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We prove that almost all in the Baire sense functional differential inclusions in Banach
spaces have nonempty compact solution set, which depends continuously on the right-
hand side and on the initial condition.

1. Introduction.

Let E be a Banach space. Denote I = [0, 1] and given τ > 0 we let X = C([−τ, 0], E).
Consider a functional differential inclusions having the form:

(1) ẋ(t) ∈ F (t, xt), x0 = φ

where t ∈ I and xt ∈ X is given by xt(s) = x(t + s) for s ∈ [−τ, 0] and F (·, ·) is
(almost) continuous nonempty convex and compact valued multifunction. We prove that
for almost all in Baire sense (F, φ) the solution set Z(F, φ) of (1) is nonempty C(I, E)
compact and depends continuously on (F, φ) (of course if (1) has a solution for theese
(F, φ)).

Such a result was first proved in [6] in case of ordinary differential equations with
jointly continuous right-hand side and afterwards extended in case of almost continuous
differential equations in separable Banach spaces in [1]. For the background of functional
differential equations consult [4] where as in [7] some generic properties of functional dif-
ferential equations are presented. Theory of functional differential inclusions is presented
in [5] and in the appendix of [2].

In [8] is proven that for almost all (F, φ) the solution set of (1) depends continuously
on (F, φ) when the space E ≡ Rn and φ ∈ E (i.e. no time lag). The result is however
obvious since the solution set of (1) in this case is nonempty compact and depends upper
semicontinuously on (F, φ) hence one has only to use theorem 1 of [3] (see lemma 1).

Here we obtain similar result when, however, E is infinitely dimensional. The main
difficulty in this case is to show that for almost all (in Baire sense) (F, φ) the solution
set of (1) is nonempty C(I, E) compact and depends upper semicontinuously on (F, φ).

Now we recall the main definitions and notations used in the paper. Note first that all
the concepts not discussed in details in the sequel can be found in [2]. By CC(E) denote
the set of all nonempty convex and compact subsets of E, and by B the unit ball centered
in the origin. We let DH(A,B) = max{maxa∈Aminb∈B |a − b|,maxb∈B mina∈A |a − b|}
be the Hausdorff distance and note that CC(E) equipped with this distance becomes a
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complete metric space. For x ∈ E,A ∈ CC(E) denote dist(x,A) = mina∈A |x− a|. The
Hausdorff measure of noncompactness is defined by

β(B) = inf{r > 0 : B can be covered by finitely many balls of radius ≤ r},

where B is nonempty subset of C(I, E).

Definition 1. The multifunction F :M → CC(E) is said to be continuous at x when
it is continuous with respect to the Hausdorff distance (here M is a metric space). The
multifunction F : I ×X → CC(E) is said to be almost continuous when to ε > 0 there
exists a compact Iε ⊂ I with Lebesgue measure greater than 1− ε such that F restricted
on Iε ×X is continuous. Let A,B be topological spaces. The multimap G : A → 2B is
called upper semicontinuous (USC) when for every a ∈ A and every open U ⊃ G(a) there
exists a neighbourhood V ∋ a such that U ⊃ G(a′) when a′ ∈ V .

We will consider the problem (1) in two cases:

1) F (·, ·) is (jointly) continuous,

2) F (·, ·) is almost continuous.

Given K > 0 and λ(·) - Lebesgue integrable function define the sets:

Y = {(F, φ), F : I ×X → CC(E), φ ∈ X, |F (t, ψ)| ≤ K for every (t, ψ) ∈ I ×X}

Ỹ = {(F, φ), F : I ×X → CC(E), φ ∈ X, |F (t, ψ)| ≤ λ(t) for every ψ ∈ X

and a.e. t ∈ I}.

The first set consists of all continuous and the second of all almost continuous multimaps.
It is easy to see that equipped with the metrics:

ρ
(

(F1, φ1), (F2, φ2)
)

= sup
(t,ψ)∈I×X

DH(F1(t, ψ), F2(t, ψ)) + |φ1 − φ2|X

ρ̃
(

(F1, φ1), (F2, φ2)
)

=

∫

I

sup
ψ∈X

DH(F1(t, ψ), F2(t, ψ)) dt+ |φ1 − φ2|X

the sets Y and Ỹ become complete metric spaces. In the second case one has only to use
Egorov’s and Lusin’s theorems.

The following lemma is theorem 1 of [3]

Lemma 1. Let Y be a topological space and X be a metric space. If a set-valued
mapping G from Y into X is USC then it is continuous in a residual (i.e. it contains a
countable intersection of open and dense subsets) set in Y .

2. The results. In this section we present and prove our main results.

Definition 2. The multifunction H : I ×X → CC(E) is said to be locally Lipschitz
iff for every z ∈ I × X there exists a neighbourhood U ∋ z and a constant L > 0 such
that DH(H(t1, ψ1), H(t2, ψ2)) ≤ L(|t1 − t2|+ |ψ1 − ψ2|) when (t1, ψ1), (t2, ψ2) ∈ U .

The following lemma is proven in [6] in case of single valued maps.

Lemma 2. If G : I ×X → CC(E) is continuous then to ε > 0 there exists a locally
Lipschitz multifunction Gε such that DH(G(t, ψ), Gε(t, ψ)) < ε for every (t, ψ) ∈ I×X.

The proof is the same as in the single valued case and is omitted.

It follows from lemma 2 that the set of all locally Lipschitz functions is dense in Y
and in Ỹ with respect to norms ρ and ρ̃ respectively. Further considerations are similar
for Y and for Ỹ and will be given (mainly) in case Ỹ .
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Definition 3. Let ε > 0 be given. The absolutely continuous function x(·) is
said to be ε-solution of (1) when it is a.e. differentiable, x0 = φ and for a.e. t the
following inequality holds dist(ẋ(t), F (t, xt)) < ε, when F is continuous respectively
dist(ẋ(t), F (t, xt)) < λε(t) with λε(t) ≤ λ(t) almost all on I when it is almost con-
tinuous.

Theorem 1. Let Sε(F, φ) be the set of all ε-solution of (1). If limε→0 β(S
ε(F, φ)) =

0 then (1) admits a nonempty compact solution set depending upper semicontinuously on
(F, φ).

Proof. Let {xε(·)}ε>0 be a net of ε-solution. Hence there exists a uniformly converg-
ing subnet {xi(·)}∞i=1 since limε→0 β(S

ε(F, φ)) = 0 (see [2] for instance). Let limi→∞ xi(t)
= x(t). Since F (·, ·) is (almost) continuous one can easily show that for every t > s ∈ I

we have x(t) − x(s) ∈
t
∫

s

F (τ, xτ ) dτ and x0 = φ. Therefore x(·) is a solution of (1), i.e.

the solution set of (1) is nonempty and C(I, E) compact. Let φn → φ and Fn → F
with respect to ρ (or to ρ̃ respectively) with Fn satisfying the conditions of the theorem.
Given ε > 0 one has that every absolutely continuous x with

ẋ(t) ∈ Fn(t, xt), x0 = φn

is ε-solution of (1) for sufficiently large n. Thus the solution set of (1) depends USC on
(F, φ). �

Given η > 0. Denote by Yη (Ỹη) the set of all (F, φ) ∈ Y (Ỹ such that
limε→0 β(S

ε(F, φ)) < η).

Theorem 2. The set Ỹη is open and dense in Ỹ for every η > 0.

Proof. Let (Fn, φn) ∈ Ỹ \ Ỹη. Suppose limn→∞(Fn, φn) = (F, φ). Given ε > 0 one
has that for sufficiently large n every ε-solution of (1) with (Fn, φn) is 2ε-solurion of (1)
and vice versa. Therefore (F, φ) ∈ Ỹ \ Ỹη. I.e. Ỹ \ Ỹη is closed and hence Ỹη is open.

Furthermore Ỹη cotains every pair (F, φ) with F locally Lipschitz. Thus Ỹη is also dense

in Ỹ due to lemma 2. The case of Yη and Y can be proven in the same way. �

Denote Ỹ∞ =
⋂

∞

n=1 Ỹ1/n.

Proposition 1. If (F, φ) ∈ Ỹ∞, then limε→0 β(S
ε(F, φ)) = 0.

Proof. For given n one has limε→0 β(S
ε(F, φ)) < 1/n. The proof is therefore com-

plete since n is arbitrary. �

Denote by S(F, φ) the solution set of (1). From theorems 1 and 2 and proposition 1
we obtain the main result of the paper.

Theorem 3. There exists a residual subset Ỹr of Ỹ such that S(F, φ) is nonempty
and continuous on (F, φ).

Proof. First Ỹ∞ is a dense Gδ subset of Y (i.e. countable intersection of open and
dense subsets of Ỹ ) due to theorem 2. Let (F, φ) ∈ Ỹ∞ the solution set S(F, φ) of (1)
is nonempty compact USC depending on (F, φ) due to proposition 1 and theorem 1.
Furthermore Ỹ∞ is a Baire space. The proof is therefore complete due to lemma 1. �

Corollary 1. Each functional differential inclusion (1) can be always approximated
closedly by a functional differential inclusion whose solution set is nonempty compact
and stable (i.e. depends continuously on (F, φ)).
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The proof follows immediately from theorem 3 and is omitted.
Remark 1. Theorem 3 generalises theorem 3.2 of [8] and (partially) the main results

of [1,6]. Corollary 1 generalises theorem 3.4 of [8].
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ГЕНЕРИЧНИ СВОЙСТВА НА
ФУНКЦИОНАЛНО-ДИФЕРЕНЦИАЛНИ ВКЮЧВАНИЯ В

БАНАХОВИ ПРОСТРАНСТВА

Цанко Дончев Дончев

Доказваме, че почти всички в смисъл на Бер функционално-диференциални

вкючвания в банахови пространства имат непразно и компактно множество от

решения, което зависи непрекъснато от дясната част и началното условие
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