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SOME SECURITY-RELATED COMMENTS REGARDING

McELIECE’S PUBLIC-KEY CRYPTOSYSTEM
*

Yuri Borissov

Adame and Mejer [1] have computed the optimal values of the parameters used in
McEliece’s public-key cryptosystem by exhaustive search. In this paper we show that
these values can be found by logarithmic search. The same technique can be applied
to compute the optimal values of the parameters used in the scheme which outstands
an attack based on the parity-check matrix.

Introduction. McEliece’s public-key cryptosystem can be briefly described as fol-
lows:

1) The receiver constructs a binary error-correcting Goppa code C with a (k × n)
generator matrix G and error-correcting capability of t errors.

2) He/she transforms the matrix G into

G
′

= SGP,

where S is a (k×k) invertible scrambling matrix and P is a (n×n) permutation matrix.
The (k × n) matrix G

′

is a generator matrix for an apparently arbitrary linear code C
′

(i.e. for which a fast decoding algorithm is not known [5]).
3) G

′

is published as the encryption key i.e. the sender encrypts a k−bit message
vector m into n−bit ciphertext vector c by

(1) c = mG
′

+ e,

where e is an n−bit error-vector of weight ≤ t chosen by the sender at random.
4) The receiver, knowing that

c = mG
′

+ e = mSGP + e

computes
cP−1 = (mS)G+ eP−1

and uses a decoding algorithm for original code C in order to remove the error-vector
eP−1 and to recover the vector mS. Finally the sender’s message is found by m =
(mS)S−1. The private keys for this scheme,therefore, are the matrices G,S and P .

*This research was partially supported by the Bulgarian NSF under Contract I-803/98.
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McEliece has proposed an attack on his cryptosystem which can be briefly described
as follows [3]. Since m is a k−bit vector, we can reduce equation (1) to

ck = mGk

′

+ ek,

where ck denotes any k components of c (i.e ck = (ci1 , ci2 , . . . , cik)), ek denotes the

corresponding k components of e and Gk

′

is the square matrix consisting of columns
i1, i2, . . . , ik of G

′

. Thus we have

ck + ek = mGk

′

or, if Gk

′

is invertible,

(2) (ck + ek)(Gk

′

)−1 = m.

Note that if ek = 0, (2) reduces to

(3) ck(Gk

′

)−1 = m

and an opponent can recover the sender’s message without decoding (since c and G
′

are

public). If dH(ck(Gk

′

)−1G, c) ≤ t, then the opponent can claim that ck(Gk

′

)−1 is true
m [6].

The work factor of this attack can be computed as follows. The error-vector e is an
n−bit vector with t ones and n− t zeroes. Therefore the probability of choosing (without
replacement) k zero components of e is

pn,k,t =

(

n− t

k

)

/

(

n

k

)

.

The opponent must, on average, make 1/pn,k,t attempts before being successfull and, for

each attempt, must invert the (k × k) submatrix Gk

′

. Assuming that matrix inversion
requires k3 steps, this gives a total expected work factor for this attack of

(4) WG(t) = k3
(

n

k

)

/

(

n− t

k

)

.

From [4] and [8] we know that for n = 2i parameters n, k and t are related by

k ≥ 2i − it.

Equality will be used in this paper (see also [1] and [2]). Therefore, for n = 1024 (as
suggested in [3]), we have k = 1024−10t. Adams and Mejer [1] have shown by exhaustive
search that the value of WG(t) is maximal for t = 37. Here we obtain the same result
using logarithmic search.

Optimal value of t. The following equation is obvious

(5)

(

n

k

)

/

(

n− t

k

)

=
n!

(n− k)!

(n− t− k)!

(n− t)!
.
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Let VG(t) =
WG(t+ 1)

WG(t)
. Using (5) in case n = 1024 and k = 1024− 10t, we get:

VG(t) =
[1024− 10(t+ 1)]3

(1024− 10t)3
[9(t+ 1)]!

[10(t+ 1)]!(1024− t− 1)!

(10t)!(1024− t)!

(9t)!
=

(

1−
10

1024− 10t

)3
(9t+ 9)(9t+ 8) . . . (9t+ 1)

(10t+ 10)(10t+ 9) . . . (10t+ 1)
(1024− t) =

(

1−
10

1024− 10t

)3
1024− t

10t+ 10

9t+ 9

10t+ 9

9t+ 8

10t+ 8
. . .

9t+ 1

10t+ 1
=

(

1−
10

1024− 10t

)3
1024− t

10t+ 10

(

1−
1

9/t+ 10

)(

1−
1

8/t+ 10

)

. . .

(

1−
1

1/t+ 10

)

.

Therefore VG(t) decreases when t increases. By straightforward calculations we obtain
that VG(36) = 1.0020477, while VG(37) = 0.9736544. This means that the value of WG(t)
is maximal for t = 37.

An attack on the scheme based on the parity-check matrix. Let H
′

be the
parity-check matrix of the code C

′

. H
′

is an (n − k × n) binary matrix of rank n − k.
It can be efficiently computed using generator matrix G

′

(see [7]). Furthermore the well
known fact that syndrome of the error-vector is equal to syndrome of the transmitted
vector gives the equation

(6) H
′

eT = H
′

cT = s.

Let H
′

n−k be a square submatrix of H
′

consisting of columns i1, i2, . . . , in−k. Assuming
ei = 0 for i /∈ {i1, i2, . . . , in−k}, (6) can be rewritten as

H
′

n−ke
T
n−k = s,

where en−k = (ei1 , ei2 , . . . , ein−k
).

Therefore, if H
′

n−k is invertible

eTn−k = (H
′

n−k)
−1s

and, if the weight of en−k is ≤ t, then true error-vector e was found. Further on, knowing
e, the opponent can use (3) to recover the message m without decoding.

Since H
′

and s have to be computed only once, ignoring these computations, the work
factor of just described attack is

(7) WH = (n− k)3
(

n

k

)

/

(

n− t

k

)

.

Note that factor k3 from (4) is replaced by (n − k)3 in (7) since we must invert an
(n− k × n− k) matrix.
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Let us apply the same technique as in Section 2 to find the optimal value of t used in

the scheme which outstands the above attack. Let VH(t) =
WH(t+ 1)

WH(t)
. Using (5) after

some noncomplex computations (again in case n = 1024 and k = 1024− 10t) we get:

VH(t) =

(

1 +
1

10t

)3
1024− t

10t+ 10

(

1−
1

9/t+ 10

)(

1−
1

8/t+ 10

)

. . .

(

1−
1

1/t+ 10

)

.

From this it is not difficult to see that VH(t) decreases when t increases, and by straight-
forward calculations we obtain VH(40) = 1.0136889 > 1, while VH(41) = 0.09864933 < 1.
This means that the value of WH(t) is maximal for t = 41.

Note also, that since WG(t) > WH(t) (when n = 1024 and t ≤ 51) the attack based
on the parity-check matrix is more efficient than the attack based on generator matrix.
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НЯКОИ КОМЕНТАРИ ОТНОСНО СИГУРНОСТТА НА

КРИПТОСИСТЕМАТА НА McELIECE

Юри Борисов

Adams и Mejer [1] поставят и решават задачата за намиране на оптимални стой-
ности на параметрите на публично-ключовата криптосистема на McEliece, изпол-
звайки изчерпващо търсене. В настоящата статия показваме, че тези стойности
могат да се намерят с логаригмично търсене. Същата техника може да се при-
ложи и за пресмятане на оптималните стойности на параметрите на тази схема
при разглеждане на въпроса за криптоустойчивостта ѝ относно атака, базираща
се на проверочната матрица на използвания линеен код.
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