6 -9
0 1 —6 1 -1 -3
Thus,
©1 9 0 0 1
1 —3t
V2 =9 6 -6 -9 e =
©3 1 -1 -3 te 3t
L9
=—| 6—6e 3 —9te 3
I\ 1—e 8t — 33t
Therefore
1 -1 1 0
eAt:E+§(2726_3t73te_3t) 0 -1 4 |+
1 0 —4
1 ) 4
+§(1—e*3t—3te*3f) 4 1 -20
-5 1 16

We shall not complete the obvious computation.
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EANH EJIEMEHTAPEH HAYUH 3A IIPECMATAHE HA
EKCIIOHEHTA HA MATPUITA

Ilerbp Pagoes IlonuBaHoB

B Tasm craTus ce pasriiex/ia equH eJeMEeHTAPEH HAYUNH 3& IPECMSITAHE Ha eKCITOHEHTa
Ha Marpuia. Toit MoxKe Jla ce M3MOJI3Ba B YHUBEPCUTETCKUTE KYPCOBE IO OOMKHOBE-
HU JudepeHnua i ypaBHeHus. [IpequMcTBaTra Ha TO3W TMOJIXOJ MPHU PellaBaHe Ha
CHCTEMH OT OOMKHOBEHM IUDEPEHIINATHN YPABHEHIS ¢ IOCTOSHHN KOeePUITUEHTH Ca
cienHuTe: n30ATrBa Ce KAKTO NPHUBEXK/IAHETO HAa MAaTPUIA B 2KOPJAHOBA HOPMAaJIHA
dopma, Taka ¥ MeTOJ[a Ha HEOIPEJIeIEHUTE KOe(DUIINEHTH.
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