A RECURSIVE CONSTRUCTION OF A FAMILY NONLINEAR CODES*

Galina Bogdanova, Stoian Kapralov

A recursive construction of q-ary codes with parameters (n, M, d) for $M=q+2$, $n=\lfloor M(M-1) / 4\rfloor$ and $d=n-1$ is presented.

Introduction. Let $H(n, q), q \geq 2$ be the set of all ordered q-ary n-tuples, where the distance between two n-tuples is the number of positions in which they differ.

We call every subset of $H(n, q)$ a q-ary code of length n. The elements of a code are called codewords. If the code contains M words and the minimum distance between two distinct codewords is d, we call C a q-ary (n, M, d)-code or an $(n, M, d)_{q}$-code.

The next theorem states a necessary condition for the code existence.
Theorem 1 (The Plotkin bound) [1], [2]. If C is an $(n, M, d)_{q}$-code, then

$$
\begin{equation*}
(M-1) q d \leq M(q-1) n . \tag{1}
\end{equation*}
$$

In the present paper the following theorem is proved:
Theorem 2 (The Sharpened Plotkin bound). If C is an $(n, M, d)_{q}$-code and $M=$ $p q+r, 0 \leq r \leq q-1$, then

$$
\begin{equation*}
M(M-1) d \leq\left(M^{2}-\sigma\right) n \tag{2}
\end{equation*}
$$

where $\sigma=(q-r) p^{2}+r(p+1)^{2}$.
The inequality (1) is weaker than (2). If M is multiple of q then (1) follows from (2).
The largest value of n for which an $(n, q+1, n-1)_{q}$ code exists was determined in [3].

In this paper the largest value of n for which an $(n, q+2, n-1)_{q}$ code exists is determined. It is constructively proved that this value is $n=\lfloor(q+2)(q+1) / 4\rfloor$.

New results.
Proof of Theorem 2. The result follows directly by the next two lemmas.
Lemma 3 [2]. Let C be an $(n, M, d)_{q}$-code, and let $\sigma=\min \sum_{j=0}^{q-1} m_{j}^{2}$, where m_{j}, $j=0,1, \ldots, q-1$ are nonnegative integers with the sum $\sum_{j=0}^{q-1} m_{j}=M$. Then

$$
M(M-1) d \leq\left(M^{2}-\sigma\right) n
$$

[^0]Lemma 4. Let $m_{j}, j=0,1, \ldots, q-1$ be nonnegative integers with a sum $M=p q+r$, $0 \leq r \leq q-1$. Then

$$
\sum_{j=0}^{q-1} m_{j}^{2} \geq(q-r) p^{2}+r(p+1)^{2}
$$

Proof. If $r=0$ it follows from the Cauchy-Buniakovski inequality, that the sum of the squares is the smallest for $m_{j}=p, j=0,1, \ldots, q-1$ and is equal to $q p^{2}$.

Consider the case $r>0$. Let σ be the smallest possible sum of the squares and let m_{j}, $j=0,1, \ldots, q-1$ be numbers, for which σ is attained. Let $\alpha=\max \left(m_{0}, m_{1}, \ldots, m_{q-1}\right)$ and $\beta=\min \left(m_{0}, m_{1}, \ldots, m_{q-1}\right)$. If $\alpha-\beta>1$, then replacing α by $\alpha-1$ and β by $\beta+1$ we obtain a new set of numbers with a sum M and a sum of the squares

$$
\sigma^{\prime}=\sigma-\alpha^{2}-\beta^{2}+(\alpha-1)^{2}+(\beta-1)^{2}=\sigma-2(\alpha+\beta-1)<\sigma
$$

Therefore $\alpha-\beta \leq 1$.
If $\alpha \geq p+2$, then $\beta \geq p+1$ and therefore $m_{j} \geq p+1$. Then $\sum_{j=0}^{q-1} \geq(p+1) q>M$, which is a contradiction. If $\beta \leq p-1$, then $\alpha \geq p$, and hence $m_{j} \leq p$. Then $\sum_{j=0}^{q-1} \leq$ $p q<M$ - a contradiction.

Hence $p \leq m_{j} \leq p+1, j=0,1, \ldots, q-1$. Let x be the count of m_{j} 's equal to p, and y - the count of m_{j} 's equal to $p+1$. Then

$$
\left\lvert\, \begin{array}{rlrc}
x+ & y & = & q \\
p x+ & (p+1) y & = & p q+r
\end{array} .\right.
$$

In this way we obtain $x=q-r, y=r$. Hence $\sigma=(q-r) p^{2}+r(p+1)^{2}$.
Example 5. At the International Mathematical Olympiad in 1998, the following problem was proposed:

In a contest, there are a candidates and b judges, where $b \geq 3$ is an odd number. Each candidate is evaluated by each judge as either pass or fail. Suppose that each pair of judges agrees on at most k candidates. Prove that

$$
\frac{k}{a} \geq \frac{b-1}{2 b} .
$$

Solution. In fact the problem is about a binary $(a, b, a-k)$-code. We apply Theorem 2. Since $b=2 p+1$, then $\sigma=p^{2}+(p+1)^{2}$. Then $b(b-1)(a-k) \leq\left(b^{2}-p^{2}-(p+1)^{2}\right) a$, which is equivalent to the desired result.

Let $q \geq 2$. Suppose there exists a q-ary code C of length n, size $M=q+2$ and minimum distance $d=n-1$. By Theorem 2 we obtain $\sigma=q+6$, hence

$$
M(M-1)(n-1) \leq\left(M^{2}-q-6\right) n
$$

Therefore

$$
n \leq M(M-1) / 4=(q+2)(q+1) / 4 .
$$

Thus the largest value of n for which an $(n, q+2, n-1)_{q}$ may exist is

$$
n=\lfloor(q+2)(q+1) / 4\rfloor .
$$

Denote by $A_{q}(n, d)$ the largest value of M for which an $(n, M, d)_{q}$-code exists.
In [3] the function $A_{q}(n, n-1)$ is investigated and there is proved that if $n \leq(q+1) q / 2$ then $A_{q}(n, n-1) \geq q+1$. In the present paper the result is specified.

Corollary 6. If $\lfloor(q+2)(q+1) / 4\rfloor<n \leq(q+1) q / 2$ then $A_{q}(n, n-1)=q+1$.
Theorem 7. For any integer $q \geq 2$ there exists an $(n, M, d)_{q}$-code, where $M=q+2$, $n=\lfloor(q+2)(q+1) / 4\rfloor$ and $d=n-1$.

Proof. For small values of q the parameters of these codes are:

q	M	n	d
2	4	3	2
3	5	5	4
4	6	7	6
5	7	10	9

The following codes are solutions of the problem for $q=2$ and $q=3$:

$q=2$	$q=3$
000	20011
011	02101
101	01210
110	10120
	11002

From the solutions for $q=2$ and $q=3$ we obtain solutions for $q=4$ and $q=5$ respectively:

$q=4$	$q=5$
0000123	2001101234
0113012	0210140123
1012301	0121034012
1101230	1012023401
	1100212340
2220000	
3331111	3333300000
	4444411111

Let C_{q} be the matrix consisting of the $q+2$ codewords of a solution for given value of q. Combining C_{q} and C_{2} we obtain C_{q+4} in the following way:

C_{q}		A	A
	000	$00 \ldots 0$	
	011	$11 \ldots 1$	
	101		$00 \ldots 0$
	110		$11 \ldots 1$

where

1) every column of the matrix C_{q+4} consists of the numbers

$$
0,0,1,1,2,3, \ldots, q, q+1, q+2, q+3
$$

2) the positions of the two zeros and the two ones is important, the positions of the other numbers in the column is of no importance;
3) A is a square matrix and $A_{i, i}=0, i=1,2, \ldots, q+2, A_{i, i+1}=1, i=1,2, \ldots, q+1$, $A_{q+2,1}=1$.

We obtain a matrix of the codewords of a code with parameters $\left(n^{\prime}, M^{\prime}, d^{\prime}\right)_{q^{\prime}}$, where $n^{\prime}=n+3+2(q+2), M^{\prime}=M+4, q^{\prime}=q+4$. It is easily checked that $d^{\prime}=n^{\prime}-1$. Using that $n=\lfloor(q+2)(q+1) / 4\rfloor$ we obtain $n^{\prime}=\left\lfloor\left(q^{\prime}+2\right)\left(q^{\prime}+1\right) / 4\right\rfloor$.

Acknowledgment. The authors wish to thank the anonymous referee for the helpful comments and suggestions.

REFERENCES

[1] M. Plotkin, Binary Codes with Specified Minimum Distance, IRE Trans. on Information Theory, 6, 1960, 445-450.
[2] J. H. van Lint, Introduction to Coding Theory, New York, Springer-Verlag, 1982.
[3] G. T. Bogdanova, New bounds for the maximum size of nonlinear q-ary codes, Mathematics and Education in Mathematics, 26, Plovdiv, 1997, 82-84.

Stoian Kapralov
Technical University
BG-5300 Gabrovo
E-mail: kapralov@tugab.bg

РЕКУРСИВНА КОНСТРУКЦИЯ НА ФАМИЛИЯ НЕЛИНЕЙНИ КОДОВЕ

Галина Богданова, Стоян Капралов

Представена е рекурсивна конструкция на q-ични кодове с параметри (n, M, d) за $M=q+2, n=\lfloor M(M-1) / 4\rfloor$ и $d=n-1$.

[^0]: *This work was partially supported by the Bulgarian National Science Fund under Grant I-618/96. 72

