МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 1999 MATHEMATICS AND EDUCATION IN MATHEMATICS, 1999 Proceedings of Twenty Eighth Spring Conference of the Union of Bulgarian Mathematicians Montana, April 5–8, 1999

A RECURSIVE CONSTRUCTION OF A FAMILY NONLINEAR CODES *

Galina Bogdanova, Stoian Kapralov

A recursive construction of q-ary codes with parameters (n, M, d) for M = q + 2, n = |M(M-1)/4| and d = n - 1 is presented.

Introduction. Let H(n,q), $q \ge 2$ be the set of all ordered q-ary n-tuples, where the distance between two n-tuples is the number of positions in which they differ.

We call every subset of H(n,q) a q-ary code of length n. The elements of a code are called codewords. If the code contains M words and the minimum distance between two distinct codewords is d, we call C a q-ary (n, M, d)-code or an $(n, M, d)_q$ -code.

The next theorem states a necessary condition for the code existence.

Theorem 1 (The Plotkin bound) [1], [2]. If C is an $(n, M, d)_q$ -code, then

(1)
$$(M-1)qd \le M(q-1)n.$$

In the present paper the following theorem is proved:

Theorem 2 (The Sharpened Plotkin bound). If C is an $(n, M, d)_q$ -code and $M = pq + r, 0 \le r \le q - 1$, then

(2)
$$M(M-1)d \le (M^2 - \sigma)n$$

where $\sigma = (q - r)p^2 + r(p + 1)^2$.

The inequality (1) is weaker than (2). If M is multiple of q then (1) follows from (2). The largest value of n for which an $(n, q + 1, n - 1)_q$ code exists was determined in [3].

In this paper the largest value of n for which an $(n, q + 2, n - 1)_q$ code exists is determined. It is constructively proved that this value is $n = \lfloor (q+2)(q+1)/4 \rfloor$.

New results.

Proof of Theorem 2. The result follows directly by the next two lemmas.

Lemma 3 [2]. Let C be an $(n, M, d)_q$ -code, and let $\sigma = \min \sum_{j=0}^{q-1} m_j^2$, where m_j , $j = 0, 1, \ldots, q-1$ are nonnegative integers with the sum $\sum_{j=0}^{q-1} m_j = M$. Then

$$M(M-1)d \le (M^2 - \sigma)n.$$

^{*}This work was partially supported by the Bulgarian National Science Fund under Grant I–618/96. 72

Lemma 4. Let m_j , j = 0, 1, ..., q-1 be nonnegative integers with a sum M = pq+r, $0 \le r \le q-1$. Then

$$\sum_{j=0}^{q-1} m_j^2 \ge (q-r)p^2 + r(p+1)^2.$$

Proof. If r = 0 it follows from the Cauchy-Buniakovski inequality, that the sum of the squares is the smallest for $m_j = p, j = 0, 1, ..., q - 1$ and is equal to qp^2 .

Consider the case r > 0. Let σ be the smallest possible sum of the squares and let m_j , $j = 0, 1, \ldots, q-1$ be numbers, for which σ is attained. Let $\alpha = \max(m_0, m_1, \ldots, m_{q-1})$ and $\beta = \min(m_0, m_1, \ldots, m_{q-1})$. If $\alpha - \beta > 1$, then replacing α by $\alpha - 1$ and β by $\beta + 1$ we obtain a new set of numbers with a sum M and a sum of the squares

$$\sigma' = \sigma - \alpha^2 - \beta^2 + (\alpha - 1)^2 + (\beta - 1)^2 = \sigma - 2(\alpha + \beta - 1) < \sigma.$$

Therefore $\alpha - \beta \leq 1$.

If $\alpha \ge p+2$, then $\beta \ge p+1$ and therefore $m_j \ge p+1$. Then $\sum_{j=0}^{q-1} \ge (p+1)q > M$, which is a contradiction. If $\beta \le p-1$, then $\alpha \ge p$, and hence $m_j \le p$. Then $\sum_{j=0}^{q-1} \le pq < M$ — a contradiction.

Hence $p \le m_j \le p+1$, j = 0, 1, ..., q-1. Let x be the count of m_j 's equal to p, and y — the count of m_j 's equal to p+1. Then

$$\begin{vmatrix} x &+ y &= q\\ px &+ (p+1)y &= pq+r \end{vmatrix}$$

In this way we obtain x = q - r, y = r. Hence $\sigma = (q - r)p^2 + r(p + 1)^2$.

Example 5. At the International Mathematical Olympiad in 1998, the following problem was proposed:

In a contest, there are a candidates and b judges, where $b \ge 3$ is an odd number. Each candidate is evaluated by each judge as either pass or fail. Suppose that each pair of judges agrees on at most k candidates. Prove that

$$\frac{k}{a} \ge \frac{b-1}{2b}.$$

Solution. In fact the problem is about a binary (a, b, a-k)-code. We apply Theorem 2. Since b = 2p + 1, then $\sigma = p^2 + (p+1)^2$. Then $b(b-1)(a-k) \le (b^2 - p^2 - (p+1)^2)a$, which is equivalent to the desired result.

Let $q \ge 2$. Suppose there exists a q-ary code C of length n, size M = q + 2 and minimum distance d = n - 1. By Theorem 2 we obtain $\sigma = q + 6$, hence

$$M(M-1)(n-1) \le (M^2 - q - 6)n.$$

Therefore

$$n \le M(M-1)/4 = (q+2)(q+1)/4$$

73

Thus the largest value of n for which an $(n, q + 2, n - 1)_q$ may exist is

$$n = \lfloor (q+2)(q+1)/4 \rfloor$$

Denote by $A_q(n,d)$ the largest value of M for which an $(n, M, d)_q$ -code exists. In [3] the function $A_q(n, n-1)$ is investigated and there is proved that if $n \leq (q+1)q/2$

then $A_q(n, n-1) \ge q+1$. In the present paper the result is specified.

Corollary 6. If $\lfloor (q+2)(q+1)/4 \rfloor < n \le (q+1)q/2$ then $A_q(n, n-1) = q+1$.

Theorem 7. For any integer $q \ge 2$ there exists an $(n, M, d)_q$ -code, where M = q + 2, $n = \lfloor (q+2)(q+1)/4 \rfloor$ and d = n - 1.

Proof. For small values of q the parameters of these codes are:

q	M	n	d
2	4	3	2
3	5	5	4
4	6	7	6
5	7	10	9
-			

The following codes are solutions of the problem for q = 2 and q = 3:

q = 2	q = 3
000	20011
011	02101
101	01210
110	10120
	11002

From the solutions for q = 2 and q = 3 we obtain solutions for q = 4 and q = 5 respectively:

q = 4	q = 5	
000 0123	$20011\ 01234$	
$011 \ 3012$	$02101 \ 40123$	
$101 \ 2301$	$01210\ 34012$	
$110\ 1230$	$10120\ 23401$	
	11002 12340	
$222\ 0000$		
333 1111	33333 00000	
	44444 11111	

Let C_q be the matrix consisting of the q + 2 codewords of a solution for given value of q. Combining C_q and C_2 we obtain C_{q+4} in the following way:

C_q		A	A
	000	000	
	011	111	
	101		000
	110		111

74

where

1) every column of the matrix C_{q+4} consists of the numbers

$$0, 0, 1, 1, 2, 3, \ldots, q, q + 1, q + 2, q + 3;$$

2) the positions of the two zeros and the two ones is important, the positions of the other numbers in the column is of no importance;

3) A is a square matrix and $A_{i,i} = 0, i = 1, 2, ..., q+2, A_{i,i+1} = 1, i = 1, 2, ..., q+1, A_{q+2,1} = 1.$

We obtain a matrix of the codewords of a code with parameters $(n', M', d')_{q'}$, where n' = n + 3 + 2(q + 2), M' = M + 4, q' = q + 4. It is easily checked that d' = n' - 1. Using that $n = \lfloor (q+2)(q+1)/4 \rfloor$ we obtain $n' = \lfloor (q'+2)(q'+1)/4 \rfloor$.

Acknowledgment. The authors wish to thank the anonymous referee for the helpful comments and suggestions.

REFERENCES

[1] M. PLOTKIN, Binary Codes with Specified Minimum Distance, *IRE Trans. on Information Theory*, **6**, 1960, 445–450.

[2] J. H. VAN LINT, Introduction to Coding Theory, New York, Springer-Verlag, 1982.

[3] G. T. BOGDANOVA, New bounds for the maximum size of nonlinear q-ary codes, *Mathematics and Education in Mathematics*, **26**, Plovdiv, 1997, 82–84.

Stoian Kapralov Technical University BG-5300 Gabrovo E-mail: kapralov@tugab.bg

РЕКУРСИВНА КОНСТРУКЦИЯ НА ФАМИЛИЯ НЕЛИНЕЙНИ КОДОВЕ

Галина Богданова, Стоян Капралов

Представена е рекурсивна конструкция на q-ични кодове с параметри (n, M, d) за M = q + 2, n = |M(M-1)/4| и d = n - 1.