ON THE NONAUTONOMOUS GAUS'S SYSTEM

Svetlin Georgiev Georgiev, Dimiter Ivanov Petrov

Abstract

In this paper we consider a nonautonomous periodic system which models the interaction between two species of Predator-Prey type. We give conditions under which the model has a positive periodic solution.

Introduction. Let us consider the system

$$
\begin{align*}
& x^{\prime}=\alpha x-p(x) y \tag{1}\\
& y^{\prime}=-\delta y+\gamma p(x) y
\end{align*}
$$

which models the interaction between two species of Predator-Prey type. We assume that system (1) reflects ω-periodic influence of the environment. More precisely, we will assume that the coefficients α, δ, γ are continuous ω-periodic functions of time t. When $p(x) \equiv x$, system (1) is the well-known Lotka-Volterra model.

System (1) was suggested by G. F. Gauss in 1934 and was investigated for limit cycles by Koij and Zegeling in [3]. In present paper we modify (1), assuming that the coefficients α, δ, γ are continuous ω-periodic functions of time t and we are interesting in the conditions under which (1) has at least one positive periodic solution.

The main result. For continuous ω-periodic functions g we put

$$
[g]=\frac{1}{\omega} \int_{0}^{\omega} g(s) d s,\{g\}=g-[g], g_{L}=\min _{t} g(t), g_{M}=\max _{t} g(t)
$$

Our main result is
Theorem 1. Let the coefficients α, δ be continuous ω-periodic functions with $[\alpha]>0$, $[\delta]>0$ and γ is continuous positive ω-periodic function. Let the function $p \in C^{1}[0, \infty)$ satisfies the conditions $p(0)=0, p^{\prime}(u)>0$ for every $u \geq 0$, and let also there exist constants $B>0, k_{\infty}>0$ such that $p(u) \geq k_{\infty} u$ for $u \geq B$. Then the system (1) has at least one positive ω - periodic solution.

Numerical example. Consider the system

$$
\begin{align*}
& x^{\prime}=\cos ^{2}(t) x+x(x+1) y \\
& y^{\prime}=-\sin ^{2}(t) y+\left(1+\cos ^{2}(t)\right) x(x+1) y \tag{2}
\end{align*}
$$

which satisfies all the conditions of Theorem 1. A π-periodic solution is found near the initial data

$$
\begin{equation*}
x(0)=0.2792278841, y(0)=0.3487068214 . \tag{3}
\end{equation*}
$$

The calculation show that

$$
|x(0)-x(\pi)|+|y(0)-y(\pi)|<0.000005 .
$$

Its phase form is shown in fig. 1 below. In fig. 2 the phase curve that begins at the point $(0.3,0.3)$ is traced for $t \in[0,25 \pi]$. This solution seems to be stable.

Fig. 1

Fig. 2

Proof of Theorem 1. The proof is based on the theory of completely continuous vector fields presented by Krasnosels'kii and Zabrejko in [4]. The next theorem is extracted from [4].

Theorem 2. Let Y be a real Banach space with a cone Q and $L: Y \rightarrow Y$ be a completely continuous and positive $(L: Q \rightarrow Q)$ with respect to Q operator. Then the following assertions are valid:
i) Let $L(0)=0$. If for every sufficiently small $r>0$ there is no $y \in Q$ for which $y \leq^{0} L(y)$ and $\|y\|_{Y}=r$, then ind $(0, L ; Q)=1$.
ii) Let for every sufficiently large $R>0$ there is no $y \in Q$ for which $\|y\|_{Y}=R$ and $L(y) \leq^{0} y$. Then ind $(\infty, L ; Q)=0$.
iii) Let $L(0)=0$ and ind $(\infty, L ; Q) \neq \operatorname{ind}(0, L ; Q)$. Then L has nontrivial fixed points in Q.

Here $\operatorname{ind}(., L ; Q)$ denotes the index of a point with respect to L and Q. The sign ≤ 0 denotes the semiordering generated by Q.

We introduce the following notations

$$
\begin{array}{lll}
D_{x}^{-}=\min _{0 \leq t, s \leq \omega} e^{\int_{t+s}^{t}\{\alpha\}(\tau) d \tau}, & D_{x}^{+}=\max _{0 \leq t, s \leq \omega} e^{\int_{t+s}^{t}\{\alpha\}(\tau) d \tau}, \\
D_{y}^{-} & =\min _{0 \leq t, s \leq \omega} e^{-\int_{t-s}^{t}\{\delta\}(\tau) d \tau}, & D_{y}^{+}=\max _{0 \leq t, s \leq \omega} e^{-\int_{t-s}^{t}\{\delta\}(\tau) d \tau}, \\
C_{x} & =\frac{D_{x}^{-}}{D_{x}^{+}} e^{-[\alpha] \omega}, & C_{y}=\frac{D_{y}^{-}}{D_{y}^{+}} e^{-[\delta] \omega} .
\end{array}
$$

One can easy verify the validity of
Lemma 1. Let δ and g be continuous ω-periodic functions and $[\delta]>0$. Then the equation

$$
x^{\prime}=-\delta(t) x+g(t)
$$

has a unique ω-periodic solution for which it holds the representation

$$
x(t)=\int_{0}^{\omega} \frac{e^{-[\delta] s}}{1-e^{-[\delta] \omega}} e^{-\int_{t-s}^{t}\{\delta\}(\tau) d \tau} g(t-s) d s
$$

Furthermore, there exists a unique ω-periodic solution to the equation

$$
x^{\prime}=\delta(t) x-g(t),
$$

for which it holds the representation

$$
x(t)=\int_{0}^{\omega} \frac{e^{-[\delta] s}}{1-e^{-[\delta] \omega}} e^{\int_{t+s}^{t}\{\delta\}(\tau) d \tau} g(t+s) d s .
$$

Put

$$
G_{x}(t, s)=\frac{e^{-[\alpha] s}}{1-e^{-[\alpha] \omega} e^{\int_{t+s}^{t}\{\alpha\}(\tau) d \tau}}, \quad G_{y}(t, s)=\frac{e^{-[\delta] s}}{1-e^{-[\delta] \omega}} e^{-\int_{t-s}^{t}\{\delta\}(\tau) d \tau} .
$$

Using Lemma 1 , the problem for ω-periodic solutions of (1) is reduced to the problem for ω-periodic solutions of the following operator system

$$
\left\lvert\, \begin{align*}
& x(t)=\int_{0}^{\omega} G_{x}(t, s) p(x(t+s)) y(t+s) d s \stackrel{\text { def }}{=} X(x, y) \tag{4}\\
& y(t)=\int_{0}^{\omega} G_{y}(t, s) p(x(t-s)) \gamma(t-s) y(t-s) d s \stackrel{\text { def }}{=} Y(x, y)
\end{align*}\right.
$$

Put $P(x, y)=(X(x, y), Y(x, y))$ and let $C(\omega)$ be the space of the continuous ω periodic functions and let H be the Banach space $H=C(\omega) \otimes C(\omega)$, provided with the usual norm

$$
\|(x, y)\|=\max _{t}|x(t)|+\max _{t}|y(t)| .
$$

Let $C_{+}(\omega) \subseteq H$ be the cone

$$
C_{+}(\omega)=\left\{(x, y) \in H: x_{L} \geq C_{x} x_{M}, y_{L} \geq C_{y} y_{M}\right\}
$$

As in [2], it is easy to verify that the completely continuous operator P is positive with respect to $C_{+}(\omega)$, i.e. $P: C_{+}(\omega) \rightarrow C_{+}(\omega)$. Furthermore, the derivate of the operator P in zero is zero and from Theorem 2i) follows ind $\left(0, P ; C_{+}(\omega)\right)=1$.

Let us find $\operatorname{ind}\left(\infty, P ; C_{+}(\omega)\right)$. Let $B_{*}=B / C_{x}$ and $N=\inf _{0 \leq u \leq B_{*}} p^{\prime}(u)$. We have $N>0$. It is easy to see that $x_{L} \geq B$ whenever $x_{M} \geq B_{*}$. Let R be sufficiently large and $R>\max \left(\frac{B}{C_{x}}, \frac{[\delta]}{\gamma_{L} k_{\infty} D_{y}^{-} C_{x}}, \frac{\overline{[\alpha]}}{N D_{x}^{-} C_{y}}, \frac{[\alpha]}{k_{\infty} D_{x}^{-} C_{y}}\right)$.

We define

$$
P_{*}(x, y)=\left(\frac{D_{x}^{-}}{\omega[\alpha]} \int_{0}^{\omega} p(x(t)) y(t) d t+1, \frac{1}{\omega} \int_{0}^{\omega} y(t) d t+1\right)
$$

At first we will show that the completely continuous and positive vector fields $I-P$ and $I-P_{*}$ are linear homotopic at $x_{M}+y_{M}=2 R$. By a contradiction argument we 96
assume that there exists $(\tilde{x}, \tilde{y}) \in C_{+}(\omega)$ and $\theta \in[0,1]$ for which

$$
\begin{gather*}
\theta X(\tilde{x}, \tilde{y})+(1-\theta) \frac{D_{x}^{-}}{[\alpha]} \int_{0}^{\omega} p(\tilde{x}(s)) \tilde{y}(s) d s+(1-\theta)=\tilde{x}(t) \tag{5}\\
\theta Y(\tilde{x}, \tilde{y})+(1-\theta) \frac{1}{\omega} \int_{0}^{\omega} \tilde{y}(s) d s+(1-\theta)=\tilde{y}(t)
\end{gather*}
$$

Consider two cases.

1) Let $\tilde{x}_{M} \geq R$. Then $\tilde{x}_{L} \geq B$ and $\tilde{x}_{L} \geq R C_{x}$ and from (6) we obtain the following inequality

$$
\theta \gamma_{L} k_{\infty} R C_{x} \int_{0}^{\omega} G_{y}(t, s) \tilde{y}(t-s) d s+(1-\theta) \frac{1}{\omega} \int_{0}^{\omega} \tilde{y}(s) d s+(1-\theta) \leq \tilde{y}(t),
$$

which after integrating at $[0, \omega]$ yields

$$
\theta \gamma_{L} k_{\infty} R C_{x} \frac{D_{y}^{-}}{[\delta]}[\tilde{y}]+(1-\theta)[\tilde{y}]+(1-\theta) \leq[\tilde{y}] .
$$

In view of the choice of R, the last inequality is valid iff $\tilde{y} \equiv 0$ and $\tilde{\theta} \equiv 1$. Then substituting the values found for $\tilde{y} \equiv 0$ and $\theta \equiv 1$ in (5), we get $\tilde{x} \equiv 0$ which is a contradiction.
2) Let $\tilde{y}_{M} \geq R$. Then $\tilde{y}_{L} \geq C_{y} R$. We will prove that $\tilde{x}_{M} \leq B_{*}$ is not valid. Let $\tilde{x}_{M} \leq B_{*}$. Then from the mean value theorem, it follows $p(\tilde{x}(t)) \geq N \tilde{x}(t)$ and from (5) we have

$$
\theta C_{y} R N \int_{0}^{\omega} G_{x}(t, s) \tilde{x}(t+s) d s+(1-\theta) C_{y} R N \frac{D_{x}^{-}}{[\alpha]} \int_{0}^{\omega} \tilde{x}(s) d s \leq \tilde{x}(t)
$$

Integrating the last inequality at $[0, \omega]$, we get

$$
\theta C_{y} R N \frac{D_{x}^{-}}{[\alpha]}[\tilde{x}]+(1-\theta) C_{y} R N \frac{D_{x}^{-}}{[\alpha]}[\tilde{x}] \leq[\tilde{x}]
$$

which is a contradiction. Consequently $\tilde{x}_{M} \geq B_{*}$ and $\tilde{x}_{L} \geq B$. Now from (5) follows

$$
\theta C_{y} R k_{\infty} \int_{0}^{\omega} G_{x}(t, s) \tilde{x}(t+s) d s+(1-\theta) C_{y} R k_{\infty} \frac{D_{x}^{-}}{[\alpha]} \int_{0}^{\omega} \tilde{x}(s) d s \leq \tilde{x}(t)
$$

Hence, after integrating at $[0, \omega]$ we get the impossible inequality

$$
R C_{y} k_{\infty} \frac{D_{x}^{-}}{[\alpha]}[\tilde{x}] \leq[\tilde{x}]
$$

In this way we prove that the completely continuous positive vector fields $I-P$ and $I-$ P_{*} are linear positive homotopic at $x_{M}+y_{M}=2 R$. Let us compute ind $\left(\infty, P_{*} ; C_{+}(\omega)\right)$. For this purpose, assume that there is $(\tilde{x}, \tilde{y}) \in C_{+}(\omega)$ for which $P_{*}(\tilde{x}, \tilde{y}) \leq(\tilde{x}, \tilde{y})$. Then

$$
\frac{1}{\omega} \int_{0}^{\omega} \tilde{y}(s) d s+1 \leq \tilde{y}(s)
$$

which, after integrating at $[0, \omega]$, yields to the impossible inequality

$$
[\tilde{y}]+1 \leq[\tilde{y}] .
$$

From the last conclusion and from Theorem $2 i i$), it follows $\operatorname{ind}\left(\infty, P_{*} ; C_{+}(\omega)\right)=0$. Since the vector fields $I-P$ and $I-P_{*}$ are linear positive homotopic we have

$$
\operatorname{ind}\left(\infty, P ; C_{+}(\omega)\right)=\operatorname{ind}\left(\infty, P_{*} ; C_{+}(\omega)\right)=0
$$

therefore

$$
0=\operatorname{ind}\left(\infty, P ; C_{+}(\omega)\right) \neq \operatorname{ind}\left(0, P ; C_{+}(\omega)\right)=1
$$

Now from Theorem 2iii) follows that the operator P has a nontrivial fixed point in $C_{+}(\omega)$. In particular, system (1) has at least one positive ω-periodic solution.

Using similar arguments, as above in the proof of Theorem 1 one can see that the following theorem is valid

Theorem 3. Let the coefficients α, δ be continuous ω-periodic functions with $[\alpha]>0$, $[\delta]>0$ and γ is continuous positive ω-periodic function. Let the function $p \in C^{1}[0, \infty)$ satisfies the conditions $p(0)=0, p^{\prime}(u)>0$ for every $u \geq 0$ and let also there exist constants $B>0, K$ such that $p(u) \geq K$ for $u \geq B$ and

$$
K>\frac{[\delta]}{\gamma_{L} D_{y}^{-}}
$$

Then system (1) has at least one positive ω-periodic solution.

REFERENCES

[1] T. Ding, F. Zanolin. Periodic solutions and subharmonic solutions for a class of planar systems of Lotka-Volterra type, World Congress of Nonlinear Analysis, Tampa, Florida, 1992.
[2] D. Tsvetkov, S. Georgiev. Positive periodic solutions of the nonautonomous LotkaVolterra system. Mathematics and Education in Mathematics, 26 (1997), 202-208.
[3] R. Koois, A. Zegeling. A Predator-Prey Model with Ivlev's Functional Response. J. Math, Anal. Appl., 198 (1996), 473-489.
[4] M. Krasnosels'kit, P. Zabrejko. Geometrical methods of nonlinear analysis, Nauka, Moscow, 1975 (in Russian).

Faculty of Mathematics and Informatics
University of Veliko Tarnovo
5000 Veliko Tarnovo
Bulgaria

ВЪРХУ НЕАВТОНОМНАТА СИСТЕМА НА ГАУС

Светлин Георгиев Георгиев, Димитър Иванов Петров

В тази работа разглеждане неавтономна периодична система, която моделира взаимодействието между два вида от тип „хищник-жертва". Даваме условия при които разглежданата система има положителни периодични решения.

