ON THE NO EXISTENCE OF A [80,40,16] SELF-DUAL CODE WITH AN AUTOMORPHISM OF PRIME ODD ORDER GREATER THAN 7^{*}

Radinka Dontcheva

Abstract

A $[80,40,16]$ self-dual code of type I cannot have an automorphism of odd prime order greater than 7 .

1. Introduction. Let C be a [80,40,16] a self-dual code of type I. It is known [1] that this code has weight enumerators

$$
W_{1}(y)=1+(54045+256 \alpha) y^{16}+(675840-2048 \alpha) y^{18}+
$$

$$
\begin{equation*}
(6376192+5120 \alpha) y^{20}+\cdots \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{2}(y)=1+58653 y^{16}+622592 y^{18}+6697728 y^{20}+\cdots \tag{2}
\end{equation*}
$$

It is not known whether such a code exists. In this work we try to find such code C applying known method for constructing codes via automorphisms (see $[2,4]$) and basic theorems in Algebra.

Suppose C has an automorphism σ of odd prime order p with c cycles and f fixed points. We say for short that σ is of type $p-(c, f)$. We denote the cycles of σ by $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{c}$ and the fixed points by $\Omega_{c+1}, \Omega_{c+2}, \ldots, \Omega_{c+f}$. Define $F_{\sigma}(C)=\{v \in C$: $v \sigma=v\}$ and $E_{\sigma}(C)=\left\{v \in C: w t\left(v \mid \Omega_{i}\right) \equiv 0(\bmod 2), i=1, \ldots, c+f\right\}$, where $v \mid \Omega_{i}$ is the restriction of v on Ω_{i}. It is known [2] that $C=F_{\sigma}(C) \oplus E_{\sigma}(C)$ (a direct sum). Let P be a set of all even weight polynomials in $F_{2}(x) /\left(x^{p}-1\right)$. It is known that P is a ring with a unit $e(x)=x+x^{2}+\ldots+x^{p-2}+x^{p-1}$.

Every vector $v \in F_{\sigma}(C)$ is constant on each cycle. Let $\pi\left(F_{\sigma}(C)\right)$ be a code obtained from $F_{\sigma}(C)$ by replacing each restriction $v \mid \Omega_{i}, i=1,2, \ldots, c$, by one of its coordinates. We denote $E_{\sigma}(C)^{*}$ the code $E_{\sigma}(C)$ with the last f coordinates deleted. For $v \in E_{\sigma}(C)^{*}$ we can consider each $v \mid \Omega_{i}=\left(a_{0}, a_{1}, \ldots, a_{p-1}\right)$ as a polynomial $a_{0}+a_{1} x+\ldots+a_{p-1} x^{p-1}$ in the cyclic code P of length p consisting of all even-weight polynomials in $F_{2}[x] \mid\left(x^{p}-1\right)$. The result is denoted by $\varphi(v)$. For each $u, v \in \varphi\left(E_{\sigma}(C)^{*}\right)$ it holds:

$$
\begin{equation*}
u_{1}(x) v_{1}\left(x^{-1}\right)+u_{2}(x) v_{2}\left(x^{-1}\right)+\ldots+u_{c}(x) v_{c}\left(x^{-1}\right)=0 . \tag{3}
\end{equation*}
$$

[^0]We will use the following transformations leading to equivalent codes [4]:
(i) a substitution $x \rightarrow x^{t}$ in $\varphi\left(E_{\sigma}(C)^{*}\right)$, where t is an integer, $1 \leq t \leq p-1$;
(ii) a multiplication of the j -th coordinate of $\varphi\left(E_{\sigma}(C)^{*}\right)$ by $x^{t_{j}}$, where t_{j} is an integer, $0 \leq t_{j} \leq p-1, j=1,2, \ldots, c$;
(iii) a permutation of the first c cycles of C ;
(iv) a permutation of the last f coordinates of C .
2. Results. The main result of this work is the next theorem.

Theorem 1. A [80,40,16] self-dual code of type I cannot have an automorphism of odd prime order greater then 7 .

Lemma 1. Let C be a [80,40,16] self-dual code with an automorphism σ of odd prime order p greater than 7. Then for $p-(c, f)$ exist following cases: $19-(4,4)$ and $13-(6,2)$.

Proof. The cases $79-(1,1), 73-(1,7), 71-(1,9), 67-(1,13), 61-(1,19), 59-$ $(1,21), 53-(1,27), 47-(1,33), 43-(1,37), 41-(1,39), 37-(1,43), 37-(2,6), 31-$ $(1,49), 31-(2,18), 29-(1,51), 29-(2,22), 23-(1,57), 23-(2,34), 23-(3,11), 19-$ $(1,61), 19-(2,42), 19-(3,23), 17-(1,63), 17-(2,46), 17-(3,29), 17-(4,12), 13-$ $(1,67), 13-(2,54), 13-(3,41), 13-(4,28), 13-(5,15), 11-(1,69), 11-(2,58), 11-$ $(3,47), 11-(4,36), 11-(5,25)$ and $11-(6,14)$ do not satisfy conditions i) and ii) of the Theorem 1 of [4]. The case $11-(7,3)$ contradicts Corollary 2 of [4].

Lemma 2. Threre does not exist a [80,40,16] self-dual code of type I with an automorphism of order 13.

Proof. Suppose C is a $[80,40,16]$ self-dual code with an automorphism σ of type $13-(6,2)$. Hence $\pi\left(F_{\sigma}(C)\right)$ is a [8,4] self-dual binary code (see [4]). All such codes are C_{2}^{4} and $A_{8}[3]$.

Let $\pi\left(F_{\sigma}(C)\right)$ be C_{2}^{4}. Then $\left(F_{\sigma}(C)\right)$ has a vector with weight 14 . This eliminate C_{2}^{4}.
If $\pi\left(F_{\sigma}(C)\right)$ is A_{8} then the weight enumerator to $\left(F_{\sigma}(C)\right)$ has coefficients: $B_{28}=$ $3, B_{40}=8, B_{52}=3, B_{70}=1$ and every other is zero. Let C have weight enumerator W_{1}. Then it is necessarily that $A_{16} \equiv 0(\bmod 13)$ and $A_{18} \equiv 0(\bmod 13)$. We have $A_{16} \equiv$ $4+9 \alpha(\bmod 13), A_{18} \equiv 9-11 \alpha(\bmod 13)$. Then $\alpha \equiv 1(\bmod 13)$ and $\alpha \equiv 2(\bmod 13)$. This contradiction eliminates the case to W_{1}. As in $W_{2} A_{16} \equiv 10(\bmod 13)$ we obtain that σ is not an automorphism of order 13.

Lemma 3. There does not exist a [80,40,16] self-dual code of type I with an automorphism of order 19.

Proof. Suppose C has an automorphism σ of order 19 with 4 cycles and 4 fixed points. Hence $\varphi\left(E_{\sigma}(C)^{*}\right)$ is a [4,2] self-dual code. The polynomial $x^{18}+x^{17}+\ldots+x+1$ is irreducible over field F_{2}. Hence P is a direct sum of one irreducible cyclic code (see [4]) of length p, denoted with I. We have $I=\left\{0, e_{j}, \mu(x), \mu^{2}(x), \ldots, \mu^{2^{18}-2}(x)\right\}$ where $e=x^{18}+x^{17}+\ldots+x^{2}+x$ and $\mu(x)=x^{6}+x^{3}+x+1$ is a primitive element in I. Then $\varphi\left(E_{\sigma}(C)^{*}\right)$ is a code over the field I. Hence the possible generator matrices for $\varphi\left(E_{\sigma}(C)^{*}\right)$ are

$$
\left(\begin{array}{cccc}
e_{1} & 0 & \alpha_{1}(x) & \alpha_{2}(x) \\
0 & e_{1} & \alpha_{3}(x) & \alpha_{4}(x)
\end{array}\right)
$$

where $\alpha_{i}(x) \in I$ for $i=1,2,3,4$.

Applying (3) we obtain the following cases for the first row to the above matrix:

$$
\begin{equation*}
\left(e(x) \quad 0 \quad \mu^{t_{1}}(x) \quad 0\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(e(x) \quad 0 \quad \mu^{t_{1}}(x) \quad \mu^{t_{2}}(x),\right. \tag{5}
\end{equation*}
$$

for $t_{i}=0, \ldots, 2^{18}-2$ for $i=1,2$.
The case (4) is developed in [4] and the inequivalent cases are:
$(e(x) \quad 0 \quad e(x) \quad 0), \quad\left(e(x) \quad 0 \quad \mu^{511 \times 19}(x) \quad 0\right), \quad\left(\begin{array}{lllll}(e(x) & 0 & \mu^{511 \times 19 \times 3}(x) & 0)\end{array}\right.$ and $\quad\left(e(x) \quad 0 \quad \mu^{511 \times 19 \times 9}(x) \quad 0\right)$.

If we add the first and the second row of the corresponding generator matrices for $\varphi\left(E_{\sigma}(C)^{*}\right)$ in the all four cases we obtain a vector with weight at most 14.

Let us consider the case (5). Applying transformations (i), (ii), (iii) and (iv) to the first row we obtain

$$
\left(\begin{array}{llll}
e_{1} & 0 & \delta^{t_{1}}(x) & \delta^{t_{2}}(x)
\end{array}\right)
$$

where $\delta(x) \in I$ is of order $7 \times 27 \times 73, t_{i}=1, \ldots, 7 \times 27 \times 73$ for $i=1,2$. It follows from (3) that $\delta^{t_{1}\left(2^{9}+1\right)}(x)+\delta^{t_{2}\left(2^{9}+1\right)}(x)=e(x)$. Let $\gamma(x)=\delta^{513}(x)$. The order of $\gamma(x)$ is 511 and it is a primmitive element of a field of 512 elements. From the addition and multiplication tables of this field and the equality $e(x)+\gamma^{t_{1}^{\prime}}(x)=\gamma^{t_{2}^{\prime}}(x)$ we can determine all possibilities for $\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$. Since $\left(2 t_{1}^{\prime}, 2 t_{2}^{\prime}\right)$ and $\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$ lead to equivalent codes, we obtain only : $t_{1}=t_{1}^{\prime}+511 \times k_{1}, t_{2}=t_{2}^{\prime}+511 \times k_{2}$, where $k_{i}=0, \ldots, 26$ for $i=1,2$ and $\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$ and $\left(t_{2}^{\prime}, t_{1}^{\prime}\right)$ can be $(1,93),(3,262),(5,408),(7,505),(9,59),(11,248),(15,37),(17,343)$, $(19,105),(21,87),(23,383),(25,251),(27,409),(29,178),(35,231),(39,111),(41,332)$, $(43,246),(45,61),(47,340),(53,375),(55,428),(57,366),(63,190),(73,219),(79,491)$, $(91,167),(109,341)$ and $(125,187)$.

Applying (iii) for the above cases we reduce the values for $\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$ and $\left(t_{2}^{\prime}, t_{1}^{\prime}\right)$ to the following cases:

$$
(1,93),(3,262),(5,408),(9,59),(11,248),(17,343),(19,105),(29,178)
$$

(6)

$$
(35,231),(41,332) \text { and }(73,219) .
$$

We can consider a generator matrix for $\varphi\left(E_{\sigma}(C)^{*}\right)$ of the form

$$
\left(\begin{array}{cccc}
e(x) & 0 & \delta^{t_{1}}(x) & \delta^{t_{2}}(x) \\
0 & e(x) & \delta^{t_{3}}(x) & x^{s} \cdot \delta^{t_{4}}(x)
\end{array}\right)
$$

where $t_{i}=1, \ldots, 7 \times 27 \times 73$ for $i=3,4$ and $s=0, \ldots, 18$.
From the orthogonal condition (3) for the second row we obtain $\delta^{t_{3}\left(2^{9}+1\right)}(x)+$ $\delta^{t_{4}\left(2^{9}+1\right)}(x)=e(x)$. Hence $t_{3}=t_{3}{ }^{\prime}+511 \times k_{3}, t_{4}=t_{4}{ }^{\prime}+511 \times k_{4}$, where $k_{i}=0, \ldots, 26$ for $i=3,4$ and $\left(t_{3}{ }^{\prime}, t_{4}{ }^{\prime}\right)$ and $\left(t_{4}{ }^{\prime}, t_{3}{ }^{\prime}\right)$ can be (6).

The same condition (3) we apply for first and second row. It is follows $\delta^{t_{3}+2^{9} t_{1}}(x)=$ $x^{s} . \delta^{t_{4}+2^{9} t_{2}}(x)$. We denote $t_{3}+2^{9} t_{1}=l_{1}$ and $t_{4}+2^{9} . t_{2}=l_{2}$. Hence

$$
\begin{equation*}
\delta^{l_{1}}(x)=x^{s} \delta^{l_{2}}(x) . \tag{7}
\end{equation*}
$$

Denote by r_{1} the order of $\delta^{l_{2}}$. We have that $\delta^{l_{2}}$ and x^{s} are in field $I, \delta^{l_{2}} \cdot x^{s}=x^{s} \cdot \delta^{l_{2}}$, the order on x^{s} is 19 for $s=1, \ldots, 18$ and $\left(r_{1}, 19\right)=1$. Then the element $x^{s} . \delta^{t_{2}}(x) \in I$ has a order $19 \times r_{1}$. It follows from (7) that the element $\delta^{l_{1}}$ has order $19 \times r_{1}$ but 19 does not divide the order of $\delta^{l_{1}}$. Hence $s=0$ and the matrix for $\varphi\left(E_{\sigma}(C)^{*}\right)$ can be the following:

$$
\left(\begin{array}{cccc}
e(x) & 0 & \delta^{t_{1}{ }^{\prime}+511 \cdot k_{1}}(x) & \delta^{t_{2}{ }^{\prime}+511 \cdot k_{2}}(x) \\
0 & e(x) & \delta^{t_{3}{ }^{\prime}+511 \cdot k_{3}}(x) & \delta^{t_{4}{ }^{\prime}+511 \cdot k_{4}}(x)
\end{array}\right) .
$$

Applying (3) we obtain $\delta^{t_{3}+t_{1} 2^{9}+511\left(k_{3}+k_{1} 2^{9}\right)}(x)=\delta^{t_{4}+t_{2} 2^{9}+511\left(k_{4}+k_{2} 2^{9}\right)}(x)$
Hence $t_{3}+t_{1} 2^{9}+511\left(k_{3}+k_{1} 2^{9}\right) \equiv t_{4}+t_{2} 2^{9}+511\left(k_{4}+k_{2} 2^{9}\right)(\bmod 511)$ and $t_{1}{ }^{\prime}-t_{2}^{\prime} \equiv t_{4}{ }^{\prime}-t_{3}^{\prime}(\bmod 511)$. It follows that $\left(t_{3}{ }^{\prime}, t_{4}{ }^{\prime}\right)=\left(t_{2}{ }^{\prime}, t_{1}{ }^{\prime}\right)$.
Using GFQ for every case of $t_{1}^{\prime}, t_{2}^{\prime}$ we obtain the values for $\delta^{t_{1}^{\prime}+511 k_{1}}(x)$ and $\delta^{t_{2}^{\prime}+511 k_{2}}(x)$ for $k_{i}=0, \ldots, 26, i=1,2$ We include them in computer program and obtain that in all cases the matrix of the code $E_{\sigma}(C)$ has a vector with a weight at most 14.

Apllying the Lemma 1, Lemma 2 and Lemma 3 completes the proof of the theorem. Acknowledgment: I would to thank V. Yorgov for the useful discussions.

REFERENCES

[1] Joe Fields,V. Pless. Split weight enumerators of extremal self-dual codes, pre-print.
[2] W.C.Huffman. Automorphisms of codes with application to extremal doubly-even codes of length 48, IEEE Trans.Inform. Theory 28 (1982) 511-521.
[3] V.Pless. A classification of self-orthogonal codes over GF(2), Discrete Math., vol. 3 (1972) 209-246.
[4] V.Y.Yorgov. Binary self-dual codes with automorphisms of odd order (in Russian), Probl.Pered.Inform. 19 (1983) 11-24.

Радинка Александрова Дончева
Катедра Алгебра при ФМИИ на
Шуменски Университет „Еп. Константин Преславски"
Шумен 9712

НЕСЪЩЕСТВУВАНЕ НА [80,40,16] САМОДУАЛЕН КОД С АВТОМОРФИЗЪМ ОТ НЕЧЕТЕН ПРОСТ РЕД ПО-ГОЛЯМ ОТ 7

Радинка Александрова Дончева

Самодуален $[80,40,16]$ код от тип I не притежава автоморфизъм от нечетен прост ред по-голям от 7.

[^0]: *This work was partially supported by the Bulgarian national Science Fund under Contract No.MM503/1995.

