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In this work we prove existence results for semilinear beam equations with discontin-
uous nonlinearities arising in elasticity theory. The proofs are based on critical point
theory for locally Lipschitz functionals.

1. Introduction. In this paper we consider some elements of critical point theory for
locally Lipschitz functionals. It is well known that generalized gradients can be defined
for such functionals, Clarke [6]. We reformulate the well known Ekeland’s variational
principle in terms of directional derivatives. Next, we introduce a Palais–Smale type
condition (PS1) (which implies the condition introduced by Chang [5] and formulate a
minimization theorem, some coercivity results and theorems of mountain–pass type.

As an application we consider the existence of weak solutions of the fourth order
problem:

(P ) :















u′′′′ (x) + ξ (x) = 0,
ξ (x) ∈ ∂j (x, u (x)) , a.e. in [0, 1] ,
u′′ (0) = u′′ (1) = 0,
u′′′ (0) = u′′′ (1) = 0,

which describes the vibrations of an elastic beam with free ends and discontinuous forcing
term. Here j : R×R→ R is a function measurable in x and locally Lipschitz in u and
∂j denotes its Clarke derivative.

The problem (P ) with j differentiable in u and nonlinear terms in boundary conditions
is considered by M. Grossinho & T. Ma [7] using variational methods for differentiable
functionals. The problem (P ) can be formulated in terms of hemivariational inequalities
introduced by P. D. Panagiotopoulos [8].

2. Critical point theory for locally Lipschitz functionals . Let X be a Banach
space, X∗ its dual space, ‖.‖ the norm in X. Let < p, x > for p ∈ X∗, x ∈ X denote the
duality bracket between X and X∗. Let f : X → R be a locally Lipschitz functional, i.e.
for each x ∈ X there exists a neighbourhood N(x) of x and a constant K depending on
N (x) such that

|f(y1)− f(y2)| ≤ K‖y1 − y2‖, ∀y1, ∀y2 ∈ N(x).
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Denote by LL(X) the space of locally Lipschitz functionals over X. For each v ∈ X
consider the directional derivative defined by

f0(x; v) = inf
δ>0

sup
‖y−x‖<δ,0<h<δ

f(y + hv)− f(y)

h
.

Basic properties of f0(x; v) are considered in Aubin [2], [3]. Recall that the function

λf (x) = min{‖p‖∗ :< p, v >≤ f0(x; v), ∀v ∈ X}
is well defined and lower–semicontinuous. ∂f (x) denotes the generalized gradient due to
F. Clarke of f at x

p ∈ ∂f(x) ⇐⇒< p, v >≤ f0(x; v), ∀v ∈ X.

We reformulate Ekeland’s variational principle [3] for locally Lipschitz functionals as

Theorem 1.Let f ∈ LL(X) be bounded from below and x0 ∈ D(f). Then there exists

y0 ∈ X :

i∗) f(y0) + ε‖x0 − y0‖ ≤ f(x0),
ii∗) 0 ≤ f0(y0; v) + ε‖v‖, ∀v ∈ X.

Recall that x0 is a critical point of f if

0 ≤ f0(x0; v), ∀v ∈ X,

that is, if 0 ∈ ∂f(x0). The following Palais–Smale (PS) condition is introduced by Chang
[5]

Definition 1.The functional f ∈ LL (X) satisfies (PS0) condition if whenever

{xn} ⊂ X is such that

(j) |f(xn)| is bounded,

(jj) λf (xn) = min{‖p‖∗ : p ∈ ∂f(xn)} −→ 0,

then {xn} possesses a convergent subsequence.

We formulate another (PS) type condition

Definition 2.The functional f ∈ LL (X) satisfies (PS1) condition if whenever

{xn} ⊂ X is such that:

(j∗) |f(xn)| is bounded,

(jj∗) ∀ε > 0, ∃n0, ∀v ∈ X : n > n0 ⇒ 0 ≤ f0(xn; v) + ε||v||,
then {xn} possesses a convergent subsequence.

Lemma 1. If f ∈ LL (X) and a sequence {xn} ⊂ X satisfies condition (jj) then it

satisfies condition (jj∗).

Theorem 2.Let f : X → R∪ {∞} be a locally Lipschitz functional which is bounded

from below and satisfies (PS1) condition. Then there exists x0 such that f(x0) = inf f(x)
and x0 is a critical point i.e.: 0 ≤ f0(x0; v), ∀v ∈ X.

Theorem 3.Let f ∈ LL(X) be a function which is bounded from below and x0 ∈ X
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be given such that f(x0) ≤ inf f + ε. Then for every λ > 0 there exists y0 ∈ X:

1) f(y0) ≤ f(x0),

2) ‖x0 − y0‖ ≤ 1

λ
,

3) 0 ≤ f0(y0; v) + λε‖v‖, ∀v ∈ X.

We say that f ∈ LL(X) is coercive if f(x) → +∞ as ‖x‖ → ∞.

Theorem 4. Let X be a Banach space and f ∈ LL(X) be a functional satisfying

(PS1) condition. If f is bounded from below, then f is coercive.

This result is an extension of those proved by Caklovic, Li & Willem [4] for differen-
tiable functionals.

Proof. Suppose that the conclusion is not true and c = lim inf‖x‖→∞ f(x) is finite.
Then for ε = 1/n there exists xn such that ‖xn‖ ≥ 2n and

f(xn) ≤ c+
1

n
= inf f + (c+

1

n
− inf f).

By Theorem 3 there exists yn ∈ X such that

f(yn) ≤ f(xn),

‖xn − yn‖ ≤ n,

0 ≤ f0(yn; v) +
1

n
(c+

1

n
− inf f)‖v‖, ∀v ∈ X.

We have ‖yn‖ ≥ ‖xn‖ − ||yn − xn|| ≥ 2n− n = n, i.e. limn→∞ ‖yn‖ = ∞ and |f(yn)|
is bounded. Let ε > 0 and n0 be such that if n > n0

0 <
1

n
(c+

1

n
− inf f) < ε.

For n > n0 we have

0 ≤ f(yn; v) + ε||v||, ∀v ∈ X,

and by (PS1) condition there exists a convergent subsequence of {yn} , which is a con-
tradiction. Then c = +∞. �

Next we give a generalization of the mountain–pass theorem for locally Lipschitz
functions due to Chang [5]. Following ideas developed in Aubin & Ekeland [3] we prove

Theorem 5. Let f ∈ LL(X) be a functional satisfying
(

PS1
)

condition. Suppose

that there exist ρ > 0 and e ∈ X such that

1) m(ρ) = inf{f(x) : ‖x‖ = ρ} > f(0),
2) ‖e‖ > ρ, f(e) < m(ρ),

Then there exists x0 such that

f(x0) ≥ m(ρ), 0 ∈ ∂f(x0).

We prove also a version of Mountain–pass theorem based on Ekeland’s variational
principle.

Theorem 6.Let f ∈ LL(X) satisfy
(

PS1
)

condition. Suppose that f has two local

minima. Then f has at least one more critical point.
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Proof. Without loss of generality let 0 and e 6= 0 be two points of local minima,
c0 = f (0) , c1 = f (e) , c0 ≥ c1. Let ε be such that 0 < ε < ||e|| and f (x) ≥ f (0) , if
||x|| ≤ ε. We have the following alternative:

i) there exists ρ ∈ (0, ε) such that b = inf{f (x) : ||x|| = ρ} > c0,

or

ii) for every ρ ∈ (0, ε) , inf{f (x) : ||x|| = ρ} = c0.

If i) holds the assertion follows by Mountain- pass theorem, [5].

Let ii) holds and take ρ and R such that 0 < ρ < R < ε. Let {xn} be a minimizing
sequence, that is, a sequence satisfying ||xn|| = ρ, f (xn) → c0 = f (0) = inf{f (x) :

||x|| = ρ} and f (xn) ≤ c0 +
1

n
.

Define

f̄ (x) =







f

(

R
x

||x||

)

, ||x|| ≥ R,

f (x) , ||x|| ≤ R.

By Theorem 3, applied to f̄ (x), there exists yn ∈ X such that

f̄(yn) ≤ f̄(xn), ‖xn − yn‖ ≤ 1√
n
,

0 ≤ f̄0(yn; v) +
1√
n
‖v‖, ∀v ∈ X.(1)

As f̄(xn) = f(xn) → c0 by
(

PS1
)

condition there exists a subsequence {ynk
} such

that ynk
→ y and ||y|| = ρ. By upper semicontinuity of f̄0 (., .), taking a limit in (1)

we obtain0 ≤ f̄0(y; v), ∀v ∈ X.As ||y|| = ρ < R, f̄0(y; v) = f0(y; v) and therefore
0 ∈ ∂f(y). Note that we get a critical point y, ||y|| = ρ for every ρ ∈ (0, ε) . �

3. Existence results for a fourth order equation with discontinuous nonlin-

earities . Let us consider at first the linear eigenvalue problem

(L) :







y′′′′ (x) = λy (x) ,
y′′ (0) = y′′ (1) = 0,
y′′′ (0) = y′′′ (1) = 0.

Problem (L) has a sequence of eigenvalues λk, k ≥ −1, such that λ−1 = λ0 = 0
and 0 < λ1 < λ2 < λ3 < ... . The first positive eigenvalue is λ1 ≈ 500.55. Denote by
ψ−1, ψ0, ψ1, ..., ψn, ... the corresponding eigenfunctions. The eigenfunctions correspond-

ing to λ−1 = λ0 = 0 are ψ−1 = 1 and ψ0 = x− 1

2
.

Let V = H2 (0, 1) ⊂ E = L2 (0, 1) be the usual Sobolev space with norm ||u||2 =
||u′′||2

2
+ ||u||2

2
, where ||.||2 denotes the E− norm.

The eigenfunctions {ψj : j = −1, 0, 1, ...} form an orthogonal basis both for V and
E. Therefore V = X ⊕ Y , where X = sp{1, x}, Y = X⊥. We use the notation u (x) =
ū (x) + ũ (x) , ū ∈ X, ũ ∈ Y. By the variational characterization of λ1

1
∫

0

(y′′ (x))2dx ≥ λ1

1
∫

0

y2(x)dx, ∀ y ∈ Y.(2)

102



Let us consider the problem:

(P ) :















u′′′′ (x) + ξ (x) = 0,
ξ (x) ∈ ∂j (x, u (x)) , a.e. in [0, 1] ,
u′′ (0) = u′′ (1) = 0,
u′′′ (0) = u′′′ (1) = 0,

which describes the vibrations of an elastic beam with free ends and discontinuous forcing
term. We assume that the function j : R×R → R, with generalized gradient ∂j, satisfies
the following conditions

(J1) the function x→ j (x, u) is measurable for each u ∈ R .

(J2) there exists k ∈ E

|j (x, u1)− j (x, u2) | ≤ k (x) |u1 − u2|, ∀u1, u2 ∈ R.

The problem (P ) can be formulated in terms of hemivariational inequalities, intro-
duced by P. D. Panagiotopoulos [8] as follows

Definition 3.The function u ∈ V is said a “strong solution” of (P ) if there exists

ξ ∈ E such that

1
∫

0

u′′ (x) v′′ (x) dx+

1
∫

0

ξ (x) v (x) dx = 0, ∀v ∈ C∞
∗ [0, 1] ,(3)

ξ (x) ∈ ∂j (x, u (x)) , a.e. in [0, 1](4)

Here C∞
∗ [0, 1] = {v ∈ C∞[0, 1] : v′′ (0) = v′′ (1) = v′′′ (0) = v′′′ (1) = 0}. Note that

C∞
∗ [0, 1] is dense in V ⊂ E, and for u, v ∈ C∞

∗ [0, 1] :

1
∫

0

u′′′′ (x) v (x) dx =

1
∫

0

u′′ (x) v′′ (x) dx

Definition 4.The function u ∈ V is said a “weak solution” of (P ) if

1
∫

0

u′′ (x) v′′ (x) dx+

1
∫

0

j0(x, u(x), v (x))dx ≥ 0, ∀v ∈ V.(5)

The inequality (5) is said a hemivariational inequality. Using a standard way devel-
oped in Adly & Goeleven [1], Panagiotopoulos [8] one can prove

Proposition 1. If u is a “strong solution” of (P ) , then is a “weak solution” of (P ) .

Now the problem of finding strong solutions of (P ) reduces to finding critical points
of the functional

f (u) =
1

2

1
∫

0

|u′′ (x) |2dx+ J |V (u) ,
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where J : E → R is defined by

J (u) =

1
∫

0

j(x, u(x))dx.

By a result of Chang [5]

∂J |V (u) ⊂ ∂J (u) = {w ∈ E : J0 (u; v) ≥
1

∫

0

w(x)v (x) dx, ∀v ∈ E}.

Proposition 2. If 0 ∈ ∂f (u) then u is a “strong solution” of (P ) .

We consider an additional assumption

(C1) j (x, u) ≥ l (x) , a.e. x ∈ (0, 1) , l(x) ∈ L1 (0, 1) ,
j (x, u) → ∞ as |u| → ∞.

Theorem 7. Suppose that j satisfies assumptions (J1) , (J2) and (C1) . Then the prob-

lem (P ) admits at least one solution u ∈ V , that minimizes the functional f.

Proof. Applying minimization Theorem 2,we show that there exists u ∈ V such
that 0 ∈ ∂f (u). Then, by Propositions 1 and 2, u is a weak solution of (P ) and the
result is proved. �

Let (C1) hold. As, for u = ū+ ũ ∈ X ⊕ Y,

f (u) ≥ 1

2
||u′′||2

2
− ||l||1 =

1

2
||ũ′′||2

2
− ||l||1,(6)

then f is bounded from below. We show that f satisfies (PS1) condition and then apply
Theorem 2. It follows by Theorem 4 that f is also coercive.

Let un = ūn + ũn be such that |f (un) | is bounded and for every ε > 0 and there
exists n0 such that for n > n0

0 ≤ f0(un; v) + ε||v||, ∀v ∈ V.

By (6), ||ũ′′n||2 is bounded and by (2), {ũn} is also bounded in V , that is, there exists
M > 0 such that ||ũn|| ≤M.

Let us now check that {ūn} is bounded. Suppose, by contradiction, that, for a
subsequence, ||ūn|| → ∞. Then

|un (x) | ≥ |ūn (x) | − |ũn(x)| ≥ |anx+ bn| − αM → ∞,

except at most for one point in (0, 1) . Here α is the imbedding constant of H2 (0, 1) in
C0[0, 1], that is, for all w ∈ H2 (0, 1)

|w (x) | ≤ α||w||.
Then, by (C1), j (x, un(x)) → ∞ for a.e. x ∈ (0, 1). Using then Fatou’s lemma and

the fact that

f(un) ≥
1

∫

0

j(x, un(x))dx,

we obtain a contradiction. Thus {un} is bounded in V. Passing to a subsequence, if
necessary, we assume that un ⇀ u0 weakly in V and show that un → u0 strongly in V.
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As un ⇀ u0 in V taking a subsequence denoted again by {un} we assume that un →
u0 in C[0, 1] and un → u0 in L2 (0, 1) . Let M > 0 be such that ||un|| ≤ M, ||u0 || ≤ M .
For ε > 0, there exists n1 such that for n > n1

0 ≤ f0(un; v) +
ε

4M
||v||, ∀v ∈ V,

which means that

0 ≤
1

∫

0

u′′nv
′′dx+

1
∫

0

j0(x, un (x) ; v (x))dx +
ε

4M
||v||.(7)

Taking v = u0 − un in (7) we have

0 ≤
1

∫

0

u′′n (u0 − un)
′′
dx+

1
∫

0

j0(x, un;u0 − un)dx +
ε

4M
||u0 − un||.

By (J2) there exists k1 > 0 such that

1
∫

0

j0(x, un;u0 − un)dx ≤ k1||u0 − un||2

Then

||u′′
0
− u′′n||22 ≤ ε

2
+ k1||u0 − un||2 +

1
∫

0

u′′
0
(u0 − un)

′′
dx(8)

As un ⇀ u0 in V and un → u0 in L2 (0, 1) there exists n2 such that for n > n2

k1||u0 − un||2 +
1

∫

0

u′′
0
(u0 − un)

′′
dx <

ε

2
.

Then for n > max(n1, n2) by (8) we have

||u′′
0
− u′′n||22 < ε.

So un → u0 in V which proves (PS1) condition.

Next result concerns the existence of multiple solutions of (P ) . We suppose that the
following conditions hold:

(J3) j (x, 0) = 0, ∃µ > 0 : limu→0

j (x, u)

u2
= µ uniformly a.e. x ∈ (0, 1) .

(C2) ∃ (a, b) 6= (0, 0) :
1
∫

0

j(x, ax+ b)dx < 0.

Applying Theorems 5 and 7, we have

Theorem 8. Suppose j (x, u) satisfies conditions (J1) − (J3), (C1), (C2). Then there

exist at least two nontrivial weak solutions of the problem (P ) .

An example of a function j = j(u) satisfying conditions (J1)− (J3), (C1) and (C2) is
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the following one

j0 (u) =















−2u− 5 u ≤ −2,
2u+ 3 −2 ≤ u ≤ −1,
u2 −1 ≤ u ≤ 1,

2u− 1 1 ≤ u.
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ТЕОРЕМИ ЗА КРИТИЧНИ ТОЧКИ НА ЛОКАЛНО ЛИПШИЦОВИ

ФУНКЦИОНАЛИ И ПРИЛОЖЕНИЯ КЪМ ЗАДАЧИ

ОТ ЧЕТВЪРТИ РЕД

Мариа до Розарио Грозиньо, Степан Агоп Терзиян

Доказани са теореми за съществуване на решения на полулинейни уравнения от

четвърти ред с прекъснати нелинейности от теорията на еластичността. Дока-

зателствата се основават на теореми за критични точки за локално липшицови

функционали.
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