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Adame and Mejer [1] have computed the optimal values of the parameters used in
McEliece’s public-key cryptosystem by exhaustive search. In this paper we show that
these values can be found by logarithmic search. The same technique can be applied
to compute the optimal values of the parameters used in the scheme which outstands
an attack based on the parity-check matrix.

Introduction. McEliece’s public-key cryptosystem can be briefly described as fol-
lows:

1) The receiver constructs a binary error-correcting Goppa code C with a (k x n)
generator matrix G and error-correcting capability of ¢ errors.

2) He/she transforms the matrix G into

G = SGP,

where S is a (k x k) invertible scrambling matrix and P is a (n x n) permutation matrix.
The (k x n) matrix G is a generator matrix for an apparently arbitrary linear code C’
(i.e. for which a fast decoding algorithm is not known [5]).

3) G is published as the encryption key i.e. the sender encrypts a k—bit message
vector m into n—Dbit ciphertext vector ¢ by

(1) c=mG +e,

where e is an n—Dbit error-vector of weight < ¢ chosen by the sender at random.
4) The receiver, knowing that

c=mG +e=mSGP +e

computes
cP~! = (mS)G +eP™!

and uses a decoding algorithm for original code C in order to remove the error-vector
eP~! and to recover the vector mS. Finally the sender’s message is found by m =
(mS)S~1. The private keys for this scheme,therefore, are the matrices G, S and P.
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McEliece has proposed an attack on his cryptosystem which can be briefly described
as follows [3]. Since m is a k—bit vector, we can reduce equation (1) to

!
cr = mGy + eg,

where c¢; denotes any k components of ¢ (i.e ¢y = (¢iy, Ciy,---,Ci,)), € denotes the
!

corresponding k components of e and Gy is the square matrix consisting of columns

. . . /

i1,12,...,1; of G . Thus we have

ck + e, = mGy,
or, if Gk/ is invertible,
(2) (ck +ex)(Gr ) =m.
Note that if e, = 0, (2) reduces to
(3) ck(Gr) ' =m

and an opponent can recover the sender’s message without decoding (since ¢ and G are
public). If dg(ck (Gk/)_lG7 ¢) < t, then the opponent can claim that ck(le)_l is true
m [6].

The work factor of this attack can be computed as follows. The error-vector e is an
n—bit vector with ¢ ones and n —t zeroes. Therefore the probability of choosing (without
replacement) k zero components of e is

=) ()

The opponent must, on average, make 1/p,, 1 ; attempts before being successfull and, for

each attempt, must invert the (k x k) submatrix Gk’. Assuming that matrix inversion
requires k3 steps, this gives a total expected work factor for this attack of

(1) waln = (1)/(" ).

From [4] and [8] we know that for n = 2% parameters n, k and ¢ are related by
k=2 —it.

Equality will be used in this paper (see also [1] and [2]). Therefore, for n = 1024 (as
suggested in [3]), we have k = 1024 — 10t. Adams and Mejer [1] have shown by exhaustive
search that the value of W (t) is maximal for ¢ = 37. Here we obtain the same result
using logarithmic search.

Optimal value of t. The following equation is obvious

° <Z>/ <n1; t) NG i!lc)! (n(; t__t)f)!'
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_ We(t+1)

Let Vg (t) = . Using (5) in case n = 1024 and k = 1024 — 10t, we get:
Wal(t)
Va(t) = [1024 — 10(t + 1)]? 90t + 1)]! (10)1(1024 — ¢)!
ST (1024 = 106) [10(¢ + 1)]1(1024 — £ — 1)! (9t)! B
3
L 10 (9t +9)(9t +8)... (9% +1) (1024 — ) =
1024 — 10t ) (10t + 10)(10¢+9) ... (10t + 1)
L 10 21024 -1 9t +9 9t +8 941
1024 — 10t ) 10t +1010t+910t+8 10t +1

. 10 Tl024 -t () 1 . 1 . 1
1024 —10¢ ) 10t + 10 9/t+10 8/t+10) 1/t+10/°
Therefore Vi (t) decreases when ¢ increases. By straightforward calculations we obtain

that Viz(36) = 1.0020477, while Vi (37) = 0.9736544. This means that the value of Wg ()
is maximal for ¢ = 37.

An attack on the scheme based on the parity-check matrix. Let H' be the
parity-check matrix of the code C'. H is an (n — k X n) binary matrix of rank n — k.
It can be efficiently computed using generator matrix G (see [7]). Furthermore the well
known fact that syndrome of the error-vector is equal to syndrome of the transmitted
vector gives the equation

(6) He' =H " =s.
Let H;L_k be a square submatrix of H consisting of columns 41, 1%s,...,%, ;. Assuming
e; =0for i ¢ {iy,ia,...,9n—k}, (6) can be rewritten as

’
T _
Hn—ken—k =5,

where e, = (€451, €iny -, €ip_,)-

Therefore, if Hr/sz is invertible

’

eni = (Hyy)'s

and, if the weight of e,,_ is < ¢, then true error-vector e was found. Further on, knowing
e, the opponent can use (3) to recover the message m without decoding.

Since H  and s have to be computed only once, ignoring these computations, the work
factor of just described attack is

) wi =07 ()" )

Note that factor k% from (4) is replaced by (n — k)3 in (7) since we must invert an
(n — k x n — k) matrix.
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Let us apply the same technique as in Section 2 to find the optimal value of ¢ used in

t+1
the scheme which outstands the above attack. Let Vi (t) = % Using (5) after
H

some noncomplex computations (again in case n = 1024 and k = 1024 — 10t) we get:

1\%1024 —¢t 1 1 1
H=(1+— 1-— 1 — ). (1= ———).
Vi () <+10t> 10t+10< 9/t+10)< 8/t+10) < 1/t—|—10)

From this it is not difficult to see that Vi (¢) decreases when ¢ increases, and by straight-
forward calculations we obtain Vp (40) = 1.0136889 > 1, while Vi (41) = 0.09864933 < 1.
This means that the value of W (t) is maximal for ¢ = 41.

Note also, that since Wg(t) > Wi(t) (when n = 1024 and ¢ < 51) the attack based
on the parity-check matrix is more efficient than the attack based on generator matrix.
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HAKON KOMEHTAPU OTHOCHO CUT'YPHOCTTA HA
KPUIITOCUCTEMATA HA McELIECE

FOpu Bopucos

Adams n Mejer [1] nocrasT u pemapar 3ajadarta 3a HaMUpPaHe Ha OINTHMAJIHH CTO-
HOCTH Ha ITapaMeTpHuTe Ha IIyOIMIHO-KIroYoBaTa Kpunrocucrema Ha McEliece, n3most-
3BaliKM M34Y€EPIBAINO TbpCeHe. B HacTosmaTa craTis IoKa3BaMe, Y€ Te3H CTOWHOCTH
MOTAT Jia C€ HAMEPST C JIOTAapUIMHUIHO TbpceHe. CblllaTa TEXHUKA MOXKE J1a Ce IPH-
JIOXKW 1 33 IpecMsITaHe Ha ONTHMAJIHUTE CTOMHOCTH Ha IIapaMeTpPUTe Ha Ta3h CXeMa
[P pa3IyIexK/[aHe Ha BbIIPOCA 38 KPUIITOYCTONIUBOCTTA i OTHOCHO aTaka, basmparia
ce Ha IIPOBEPOYHATA MATPHUIA Ha M3IOJI3BAHUS JIMHEEH KO/I.
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