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Singularly perturbed delayed differential inclusions with state constraints in Banach
spaces are considered. We investigate the limit behavior of the solution set when the
small parameter tends to zero. To this end the limits of the “fast” components are
identified with Radon probability measures.

1. Introduction. Let E = E1 × E2 be a Banach space. Consider the singularly

perturbed system
(

ẋ(t)
εẏ(t)

)

∈ H(t, xt, yt), x0 = ϕ, y0 = ψ, t ∈ I = [0, 1].(1)

Given locally compact convex sets Ki ⊂ Ei, i = 1, 2 and τ > 0 we suppose ϕ(s) ∈

C([−τ, 0],K1), ψ(s) ∈ C([−τ, 0],K2) where C is the corresponding space of continuous

functions with the sup–norm. Denoting Ci = C([−τ, 0],Ki), we let H be a multivalued

map from I × C1 × C2 into E while xt (resp. yt) is a function defined for s ∈ [−τ, 0]

as xt(s) = x(t + s) (resp. yt(s) = y(t + s)). The solution set of (1) will be denoted by

Z(ε). For ε > 0 it consists of all pairs (x, y) of AC (absolutely continuous) functions

with values in K satisfying (1) a.e. in I.

The most natural question is how to define the solution set Z(ε) of (1) at ε = 0. The

problem is enough complex and difficult even when we are in finite dimensions, there are

no delays and no state constraints. What has been done for this “simpler” case until

recently is connected with either the reduction approach or averaging method.

The first one is a continuation of the idea of Tikhonov [7]: to put ε = 0 in (1). Then

let Z(0) consist of all AC x and integrable y satisfying the new “reduced” system. In

[5, 8] etc. the LSC (lower semicontinuity) and/or USC (upper semicontinuity) of the

mapping ε 7→ Z(ε) at ε = 0+ are proved in various topologies. These results doesn’t

imply continuity.

The set Z(0) defined in the framework of the reduction approach is not reach enough

to absorb all the limits of the “slow” movements x. The contribution of the averaging

method is the derivation of the limit of the “slow” part of Z(ε). But it leaves open the

question how to change the things concerning the “fast” variables y.
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It seems that the answer of the above question is in the embeding of Z(0) in an

appropriate space. In the recent publication [2], where systems of ordinary differential

equations are investigated, identification of the limits of the “fast” solutions yε as ε→ 0

with invariant measures of the so-called associated system is suggested. The convergence

in y is in some statistical sense, while the slow part converges in the uniform norm to a

solution of specially defined “reduced” system. This idea is continued in [1], where an

invariant measure for differential inclusions is introduced.

The difficulty in our case commes from the delayed structure of the inclusion which

makes unclear the answer to the question “how to define Z(0)?”. However in some special

cases we are able to do this, see Theorem 2.

We give the main notations and definitions. For A ⊂ E1 × E2, we denote by Ai
the projection of A on Ei. Throughout the paper

〈

·, ·
〉

is the duality product, | · |

is the norm. For x ∈ E we denote by J(x) = {l ∈ E∗ : |l| = |x|,
〈

l, x
〉

= |x|2}

the duality mapping. For a closed, bounded (nonempty) set A ⊂ E and x ∈ E we

denote σ̂(x,A) = supl∈J(x) supa∈A
〈

l, a
〉

. Denote K = K1 × K2. The Bouligand cone

is introduced as TK(z) = {u ∈ E1 × E2 : (1/λ) lim infλ→0+ d(z + λu,K) = 0}. Let

Ω1 = {α ∈ C1 : |α(0)| = ‖α‖C = max−τ≤s≤0 |α(s)|},Ω2 = {β ∈ C2 : |β(0)| = ‖β‖C =

max−τ≤s≤0 |β(s)|}.

The multifunction F from the topological space X into the topological space Y is

said to be U(pper)S(emi)C(ontinuous) (L(ower)S(emi)C(ontinuous)) at x ∈ X when to

every open V ⊃ F (x) (V
⋂

F (x) 6= ∅) there exists a neighborghood W ∋ x such that

V ⊃ F (y) (V
⋂

F (y) 6= ∅) for y ∈ W . When X and Y are metrizable (metric) spaces

and F is compact valued then F is USC iff it admits a compact graph restricted to a

compact subset of X . For further details on the notions used in the paper, consult with

[4] or [9].

2. The Results. We can prove as in [6] the following lemma:

Lemma 1. Suppose that

A1. There exist positive constants a, b, µ such that

σ̂(α(0), H1(t, α, β)) ≤ a(1 + |α(0)|2 + ‖β‖2C), α ∈ Ω1, β ∈ C2,

σ̂(β(0), H2(t, α, β)) ≤ b(1 + ‖α‖2C)− µ|β(0)|2, α ∈ C1, β ∈ Ω2.

Then there exist constants M and N such that

‖xε‖C + ‖yε‖C ≤M, |H(t, xεt , y
ε
t )| ≤ N,

for every (xε, yε) ∈ Z(ε), ε > 0 and t ∈ I.

We give an example illustrating condition A1.

Example. Consider the following control system:

ẋ(t) ∈ xtw(t) + yt, x0 ≡ 0,

εẏ(t) ∈ xt + f(y)w(t)− 2g(y)‖yt‖C , y0 ≡ 0.

We suppose that Ei are Hilbert spaces, w(·) is measurable, w(t) ∈ [−1, 1] a.e. in I. Also

f(0) = g(0) = 0 and f(y) = y/
√

|y|3, g(y) = y/|y| when y 6= 0. Then using the simple
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inequality cd ≤ (c2 + d2)/2 we get for α and β such that α(0) = x, β(0) = y

σ̂(x,H1(t, α, β)) ≤
3|α(0)|2

2
+

|β(·)|2

2
≤ 2(1 + |α(0)|2 + ‖β‖2C),

σ̂(y,H2(t, α, β)) ≤
|β(0)|2

2
+

|α(0)|2

2
+ |β(0)|4/3 − 2|β(0)|2

≤ 1 +
1

2
(|α(0)|2 − |β(0)|2) ≤ 1 + ‖α‖2C −

1

2
|β(0)|2

(for β ∈ Ω2) since |β(0)|4/3 ≤ 1 + |β(0)|2. Then a = 2, b = 1, µ = 1/2.

Due to Lemma 1 there exists a bounded set P ⊂ K containing the values of all

solutions of (1), i.e. if (xε, yε) ∈ Z(ε), ε > 0 then (xε(t), yε(t)) ∈ P for every t ∈ I.

Denote by ℜ(P2) the set of all Radon probability measures on P2 (recall that P2 denotes

the projection of P on E2). This set is metrizable and equipped with its weak norm is

isometrically isomorphic to C(I, P2)
∗ (see [9]). Define the set of functions ℘ := {ν : I 7→

ℜ(P2) | ν(·) is measurable}. Then νi → ν for νi, ν ∈ ℘ and i = 1, 2, . . . if and only if
∫

I

(
∫

P2

f(t, y)νi(t) (dy)

)

dt→

∫

I

(
∫

P2

f(t, y)ν(t) (dy)

)

dt, for every f ∈ F .

Here F consists of all f : I ×P2 → E2 such that f(·, y) is measurable, f(t, ·) is continous

and integrally bounded. We can represent every measurable function y : I → P2 as

ν̄(·) = δy(·) (the Dirac measure) which is an element of ℘.

Theorem 1.Let A1 be fulfilled and Z(ε) 6= ∅. Then for every (generalized) sequence

of solutions (xε, yε) ∈ Z(ε), ε > 0 with ε → 0 there exists a subsequence {(xε, yε)}ε>0

(denoted in the same way) such that xε → x0 in C and yε → ν0 in ℘.

Proof. Since (xε(t), yε(t)) ∈ K for every ε > 0, t ∈ I and K is locally compact, by

Lemma 1 and Arzela Theorem we get the needed assertion. �

Now, we give a condition which combined with A1 imply the nonemptiness of Z(ε):

A2. The map H is nonempty, closed, bounded valued, bounded on the bounded sets.

One of the following conditions is true:

a)H has convex values and almost closed graph, i.e. for every δ > 0 there is a compact

set Iδ ⊂ I such that meas(Iδ) > 1− δ and the graph of H restricted on Iδ × C1 × C2 is

closed. Moreover, TK(x, y)∩H(t, α, β) 6= ∅ for every x ∈ K1, y ∈ K2 and α ∈ C1, β ∈ C2

with α(0) = x, β(0) = y;

b) H is almost LSC, i.e. for every δ > 0 there is a compact set Iδ ⊂ I such that

meas(Iδ) > 1−δ andH restricted on Iδ×C1×C2 is LSC. Moreover,H(t, α, β) ⊂ TK(x, y)

for every x ∈ K1, y ∈ K2 and α ∈ C1, β ∈ C2 with α(0) = x, β(0) = y.

Lemma 2.Under conditions A1 and A2 the set Z(ε) of the solutions of (1)) is not

empty and is relatively compact (compact when a) of A2 is fulfilled) for every ε > 0.

Proof. a) First, suppose condition a) of A2 is fulfilled. Define Hε(t, α, β) = {(u, v) ∈

E : (u, εv) ∈ H(t, α, β)} for ε > 0. Since K = K1 × K2 one has that TK(x, y) =

TK1
(x)× TK2

(y) hence TK(x, y) ∩Hε(t, α, β) 6= ∅.

Consider the sequence of numbers δn → 0, n = 1, 2, . . .monotonically and the sequence

of sets In ⊂ I, n = 1, 2, . . . with meas(In) > 1 − δn such that Hε restricted on In × C
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has a closed graph. Fix n and let Pn(t) be the metric projection on In, i.e. Pn(t) = {s ∈

In : |t − s| = minξ∈In |t− ξ|}. Define Fn(t, α, β) = co Hε(Pn(t), α, β) where co denotes

the closed, convex hull. Then Fn has a closed graph and satisfies the other conditions

imposed on H . Now, we can follow the proof of Lemma 2.2. of [5] up to the existence of

a sequence {(un, vn)}∞n=1 of absolutely continuous functions satisfying
(

u̇n(t)
v̇n(t)

)

∈ Fn(t, α+ δnB1, β + δnB2) + δnB, un = ϕ, vn = ψ,

where Bi and B are the closed unit balls centered at zero respectively in Ci and E.

Suppose that (un, vn), n = 1, 2, . . . exist on the whole interval I and are bounded.

Then by Lemma 1 and A2 it follows that all (un, vn) are Lipschitz with a common

constant. Furthermore (un, vn) : I 7→ K, n = 1, 2, . . . thus by Arzela Theorem one

can conclude (passing to subsequences if necessary) that (un, vn) → (u0, v0), n → ∞ in

C–topology. It is standard to prove that
(

u̇0(t)
v̇0(t)

)

∈ Hε(t, u0t , v
0
t )

and (u0, v0) will be the solution demanded.

Now, we will show the existence of (u0, v0) on the whole I. Since H is bounded on

the bounded sets, one can prove the existence of (un, vn) at least locally on say [0, T )

with T > 0. On this interval (un, vn), n = 1, 2, . . . are bounded and Lipschitz uniformly.

Therefore the solution (u0, v0) exists also on [0, T ). Let T be the least upper bound of the

right ends of intervals of the existence of solutions (u0, v0) of (1). By Lemma 1 and A2 one

can conclude that |Hε(t, u0t , v
0
t )| ≤ N/ε on [0, T ) for all such solutions (ε > 0 is fixed!).

Hence we can define u0(T ) = limt→T− u0(t) and v0(T ) = limt→T− v0(t). Therefore one

can prove the existence of solutions of (1) on [T, T + λ), λ > 0 if T < 1. Thus T = 1.

b) Let Hε be the mapping defined in the proof of a). Again by K = K1 × K2 it

follows that H(t, α, β) ⊂ TK(x, y). Obviously Hε is almost LSC too and if (xε, yε) is

a solution of (1) then |Hε(t, xεt , y
ε
t )| ≤ N/ε on I. Let I \ S =

⋃∞

n=1 In where {In}∞n=1

is a sequence of pairwise disjoint compacts, S ⊂ I is a null set and Hε is LSC on

In × C1 × C2, n = 1, 2, . . .. From Theorem 2 of [3] we know that there exist Γ(N/ε)+1–

continuos selections fn(t, α, β) ∈ Hε(t, α, β) on In × C1 × C2, n = 1, 2, . . .. Define the

multifunction

F (t, α, β) =

{
⋂

δ>0 co fn(t, α+ δB1, β + δB2), (t, α, β) ∈ In × C1 × C2,
⋂

δ>0 co H
ε(t, α+ δB1, β + δB2), elsewhere.

It is easy to show that F is (jointly) measurable, see the proof of Theorem 6.2 of [4].

Moreover F has almost closed graph and TK(x, y) ∩ F (t, α, β) 6= ∅. Then we are in case

a) for the function F . Thus there is a solution (u0, v0) on I of
(

u̇(t)
v̇(t)

)

∈ F (t, ut, vt), u0 = ϕ, v0 = ψ.

As in the proof of Lemma 6.1 of [4] one can show that
(

u̇0(t)
v̇0(t)

)

= fn(t, u
0
t , v

0
t ), t ∈ In, n = 1, 2, . . . .
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Hence (u0, v0) is a solution of (1) and the nonemptiness of Z(ε) is proved.

Now, fix ε > 0 and let {(xn, yn)}∞n=1 be a sequence of solutions of (1). Since the pair

(xn, yn) is N/ε for every n and K is locally compact the Arzela Theorem is applicable.

Hence Z(ε) is relatively compact. In case a) of A2 it is also closed. �

Corollary. Suppose A1 and A2 are satisfied. Then for every sequence of solutions

{(xε, yε)}ε>0 of (1) with ε → 0 there exist a subsequence {(xε, yε)}ε>0 (denoted in the

same way) such that xε → x0 in C and yε → ν0 in ℘.

Consider a functional–differential inclusion having the form:
(

ẋ(t)
εẏ(t)

)

∈ H(t, xt, y, y(t− h(t))), x0 = ϕ, y(s) = ψ(s), s ∈ [−τ, 0].(2)

Define Ĥ ≡ H when condition a) from A2 is met and

Ĥ(t, α, y, y1) =
⋂

δ>0

co H(t, α+ δB1, (y + δB̃) ∩K2, (y1 + δB̃) ∩K2)

for every α ∈ C1, y, y1 ∈ E2, when condition b) is true. Here B1 and B̃ are the closed

unit ball centered at zero in C1, respectively in E2.

Theorem 2. Suppose Ei are reflexive, A2 and the following is true:

A1′. There exist constants a, b, µ > 0 such that for every (x(t), y(t)) ∈ E

σ̂(x(t), H1(t, xt, y, y(t− h(t)))) ≤ a(1 + |x(t)|2 + |y(t)|2 + |y(t− h(t))|2),

σ̂(y(t), H2(t, xt, y, y(t− h(t)))) ≤ b(1 + |x(t)|2 + |y(t− h(t))|2)− µ|y(t)|2.

A3. If inft∈I h(t) = 0 then µ > 2b.

Then to every generalized sequence {(xε, yε)}ε>0 of solutions of (2) there exists a subse-

quence (denoted in the same way) such that xε → x0 and yε → ν0 in the same topologies

as in Theorem 1 and
(

ẋ0(t)
0

)

∈

∫

P2

Ĥ(t, x0t , z)µ
0(t) (dz), x0 = ϕ,(3)

where µ0(t) = ν0(t)⊗ ν0(t− h(t)) and ν0(s) = δψ(s), s ∈ [−τ, 0].

Proof. Using A1′ and A3 we can prove boundedness result anologous to Lemma 1,

see e.g. [6]. Substitute z(t) = (y(t), y(t− h(t)). Then if εi → 0 and (xi, yi) ∈ Z(εi), i =

1, 2, . . . by Theorem 1 (passing to subsequences if necessary) (xi, zi) → (x0, µ0) in consid-

ered topologies and (ẋi(·), εiẏi(·)) → (ẋ0(·), 0) in L1(I, E)–weak. The second convergence

is a standard observation, see e.g. [5].

The rest of the proof is the same as the proof of Theorem 4 of [6]. �
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ФУНКЦИОНАЛНО–ДИФЕРЕНЦИАЛНИ ВКЛЮЧВАНИЯ СЪС
СУНГУЛЯРНО СМУЩЕНИЕ В БАНАХОВИ ПРОСТРАНСТВА

Цанко Дончев Дончев, Йордан Иванов Славов

Разглеждат се функционално–диференциални включвания в банахови простран-

ства с малък параметър пред част от производните и фазови ограничения. Из-

следва се поведението на множеството от решения, когато малкият параметър

клони към нула. За тази цел границите на
”
бързите“ компоненти се отъждест-

вяват с вероятностни мерки на Радон.
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