МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 1999 MATHEMATICS AND EDUCATION IN MATHEMATICS, 1999 Proceedings of Twenty Eighth Spring Conference of the Union of Bulgarian Mathematicians Montana, April 5–8, 1999

CONFORMAL MANIFOLDS WITH PARALLEL SPINORS

B. Alexandrov^{*}

We prove that on a conformal spin manifold any Weyl structure admitting a parallel spinor of weight $k \neq 0$ must be closed. The same is true when k = 0 and the dimension is at least 3, with the additional assumption that in dimension 4 the manifold is compact.

1. Introduction. The Riemannian spin manifolds admitting parallel spinors have been studied by Hitchin [5] and Wang [7]. Using the Berger-Simons theorem (see for example [1]) they have proved that a complete simply connected irreducible non-symmetric spin manifold admits a parallel spinor iff its holonomy is SU(n), Sp(n), G_2 or Spin(7).

Now, on conformal spin manifolds there exists a natural 1-parameter family of spinor bundles – the bundles of spinors of weight $k, k \in \mathbb{R}$ (cf. [4]). Recall that a Weyl connection (or Weyl structure) on a conformal manifold is a torsion-free connection which preserves the conformal structure. A particular example is the Levi-Civita connection of any metric in the conformal class. Thus on conformal manifolds the Weyl connections naturally generalize the Levi-Civita connection.

The purpose of this paper is to study the Weyl structures admitting parallel spinors of weight k. In Theorem 4.1 we prove that when $k \neq 0$ any such structure must be closed. In particular, in the simply connected case we essentially obtain a Riemannian manifold admitting a parallel spinor (with respect to the Levi-Civita connection). For k = 0 and dimension greater than 2 the same result has been proved by Moroianu [6] under the additional assumption that in the 4-dimensional case the manifold is compact. In fact, in dimension 4 he proved more precise results. Namely, a compact 4-dimensional conformal spin manifold with a parallel spinor of weight 0 is hyper-Hermitian and hence (using the classification of Boyer [2]) it is conformally equivalent to a flat torus or a K3surface or a coordinate quaternionic Hopf-surface with its standard locally conformally flat metric. As shown in [6], there are examples of non-closed Weyl structures on noncompact 4-dimensional conformal spin manifolds which admit parallel spinors of weight 0. We show that when the dimension is 2 even the assumption that the manifold is compact does not ensure the closeness of a Weyl structure admitting a parallel spinor of weight 0.

2. Algebraic preliminaries.

^{*}The author is supported by Contract MM 809/1998 with the Ministry of Science and Education of Bulgaria and by Contract 238/1998 with Sofia University "St. Kl. Ohridski". 68

Let $CO_+(n) = \mathbb{R}_+ \times SO(n)$ be the conformal orthogonal group. This group is embedded in $GL(n,\mathbb{R})$ by mapping $(a_1,a_2) \in CO_+(n)$ to $a_1a_2 \in GL(n,\mathbb{R})$. Thus we obtain a representation ρ of $CO_+(n)$ in \mathbb{R}^n , $\rho(a_1, a_2)x = a_1a_2x$, $(a_1, a_2) \in CO_+(n)$, $x \in \mathbb{R}^n$. The Lie algebra of $CO_+(n)$ is $co(n) = \mathbb{R} \oplus so(n)$ and the corresponding Lie algebra representation is given by

(2.1)
$$\rho(A_1, A_2)x = A_1x + A_2x, \quad (A_1, A_2) \in co(n), \quad x \in \mathbb{R}^n.$$

The representation ρ gives rise to a representation of $CO_{+}(n)$ in $(\mathbb{R}^{n})^{*}$, which we shall denote by ρ^* . Identifying $(\mathbb{R}^n)^*$ with \mathbb{R}^n by the standard inner product, we obtain that $\rho^*(a_1, a_2)\alpha = a_1^{-1}a_2\alpha, (a_1, a_2) \in CO_+(n), \alpha \in \mathbb{R}^n.$

Let $CSpin(n) = \mathbb{R}_+ \times Spin(n)$ be the conformal spin group. Then CSpin(n) double covers $CO_{+}(n)$ (for $n \geq 2$) and the projection is $id \times \pi$, where π is the projection of Spin(n) on SO(n). Denote by ρ_k the representation of CSpin(n) in the space of spinors Σ given by $\rho_k(a_1, \tilde{a}_2)\psi = a_1^k \tilde{a}_2 \psi$, $(a_1, \tilde{a}_2) \in CSpin(n), \psi \in \Sigma$. When considered as a CSpin(n)-module with respect to this representation, we shall denote the space of spinors by $\Sigma^{(k)}$ and call it the space of spinors of weight k (cf. [4]). The corresponding representation of the Lie algebra $cspin(n) = \mathbb{R} \oplus spin(n)$ of CSpin(n) on $\Sigma^{(k)}$ is

(2.2)
$$\rho_k(A_1, \tilde{A}_2)\psi = kA_1\psi + \tilde{A}_2\psi, \qquad (A_1, \tilde{A}_2) \in cspin(n), \quad \psi \in \Sigma.$$

Recall that if $A_2 \in spin(n)$ and $\pi A_2 = A_2 \in so(n)$ then

(2.3)
$$\widetilde{A}_2\psi = \frac{1}{4}\sum_{i,j}(A_2e_i, e_j)e^ie^j\psi, \qquad \psi \in \Sigma,$$

where $\{e_i\}$ is an orthonormal frame of \mathbb{R}^n , $\{e^i\}$ is its dual and $\alpha \psi$ denotes the Clifford product of $\alpha \in (\mathbb{R}^n)^*$ and $\psi \in \Sigma$. The Clifford action of \mathbb{R}^n on Σ is obtained by the identification of \mathbb{R}^n and $(\mathbb{R}^n)^*$ mentioned above.

The Clifford action of $(\mathbb{R}^n)^*$ is still defined in the conformal framework, but it sends $\Sigma^{(k)}$ to $\Sigma^{(k-1)}$, i.e.

$$(\rho^*(\pi \widetilde{a})\alpha).(\rho_k(\widetilde{a})\psi) = \rho_{k-1}(\widetilde{a})(\alpha\psi), \qquad \alpha \in (\mathbb{R}^n)^*, \quad \psi \in \Sigma, \quad \widetilde{a} \in CSpin(n).$$

3. Weyl connections.

Let (M, c) be an oriented conformal manifold of dimension n and let $CO_+(M)$ be the bundle of oriented conformally orthogonal frames with respect to the conformal class c. A connection ∇^W is called Weyl connection (or Weyl structure) with respect to c if it satisfies the following conditions:

(i) ∇^W preserves c; (ii) ∇^W is torsion-free.

The condition (i) means that ∇^W is a connection on the principal bundle $CO_+(M)$, or equivalently, for any metric $g \in c \nabla^W g = \theta^g \otimes g$ for some 1-form θ^g .

Denote by ∇^g the Levi-Civita connection of g (which is an example of Weyl connection with respect to c). Then we have

$$\nabla_X^W Y = \nabla_X^g Y - \frac{1}{2}\theta^g(X)Y - \frac{1}{2}\theta^g(Y)X + \frac{1}{2}g(X,Y)(\theta^g)^{\#},$$

where $(\theta^g)^{\#}$ is the dual vector field of θ^g with respect to g. Equivalently,

(3.4)
$$\nabla_X^W = \nabla_X^g - \frac{1}{2}\theta^g(X)Id - \frac{1}{2}\theta^g \wedge X,$$

where $\theta^g \wedge X$ is the skew-symmetric (with respect to g) endomorphism of TM defined 69 by $(\theta^g \wedge X)(Y) = \theta^g(Y)X - g(X,Y)(\theta^g)^{\#}$.

If $\tilde{g} = e^{f}g$, then $\tilde{\theta}^{\tilde{g}} = \theta^{g} + df$. Hence, a Weyl connection coincides with the Levi-Civita connection of some metric from c iff θ^{g} is exact. Such Weyl structures are called exact. If θ^{g} is closed, then the Weyl structure is called closed. Any exact Weyl structure is closed and the converse is true if M is simply connected.

A *CSpin*-structure on (M, c) is a *CSpin*(*n*)-principal bundle *CSpin*(*M*) which double covers $CO_+(M)$. Given a *CSpin*-structure on (M, c) we can define the spinor bundles of weight k: these are the associated fibre bundles $\Sigma^{(k)}M = CSpin(M) \times_{o_k} \Sigma^{(k)}$.

Since ∇^W and ∇^g are connections on $CO_+(M)$, they can be lifted to connections on CSpin(M). By (2.1), (2.2), (2.3) and (3.4) we obtain

(3.5)
$$\nabla_X^W \psi = \nabla_X^g \psi - \frac{2k-1}{2} \theta^g(X) \psi + \frac{1}{4} X \theta^g \psi, \qquad \psi \in \Gamma(\Sigma^{(k)} M).$$

This equality has to be understood as follows: the bundle $\Sigma^{(k)}M$ is identified with the bundle of spinors ΣM of g and the Clifford product in the right-hand side is with respect to this identification.

Finally, recall that the conformal scalar curvature k^g with respect to $g \in c$ of a Weyl structure ∇^W is defined to be the scalar curvature of the curvature tensor of ∇^W (the trace is taken with respect to g). It is well-known (cf. [3]) that

(3.6)
$$k^{g} = s^{g} - (n-1)\delta\theta^{g} - \frac{(n-1)(n-2)}{4}|\theta^{g}|^{2},$$

where s^g is the scalar curvature of g and the co-differential operator and the norm are taken with respect to g.

4. Weyl structures with parallel spinors.

Theorem 4.1 Let ∇^W be a Weyl connection on a conformal spin manifold (M, c)of dimension n. Suppose there exists a parallel spinor of weight $k \neq 0$ with respect to ∇^W . Then ∇^W is closed. In particular, if M is simply connected then there exists a metric $g \in c$ such that (M, g) admits a parallel spinor (with respect to the Levi-Civita connection). The same is true when $k = 0, n \geq 3, n \neq 4$ and when k = 0, n = 4 and Mis compact.

Proof: If (M, c) admits a parallel section of $\Sigma^{(k)}M$ with respect to ∇^W then there exists $\psi \in \Sigma^{(k)}$ on which the holonomy group of ∇^W acts trivially. Let $(A_1, \widetilde{A}_2) \in cspin(n)$ be such that $\rho_k(A_1, \widetilde{A}_2)\psi = 0$. Then

$$kA_1\psi + A_2\psi = 0$$

and hence $kA_1 < \psi, \psi > + < \tilde{A}_2\psi, \psi > = 0$. But $kA_1 < \psi, \psi >$ is real and $< \tilde{A}_2\psi, \psi >$ is purely imaginary. Thus $kA_1 = 0$ and if $k \neq 0$ it follows that $A_1 = 0$, i.e. $(A_1, \tilde{A}_2) \in spin(n)$. This shows that the restricted holonomy group of ∇^W as a connection on CSpin(M) is contained in Spin(n) and therefore the restricted holonomy group of ∇^W as a connection on $CO_+(M)$ is contained in SO(n). Hence, if M is simply connected the holonomy group is subgroup of SO(n) and thus ∇^W is a torsion-free connection on a subbundle of $CO_+(M)$ with structure group SO(n), i.e. ∇^W is the Levi-Civita connection of a metric $g \in c$. In particular, θ is exact and (M, g) admits a parallel spinor (with respect to the Levi-Civita connection). When M is not simply connected the above is true for its universal covering space and hence θ is closed.

The case k = 0 follows from [6], since (3.5) shows that the connection on the spinor 70

bundle of a Riemannian spin manifold, which is called there "the Weyl connection", actually coincides with the Weyl connection ∇^W acting on sections of $\Sigma^{(0)}M$. \Box

Remark: When the dimension is 2 even the assumption that M is compact does not ensure the closeness of a Weyl structure admitting a parallel spinor of weight 0. To see this, notice that when k = 0 and n = 2 (4.7) yields that $A_2 = 0$, i.e. the restricted holonomy group of ∇^W is contained in \mathbb{R}_+ and thus the conformal scalar curvature is zero. So, from (3.6) we obtain that the scalar curvature of a metric $g \in c$ is $s^g = \delta \theta^g$. Hence, M is homeomorphic to the torus $T^2 = S^1 \times S^1$. Now, take on T^2 the conformal class of the standard flat metric g. Then it follows easily from (3.5) that there exists a parallel spinor with respect to ∇^W iff $\frac{\partial \theta_1^g}{\partial x^1} + \frac{\partial \theta_2^g}{\partial x^2} = 0$, where $\theta^g = \theta_1^g dx^1 + \theta_2^g dx^2$ and x^1 and x^2 are the coordinates on the first and the second factor of T^2 respectively. The above equation obviously has solutions θ^g , which are not closed.

REFERENCES

[1] A. BESSE. Einstein manifolds. Springer-Verlag, New York, 1987.

- [2] C. BOYER. A note on hyper-Hermitian four manifolds. *Proc. Amer. Math. Soc.* **102**, No 1 (1988), 157-164.
- [3] P. GAUDUCHON. Structures de Weyl-Einstein , espaces de twisteurs et variétés de type $S^1 \times S^3$. J. reine angew. Math. 469 (1995), 1-50.

[4] P. GAUDUCHON. Hermitian connections and Dirac operators. Bol. U. M. I. ser. VII, XI-B, supl. 2 (1997), 257-289.

[5] N. HITCHIN. Harmonic spinors. Adv. Math. 14 (1974), 1-55.

[6] A. MOROIANU. Structures de Weyl admettant des spineurs parallèles. Bull. Soc. Math. Fr. **124**, N4 (1996), 685-695.

M. WANG. Parallel spinors and parallel forms. Ann. Glob. Anal. Geom. 7 (1989), 59-68.
Bogdan Alexandrov

Sofia University, Faculty of Mathematics and Informatics, Department of Geometry,

5 James Bourchier blvd, 1126 Sofia, BULGARIA.

E-mail: alexandrovbt @fmi.uni-sofia.bg

КОНФОРМНИ МНОГООБРАЗИЯ С ПАРАЛЕЛНИ СПИНОРИ

Богдан Александров

Доказваме, че върху конформно спин многообразие всяка Вайлова структура допускаща паралелен спинор с тегло $k \neq 0$ е затворена. Същото е вярно, когато k = 0 и размерността е поне 3, при допълнителното предположение, че в размерност 4 многообразието е компактно.