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GENERIC PROPERTIES OF FUNCTIONAL DIFFERENTIAL
INCLUSIONS IN BANACH SPACES *

Tzanko Donchev

We prove that almost all in the Baire sense functional differential inclusions in Banach
spaces have nonempty compact solution set, which depends continuously on the right-
hand side and on the initial condition.

1. Introduction.

Let E be a Banach space. Denote I = [0, 1] and given 7 > 0 we let X = C([-7,0], E).
Consider a functional differential inclusions having the form:

(1) (t) € F(t,xt), zo=2¢

where t € I and z; € X is given by x:(s) = z(t + s) for s € [-7,0] and F(-,-) is
(almost) continuous nonempty convex and compact valued multifunction. We prove that
for almost all in Baire sense (F, ¢) the solution set Z(F, ¢) of (1) is nonempty C(I, E)
compact and depends continuously on (F,¢) (of course if (1) has a solution for theese
(F, ).

Such a result was first proved in [6] in case of ordinary differential equations with
jointly continuous right-hand side and afterwards extended in case of almost continuous
differential equations in separable Banach spaces in [1]. For the background of functional
differential equations consult [4] where as in [7] some generic properties of functional dif-
ferential equations are presented. Theory of functional differential inclusions is presented
in [5] and in the appendix of [2].

In [8] is proven that for almost all (F, ¢) the solution set of (1) depends continuously
on (F,¢) when the space E = R™ and ¢ € E (i.e. no time lag). The result is however
obvious since the solution set of (1) in this case is nonempty compact and depends upper
semicontinuously on (F, ¢) hence one has only to use theorem 1 of [3] (see lemma 1).

Here we obtain similar result when, however, F is infinitely dimensional. The main
difficulty in this case is to show that for almost all (in Baire sense) (F,¢) the solution
set of (1) is nonempty C(I, E) compact and depends upper semicontinuously on (F, ¢).

Now we recall the main definitions and notations used in the paper. Note first that all
the concepts not discussed in details in the sequel can be found in [2]. By CC(E) denote
the set of all nonempty convex and compact subsets of E/, and by B the unit ball centered
in the origin. We let Dy (A, B) = max{max,c4 minyep |a — b|, maxpc p mingec 4 |a — b|}
be the Hausdorff distance and note that CC(F) equipped with this distance becomes a
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complete metric space. For x € E, A € CC(E) denote dist(x, A) = mingea | — a|. The
Hausdorff measure of noncompactness is defined by

B(B) = inf{r > 0: B can be covered by finitely many balls of radius < r},
where B is nonempty subset of C(I, E).

Definition 1. The multifunction F' : M — CC(E) is said to be continuous at x when
it is continuous with respect to the Hausdorff distance (here M is a metric space). The
multifunction F : I x X — CC(FE) is said to be almost continuous when to € > 0 there
exists a compact I, C I with Lebesgue measure greater than 1 — e such that F restricted
on I. x X is continuous. Let A, B be topological spaces. The multimap G : A — 28 is
called upper semicontinuous (USC) when for every a € A and every open U D G(a) there
exists a neighbourhood V'3 a such that U D G(a’) when o' € V.

We will consider the problem (1) in two cases:

1) F(-,-) is (jointly) continuous,

2) F(-,-) is almost continuous.

Given K > 0 and A(-) - Lebesgue integrable function define the sets:

Y={(F,¢), F:I1xX —CC(E), p € X, |F(t,v)| < K for every (¢t,)) € I x X}
YV ={(F,¢), F:I1xX — CC(E), ¢ € X, |F(t,9)| < A(¢) for every ¢ € X
and a.e. t € I}.

The first set consists of all continuous and the second of all almost continuous multimaps.
It is easy to see that equipped with the metrics:

p((F1,¢1), (Fa,¢2)) =  sup Dy (Fi(t,¥), F2(t,%)) + |¢1 — d2|x
(t,p)eIx X

ﬁ((F1a¢1)a(F2a¢2)) :/ISUP DH(Fl(t7¢)7F2(t7¢))dt+|¢1—¢2|X

peX
the sets Y and Y become complete metric spaces. In the second case one has only to use
Egorov’s and Lusin’s theorems.
The following lemma is theorem 1 of [3]

Lemma 1. Let Y be a topological space and X be a metric space. If a set-valued
mapping G from Y into X is USC then it is continuous in a residual (i.e. it contains a
countable intersection of open and dense subsets) set in'Y.

2. The results. In this section we present and prove our main results.

Definition 2. The multifunction H : I x X — CC(E) is said to be locally Lipschitz
iff for every z € I x X there exists a neighbourhood U > z and a constant L > 0 such
that Dy (H (1, 1), H(t2,2)) < L([ty — ta] 4 [th1 — 1a|) when (t1,41), (t2,¢2) € U.

The following lemma is proven in [6] in case of single valued maps.

Lemma 2. If G:I x X — CC(E) is continuous then to € > 0 there exists a locally
Lipschitz multifunction Ge such that Dy (G(t, ), Ge(t,v)) < € for every (t,¢) € I x X.

The proof is the same as in the single valued case and is omitted.

It follows from lemma 2 that the set of all locally Lipschitz functions is dense in Y
and in Y with respect to norms p and p respectively. Further considerations are similar
for Y and for Y and will be given (mainly) in case Y.
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Definition 3. Let ¢ > 0 be given. The absolutely continuous function x(-) is
said to be e-solution of (1) when it is a.e. differentiable, xg = ¢ and for a.e. t the
following inequality holds dist(&(t), F(t,z;)) < e, when F is continuous respectively
dist(z(t), F(t,z)) < Ae(t) with Ae(t) < A(t) almost all on I when it is almost con-
tinuous.

Theorem 1. Let S*(F, ¢) be the set of all e-solution of (1). If lim._o B(S*(F, ¢)) =
0 then (1) admits a nonempty compact solution set depending upper semicontinuously on
(F,9).

Proof. Let {z°(-)}c>0 be a net of e-solution. Hence there exists a uniformly converg-
ing subnet {z?(-)}$2; since lim._,o 3(S%(F, ®)) = 0 (see [2] for instance). Let lim;_, o, z*(t)
= z(t). Since F(-,-) is (almost) continuous one can easily show that for every ¢t > s € T

¢
we have z(t) — z(s) € [ F(r,2,)dr and xg = ¢. Therefore z(-) is a solution of (1), i.e.

the solution set of (1)615 nonempty and C(I, E) compact. Let ¢, - ¢ and F,, — F
with respect to p (or to p respectively) with F), satisfying the conditions of the theorem.
Given € > 0 one has that every absolutely continuous x with

l‘(t) GFn(tamt)a 1’0:(72571
is e-solution of (1) for sufficiently large n. Thus the solution set of (1) depends USC on
(F,¢). O

Given 7 > 0. Denote by Y; (Y;) the set of all (F,$) € Y (Y such that
lim, o B(SE(Fa ¢)) < 77)'

Theorem 2. The set }777 is open and dense in'Y for every n > 0.

Proof. Let (F™, ¢") € Y\ }777. Suppose lim,, o (F™, ¢") = (F, ¢). Given € > 0 one
has that for sufficiently large n every e-solution of (1) with (F",¢") is 2e-solurion of (1)
and vice versa. Therefore (F,¢) € Y \Y,. Le. Y \Y, is closed and hence Y;, is open.
Furthermore f’n cotains every pair (F, ¢) with F locally Lipschitz. Thus }7;7 is also dense
in Y due to lemma 2. The case of Y, and Y can be proven in the same way. []

Denote Yoo = (02, Yi/n-

Proposition 1. If (F,$) € Ya, then lim._,o B(S(F, ¢)) = 0.

Proof. For given n one has lim._,g B(S¢(F, ¢)) < 1/n. The proof is therefore com-
plete since n is arbitrary. [J

Denote by S(F, ¢) the solution set of (1). From theorems 1 and 2 and proposition 1
we obtain the main result of the paper.

Theorem 3. There exists a residual subset Y, of Y such that S(F, @) is nonempty
and continuous on (F, ).

Proof. First Y is a dense G subset of Y (i.e. countable intersection of open and
dense subsets of Y) due to theorem 2. Let (F,$) € Yo the solution set S(F,¢) of (1)
is nonempty compact USC depending on (F,¢) due to proposition 1 and theorem 1.
Furthermore Y is a Baire space. The proof is therefore complete due to lemma 1. O

Corollary 1. Fach functional differential inclusion (1) can be always approzimated
closedly by a functional differential inclusion whose solution set is nonempty compact
and stable (i.e. depends continuously on (F,¢)).
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The proof follows immediately from theorem 3 and is omitted.
Remark 1. Theorem 3 generalises theorem 8.2 of [8] and (partially) the main results
of [1,6]. Corollary 1 generalises theorem 3.4 of [8].
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TEHEPUYHU CBOMCTBA HA
OYHKIIMOHAJIHO-JU®EPEHIINMAJTHV BKIOYBAHN A B
BAHAXOBU ITPOCTPAHCTBA

IHanko donueB donuen

Jloka3Bame, Y€ IOYTH BCUYKU B CMHCLJ Ha Bep dyHKImonaIHO-qubEpeHIaIHn
BKIOYBaHMs B OAHAXOBH IIPOCTPAHCTBA MMAT HENPA3HO M KOMIIAKTHO MHOXKECTBO OT
pellleHns, KOeTO 3aBUCU HEIIPEK'bCHATO OT JgCHATa 9acT M HA4YaJIHOTO yCJIOBUE
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