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ON THE NONAUTONOMOUS GAUS’S SYSTEM

Svetlin Georgiev Georgiev, Dimiter Ivanov Petrov

In this paper we consider a nonautonomous periodic system which models the inter-
action between two species of Predator-Prey type. We give conditions under which
the model has a positive periodic solution.

Introduction. Let us consider the system

(1)

∣

∣

∣

∣

x′ = αx− p (x) y
y′ = −δy + γp (x) y

which models the interaction between two species of Predator-Prey type. We assume
that system (1) reflects ω-periodic influence of the environment. More precisely, we will
assume that the coefficients α, δ, γ are continuous ω-periodic functions of time t. When
p (x) ≡ x, system (1) is the well-known Lotka-Volterra model.

System (1) was suggested by G. F. Gauss in 1934 and was investigated for limit
cycles by Koij and Zegeling in [3]. In present paper we modify (1), assuming that the
coefficients α, δ, γ are continuous ω-periodic functions of time t and we are interesting
in the conditions under which (1) has at least one positive periodic solution.

The main result. For continuous ω-periodic functions g we put

[g] =
1

ω

ω
∫

0

g (s) ds, {g} = g − [g] , gL = min
t

g (t) , gM = max
t

g (t) .

Our main result is

Theorem 1. Let the coefficients α, δ be continuous ω-periodic functions with [α] > 0,
[δ] > 0 and γ is continuous positive ω-periodic function. Let the function p ∈ C1 [0,∞)
satisfies the conditions p (0) = 0, p′ (u) > 0 for every u ≥ 0, and let also there exist
constants B > 0, k∞ > 0 such that p(u) ≥ k∞u for u ≥ B. Then the system (1) has at
least one positive ω- periodic solution.

Numerical example. Consider the system

(2)

∣

∣

∣

∣

x′ = cos2 (t)x+ x (x+ 1) y
y′ = − sin2 (t) y +

(

1 + cos2 (t)
)

x (x+ 1) y

which satisfies all the conditions of Theorem 1. A π-periodic solution is found near the
initial data

(3) x (0) = 0.2792278841, y(0) = 0.3487068214.
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The calculation show that

|x (0)− x (π)|+ |y (0)− y (π)| < 0.000005.

Its phase form is shown in fig.1 below. In fig.2 the phase curve that begins at the
point (0.3, 0.3) is traced for t ∈ [0, 25π]. This solution seems to be stable.

Fig. 1 Fig. 2

Proof of Theorem 1. The proof is based on the theory of completely continu-
ous vector fields presented by Krasnosels’kii and Zabrejko in [4]. The next theorem is
extracted from [4].

Theorem 2.Let Y be a real Banach space with a cone Q and L : Y → Y be a
completely continuous and positive (L : Q → Q) with respect to Q operator. Then the
following assertions are valid:

i) Let L (0) = 0. If for every sufficiently small r > 0 there is no y ∈ Q for which
y ≤0 L(y) and ‖y‖Y = r, then ind (0, L;Q) = 1.

ii) Let for every sufficiently large R > 0 there is no y ∈ Q for which ‖y‖Y = R and
L(y) ≤0 y. Then ind (∞, L;Q) = 0.

iii) Let L (0) = 0 and ind (∞, L;Q) 6= ind (0, L;Q). Then L has nontrivial fixed points
in Q.

Here ind (., L;Q) denotes the index of a point with respect to L and Q. The sign ≤0

denotes the semiordering generated by Q.

We introduce the following notations

D−
x = min

0≤t,s≤ω
e

t∫

t+s

{α}(τ)dτ

, D+
x = max

0≤t,s≤ω
e

t∫

t+s

{α}(τ)dτ

,

D−
y = min

0≤t,s≤ω
e
−

t∫

t−s

{δ}(τ)dτ

, D+
y = max

0≤t,s≤ω
e
−

t∫

t−s

{δ}(τ)dτ

,

Cx =
D−

x

D+
x

e−[α]ω, Cy =
D−

y

D+
y

e−[δ]ω.

One can easy verify the validity of

Lemma 1. Let δ and g be continuous ω-periodic functions and [δ] > 0. Then the
equation

x′ = −δ(t)x+ g(t)
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has a unique ω-periodic solution for which it holds the representation

x (t) =

ω
∫

0

e−[δ]s

1− e−[δ]ω
e
−

t∫

t−s

{δ}(τ)dτ

g (t− s) ds.

Furthermore, there exists a unique ω-periodic solution to the equation

x′ = δ (t)x− g (t) ,

for which it holds the representation

x (t) =

ω
∫

0

e−[δ]s

1− e−[δ]ω
e

t∫

t+s

{δ}(τ)dτ

g (t+ s) ds.

Put

Gx (t, s) =
e−[α]s

1− e−[α]ω
e

t∫

t+s

{α}(τ)dτ

, Gy (t, s) =
e−[δ]s

1− e−[δ]ω
e
−

t∫

t−s

{δ}(τ)dτ

.

Using Lemma 1, the problem for ω-periodic solutions of (1) is reduced to the problem
for ω-periodic solutions of the following operator system

(4)

∣

∣

∣

∣

∣

∣

∣

∣

x (t) =
ω
∫

0

Gx (t, s) p (x (t+ s)) y (t+ s) ds
def
= X (x, y)

y (t) =
ω
∫

0

Gy (t, s) p (x (t− s)) γ (t− s) y (t− s) ds
def
= Y (x, y)

Put P (x, y) = (X (x, y) , Y (x, y)) and let C (ω) be the space of the continuous ω-
periodic functions and let H be the Banach space H = C (ω)⊗C (ω), provided with the
usual norm

‖(x, y)‖ = max
t

|x (t)|+max
t

|y (t)| .

Let C+ (ω) ⊆ H be the cone

C+ (ω) = {(x, y) ∈ H : xL ≥ CxxM , yL ≥ CyyM} .

As in [2], it is easy to verify that the completely continuous operator P is positive
with respect to C+ (ω), i.e. P : C+ (ω) → C+ (ω). Furthermore, the derivate of the
operator P in zero is zero and from Theorem 2i) follows ind (0, P ;C+ (ω)) = 1.

Let us find ind (∞, P ;C+ (ω)). Let B∗ = B/Cx and N = inf
0≤u≤B∗

p′ (u). We have

N > 0. It is easy to see that xL ≥ B whenever xM ≥ B∗. Let R be sufficiently large and

R > max

(

B

Cx

,
[δ]

γLk∞D−
y Cx

,
[α]

ND−
x Cy

,
[α]

k∞D−
x Cy

)

.

We define

P∗ (x, y) =





D−
x

ω [α]

ω
∫

0

p (x (t)) y (t) dt+ 1,
1

ω

ω
∫

0

y (t) dt+ 1



 .

At first we will show that the completely continuous and positive vector fields I − P
and I − P∗ are linear homotopic at xM + yM = 2R. By a contradiction argument we
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assume that there exists (x̃, ỹ) ∈ C+ (ω) and θ ∈ [0, 1] for which

(5) θX (x̃, ỹ) + (1− θ)
D−

x

[α]

ω
∫

0

p (x̃ (s)) ỹ (s) ds+ (1− θ) = x̃ (t) ,

(6) θY (x̃, ỹ) + (1− θ)
1

ω

ω
∫

0

ỹ (s) ds+ (1− θ) = ỹ (t) .

Consider two cases.

1) Let x̃M ≥ R. Then x̃L ≥ B and x̃L ≥ RCx and from (6) we obtain the following
inequality

θγLk∞RCx

ω
∫

0

Gy (t, s) ỹ (t− s) ds+ (1− θ)
1

ω

ω
∫

0

ỹ (s) ds+ (1− θ) ≤ ỹ (t) ,

which after integrating at [0, ω] yields

θγLk∞RCx

D−
y

[δ]
[ỹ] + (1− θ) [ỹ] + (1− θ) ≤ [ỹ] .

In view of the choice of R, the last inequality is valid iff ỹ ≡ 0 and θ̃ ≡ 1. Then
substituting the values found for ỹ ≡ 0 and θ̃ ≡ 1 in (5), we get x̃ ≡ 0 which is a
contradiction.

2) Let ỹM ≥ R. Then ỹL ≥ CyR. We will prove that x̃M ≤ B∗ is not valid. Let
x̃M ≤ B∗. Then from the mean value theorem, it follows p (x̃ (t)) ≥ Nx̃ (t) and from (5)
we have

θCyRN

ω
∫

0

Gx (t, s) x̃ (t+ s) ds+ (1− θ)CyRN
D−

x

[α]

ω
∫

0

x̃ (s) ds ≤ x̃ (t) .

Integrating the last inequality at [0, ω], we get

θCyRN
D−

x

[α]
[x̃] + (1− θ)CyRN

D−
x

[α]
[x̃] ≤ [x̃] ,

which is a contradiction. Consequently x̃M ≥ B∗ and x̃L ≥ B. Now from (5) follows

θCyRk∞

ω
∫

0

Gx (t, s) x̃ (t+ s) ds+ (1− θ)CyRk∞
D−

x

[α]

ω
∫

0

x̃ (s) ds ≤ x̃ (t) .

Hence, after integrating at [0, ω] we get the impossible inequality

RCyk∞
D−

x

[α]
[x̃] ≤ [x̃] .

In this way we prove that the completely continuous positive vector fields I−P and I−
P∗ are linear positive homotopic at xM + yM = 2R. Let us compute ind (∞, P∗;C+ (ω)).
For this purpose, assume that there is (x̃, ỹ) ∈ C+ (ω) for which P∗ (x̃, ỹ) ≤ (x̃, ỹ). Then

1

ω

ω
∫

0

ỹ (s) ds+ 1 ≤ ỹ (s) ,
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which, after integrating at [0, ω], yields to the impossible inequality

[ỹ] + 1 ≤ [ỹ] .

From the last conclusion and from Theorem 2ii), it follows ind (∞, P∗;C+ (ω)) = 0.
Since the vector fields I − P and I − P∗ are linear positive homotopic we have

ind (∞, P ;C+ (ω)) = ind (∞, P∗;C+ (ω)) = 0,

therefore

0 = ind (∞, P ;C+ (ω)) 6= ind (0, P ;C+ (ω)) = 1.

Now from Theorem 2iii) follows that the operator P has a nontrivial fixed point in
C+ (ω). In particular, system (1) has at least one positive ω-periodic solution. �

Using similar arguments, as above in the proof of Theorem 1 one can see that the
following theorem is valid

Theorem 3. Let the coefficients α, δ be continuous ω-periodic functions with [α] > 0,
[δ] > 0 and γ is continuous positive ω-periodic function. Let the function p ∈ C1 [0,∞)
satisfies the conditions p (0) = 0, p′ (u) > 0 for every u ≥ 0 and let also there exist
constants B > 0, K such that p(u) ≥ K for u ≥ B and

K >
[δ]

γLD
−
y

.

Then system (1) has at least one positive ω-periodic solution.
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ВЪРХУ НЕАВТОНОМНАТА СИСТЕМА НА ГАУС

Светлин Георгиев Георгиев, Димитър Иванов Петров

В тази работа разглеждане неавтономна периодична система, която моделира

взаимодействието между два вида от тип
”
хищник-жертва“. Даваме условия при

които разглежданата система има положителни периодични решения.

98


