МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 1999 MATHEMATICS AND EDUCATION IN MATHEMATICS, 1999 Proceedings of Twenty Eighth Spring Conference of the Union of Bulgarian Mathematicians Montana, April 5–8, 1999

ON THE NONAUTONOMOUS GAUS'S SYSTEM

Svetlin Georgiev Georgiev, Dimiter Ivanov Petrov

In this paper we consider a nonautonomous periodic system which models the interaction between two species of Predator-Prey type. We give conditions under which the model has a positive periodic solution.

Introduction. Let us consider the system

(1)
$$\begin{aligned} x' &= \alpha x - p(x) y\\ y' &= -\delta y + \gamma p(x) y\end{aligned}$$

which models the interaction between two species of Predator-Prey type. We assume that system (1) reflects ω -periodic influence of the environment. More precisely, we will assume that the coefficients α , δ , γ are continuous ω -periodic functions of time t. When $p(x) \equiv x$, system (1) is the well-known Lotka-Volterra model.

System (1) was suggested by G. F. Gauss in 1934 and was investigated for limit cycles by Koij and Zegeling in [3]. In present paper we modify (1), assuming that the coefficients α , δ , γ are continuous ω -periodic functions of time t and we are interesting in the conditions under which (1) has at least one positive periodic solution.

The main result. For continuous ω -periodic functions g we put

$$[g] = \frac{1}{\omega} \int_{0}^{\omega} g(s) \, ds, \ \{g\} = g - [g], \ g_L = \min_t g(t), \ g_M = \max_t g(t).$$

Our main result is

Theorem 1. Let the coefficients α, δ be continuous ω -periodic functions with $[\alpha] > 0$, $[\delta] > 0$ and γ is continuous positive ω -periodic function. Let the function $p \in C^1[0, \infty)$ satisfies the conditions p(0) = 0, p'(u) > 0 for every $u \ge 0$, and let also there exist constants B > 0, $k_{\infty} > 0$ such that $p(u) \ge k_{\infty}u$ for $u \ge B$. Then the system (1) has at least one positive ω - periodic solution.

Numerical example. Consider the system

(2)
$$\begin{vmatrix} x' = \cos^2(t) x + x(x+1) y \\ y' = -\sin^2(t) y + (1 + \cos^2(t)) x(x+1) y \end{vmatrix}$$

which satisfies all the conditions of Theorem 1. A $\pi\text{-}\mathrm{periodic}$ solution is found near the initial data

- (3) x(0) = 0.2792278841, y(0) = 0.3487068214.
- 94

The calculation show that

$$|x(0) - x(\pi)| + |y(0) - y(\pi)| < 0.000005.$$

Its phase form is shown in fig.1 below. In fig.2 the phase curve that begins at the point (0.3, 0.3) is traced for $t \in [0, 25\pi]$. This solution seems to be stable.

Proof of Theorem 1. The proof is based on the theory of completely continuous vector fields presented by Krasnosels'kii and Zabrejko in [4]. The next theorem is extracted from [4].

Theorem 2. Let Y be a real Banach space with a cone Q and $L : Y \to Y$ be a completely continuous and positive $(L : Q \to Q)$ with respect to Q operator. Then the following assertions are valid:

i) Let L(0) = 0. If for every sufficiently small r > 0 there is no $y \in Q$ for which $y \leq^0 L(y)$ and $||y||_Y = r$, then ind (0, L; Q) = 1.

ii) Let for every sufficiently large R > 0 there is no $y \in Q$ for which $||y||_Y = R$ and $L(y) \leq^0 y$. Then ind $(\infty, L; Q) = 0$.

iii) Let L(0) = 0 and ind $(\infty, L; Q) \neq ind(0, L; Q)$. Then L has nontrivial fixed points in Q.

Here ind(., L; Q) denotes the index of a point with respect to L and Q. The sign \leq^{0} denotes the semiordering generated by Q.

We introduce the following notations

$$D_{x}^{-} = \min_{0 \le t, s \le \omega} e^{\int_{t+s}^{t} \{\alpha\}(\tau)d\tau}, \quad D_{x}^{+} = \max_{0 \le t, s \le \omega} e^{\int_{t+s}^{t} \{\alpha\}(\tau)d\tau},$$
$$D_{y}^{-} = \min_{0 \le t, s \le \omega} e^{-\int_{t-s}^{t} \{\delta\}(\tau)d\tau}, \quad D_{y}^{+} = \max_{0 \le t, s \le \omega} e^{-\int_{t-s}^{t} \{\delta\}(\tau)d\tau},$$
$$C_{x} = \frac{D_{x}^{-}}{D_{x}^{+}} e^{-[\alpha]\omega}, \qquad C_{y} = \frac{D_{y}^{-}}{D_{y}^{+}} e^{-[\delta]\omega}.$$

One can easy verify the validity of

Lemma 1. Let δ and g be continuous ω -periodic functions and $[\delta] > 0$. Then the equation

$$x' = -\delta(t)x + g(t)$$

95

has a unique ω -periodic solution for which it holds the representation

$$x(t) = \int_{0}^{\omega} \frac{e^{-[\delta]s}}{1 - e^{-[\delta]\omega}} e^{-\int_{t-s}^{t} \{\delta\}(\tau)d\tau} g(t-s) ds.$$

Furthermore, there exists a unique ω -periodic solution to the equation

$$x' = \delta(t) x - g(t),$$

for which it holds the representation

$$x\left(t\right) = \int_{0}^{\omega} \frac{e^{-[\delta]s}}{1 - e^{-[\delta]\omega}} e^{\int_{t+s}^{t} \{\delta\}(\tau)d\tau} g\left(t+s\right) ds.$$

Put

$$G_x\left(t,s\right) = \frac{e^{-[\alpha]s}}{1 - e^{-[\alpha]\omega}} e^{\int\limits_{t+s}^{t} \{\alpha\}(\tau)d\tau}, \quad G_y\left(t,s\right) = \frac{e^{-[\delta]s}}{1 - e^{-[\delta]\omega}} e^{-\int\limits_{t-s}^{t} \{\delta\}(\tau)d\tau}.$$

Using Lemma 1, the problem for ω -periodic solutions of (1) is reduced to the problem for ω -periodic solutions of the following operator system

(4)
$$\begin{cases} x(t) = \int_{0}^{\omega} G_x(t,s) p(x(t+s)) y(t+s) ds \stackrel{def}{=} X(x,y) \\ y(t) = \int_{0}^{\omega} G_y(t,s) p(x(t-s)) \gamma(t-s) y(t-s) ds \stackrel{def}{=} Y(x,y) \end{cases}$$

Put P(x,y) = (X(x,y), Y(x,y)) and let $C(\omega)$ be the space of the continuous ω -periodic functions and let H be the Banach space $H = C(\omega) \otimes C(\omega)$, provided with the usual norm

$$||(x, y)|| = \max_{t} |x(t)| + \max_{t} |y(t)|.$$

Let $C_{+}(\omega) \subseteq H$ be the cone

$$C_+(\omega) = \{(x,y) \in H : x_L \ge C_x x_M, y_L \ge C_y y_M\}.$$

As in [2], it is easy to verify that the completely continuous operator P is positive with respect to $C_+(\omega)$, i.e. $P : C_+(\omega) \to C_+(\omega)$. Furthermore, the derivate of the operator P in zero is zero and from Theorem 2*i*) follows *ind* $(0, P; C_+(\omega)) = 1$.

Let us find $ind(\infty, P; C_+(\omega))$. Let $B_* = B/C_x$ and $N = \inf_{\substack{0 \le u \le B_*}} p'(u)$. We have N > 0. It is easy to see that $x_L \ge B$ whenever $x_M \ge B_*$. Let R be sufficiently large and $R > \max\left(\frac{B}{C_x}, \frac{[\delta]}{\gamma_L k_\infty D_y^- C_x}, \frac{[\alpha]}{ND_x^- C_y}, \frac{[\alpha]}{k_\infty D_x^- C_y}\right)$.

We define

$$P_*(x,y) = \left(\frac{D_x^-}{\omega\left[\alpha\right]}\int_0^\omega p(x(t))y(t)\,dt + 1, \ \frac{1}{\omega}\int_0^\omega y(t)\,dt + 1\right)$$

At first we will show that the completely continuous and positive vector fields I - Pand $I - P_*$ are linear homotopic at $x_M + y_M = 2R$. By a contradiction argument we 96 assume that there exists $(\tilde{x}, \tilde{y}) \in C_+(\omega)$ and $\theta \in [0, 1]$ for which

(5)
$$\theta X\left(\tilde{x},\tilde{y}\right) + \left(1-\theta\right)\frac{D_x^-}{\left[\alpha\right]}\int_0^{\omega} p\left(\tilde{x}\left(s\right)\right)\tilde{y}\left(s\right)ds + \left(1-\theta\right) = \tilde{x}\left(t\right),$$

(6)
$$\theta Y\left(\tilde{x},\tilde{y}\right) + (1-\theta)\frac{1}{\omega}\int_{0}^{\omega}\tilde{y}\left(s\right)ds + (1-\theta) = \tilde{y}\left(t\right).$$

Consider two cases.

1) Let $\tilde{x}_M \ge R$. Then $\tilde{x}_L \ge B$ and $\tilde{x}_L \ge RC_x$ and from (6) we obtain the following inequality

$$\theta \gamma_L k_{\infty} R C_x \int_{0}^{\omega} G_y(t,s) \, \tilde{y}(t-s) \, ds + (1-\theta) \frac{1}{\omega} \int_{0}^{\omega} \tilde{y}(s) \, ds + (1-\theta) \leq \tilde{y}(t) \, ,$$

which after integrating at $[0, \omega]$ yields

$$\theta \gamma_L k_{\infty} R C_x \frac{D_y^-}{[\delta]} \left[\tilde{y} \right] + (1 - \theta) \left[\tilde{y} \right] + (1 - \theta) \leq \left[\tilde{y} \right]$$

In view of the choice of R, the last inequality is valid iff $\tilde{y} \equiv 0$ and $\tilde{\theta} \equiv 1$. Then substituting the values found for $\tilde{y} \equiv 0$ and $\tilde{\theta} \equiv 1$ in (5), we get $\tilde{x} \equiv 0$ which is a contradiction.

2) Let $\tilde{y}_M \geq R$. Then $\tilde{y}_L \geq C_y R$. We will prove that $\tilde{x}_M \leq B_*$ is not valid. Let $\tilde{x}_M \leq B_*$. Then from the mean value theorem, it follows $p(\tilde{x}(t)) \geq N\tilde{x}(t)$ and from (5) we have

$$\theta C_y RN \int_{0}^{\omega} G_x\left(t,s\right) \tilde{x}\left(t+s\right) ds + (1-\theta) C_y RN \frac{D_x^{-1}}{\left[\alpha\right]} \int_{0}^{\omega} \tilde{x}\left(s\right) ds \le \tilde{x}\left(t\right).$$

Integrating the last inequality at $[0, \omega]$, we get

$$\theta C_y RN \frac{D_x^-}{[\alpha]} \left[\tilde{x} \right] + (1 - \theta) C_y RN \frac{D_x^-}{[\alpha]} \left[\tilde{x} \right] \le \left[\tilde{x} \right],$$

which is a contradiction. Consequently $\tilde{x}_M \geq B_*$ and $\tilde{x}_L \geq B$. Now from (5) follows

$$\theta C_y Rk_{\infty} \int_{0}^{\omega} G_x(t,s) \,\tilde{x}(t+s) \,ds + (1-\theta) \,C_y Rk_{\infty} \frac{D_x^-}{[\alpha]} \int_{0}^{\omega} \tilde{x}(s) \,ds \le \tilde{x}(t) \,.$$

Hence, after integrating at $[0, \omega]$ we get the impossible inequality

$$RC_y k_\infty \frac{D_x^-}{[\alpha]} [\tilde{x}] \le [\tilde{x}].$$

In this way we prove that the completely continuous positive vector fields I-P and $I-P_*$ are linear positive homotopic at $x_M + y_M = 2R$. Let us compute $ind(\infty, P_*; C_+(\omega))$. For this purpose, assume that there is $(\tilde{x}, \tilde{y}) \in C_+(\omega)$ for which $P_*(\tilde{x}, \tilde{y}) \leq (\tilde{x}, \tilde{y})$. Then

$$\frac{1}{\omega}\int_{0}^{\omega}\tilde{y}\left(s\right)ds+1\leq\tilde{y}\left(s\right),$$

97

which, after integrating at $[0, \omega]$, yields to the impossible inequality

$$[\tilde{y}] + 1 \le [\tilde{y}].$$

From the last conclusion and from Theorem 2*ii*), it follows *ind* $(\infty, P_*; C_+(\omega)) = 0$. Since the vector fields I - P and $I - P_*$ are linear positive homotopic we have

$$ind\left(\infty, P; C_{+}\left(\omega\right)\right) = ind\left(\infty, P_{*}; C_{+}\left(\omega\right)\right) = 0,$$

therefore

$$0 = ind\left(\infty, P; C_{+}\left(\omega\right)\right) \neq ind\left(0, P; C_{+}\left(\omega\right)\right) = 1.$$

Now from Theorem 2*iii*) follows that the operator P has a nontrivial fixed point in $C_+(\omega)$. In particular, system (1) has at least one positive ω -periodic solution. \Box

Using similar arguments, as above in the proof of Theorem 1 one can see that the following theorem is valid

Theorem 3. Let the coefficients α, δ be continuous ω -periodic functions with $[\alpha] > 0$, $[\delta] > 0$ and γ is continuous positive ω -periodic function. Let the function $p \in C^1[0, \infty)$ satisfies the conditions p(0) = 0, p'(u) > 0 for every $u \ge 0$ and let also there exist constants B > 0, K such that $p(u) \ge K$ for $u \ge B$ and

$$K > \frac{[\delta]}{\gamma_L D_y^-}.$$

Then system (1) has at least one positive ω -periodic solution.

REFERENCES

 T. DING, F. ZANOLIN. Periodic solutions and subharmonic solutions for a class of planar systems of Lotka-Volterra type, World Congress of Nonlinear Analysis, Tampa, Florida, 1992.
D. TSVETKOV, S. GEORGIEV. Positive periodic solutions of the nonautonomous Lotka-Volterra system. *Mathematics and Education in Mathematics*, **26** (1997), 202-208.

[3] R. KOOIJ, A. ZEGELING. A Predator-Prey Model with Ivlev's Functional Response. J. Math, Anal. Appl., **198** (1996), 473-489.

[4] M. KRASNOSELS'KII, P. ZABREJKO. Geometrical methods of nonlinear analysis, Nauka, Moscow, 1975 (in Russian).

Faculty of Mathematics and Informatics University of Veliko Tarnovo 5000 Veliko Tarnovo Bulgaria

ВЪРХУ НЕАВТОНОМНАТА СИСТЕМА НА ГАУС

Светлин Георгиев Георгиев, Димитър Иванов Петров

В тази работа разглеждане неавтономна периодична система, която моделира взаимодействието между два вида от тип "хищник-жертва". Даваме условия при които разглежданата система има положителни периодични решения.