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ABSORPTION OF THE POISSON PROCESS BETWEEN
TWO BOUNDARIES

Tzvetan Ignatov', Dobrin Marchev, Tatiana Madjarova

In this paper, we consider the absorption of the simple Poisson process between two
curved boundaries. An explicit formula is derived for the probability that a sample
function of a Poisson process will never be outside of these bounds (upper and lower)
until a fixed moment.

1. Introduction. Let &1,&.,... be a sequence of independent and identically expo-
nentially distributed random variables with mean E£; = 1. We can consider the random
variables (r.v.)

th=&,te=&+E&,..., tm=&+ ...+ &n,---
as the successive points of a time-homogeneous Poisson process x(t) with intensity 1.

The r.v. t,, m = 1,2,... can be interpreted as moments of successive arrivals of
claims for an insurance company or a bank. If we take the size of any claim equal to 1

then k(t) = Z I14, <1y Tepresents the aggregate claim amount at time ¢ of the company.
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Further we consider an upper boundary g¢(t) which is nonnegative increasing real
function defined on R and such as tlim g(t) = +oo and a lower boundary h(t) which
—00

is non-decreasing (figure 1). The interpretation of g(¢) is the accumulated bank incomes
earned in the time interval (0,¢]. The interpretation of h(t) is that at any moment ¢,
g(t) — h(t) is the obligatory capital needed for the liquidity of the bank and g(t) — k()
represents the current available cash.

Define the r.v. T as the moment of the first crossing of the trajectory of x(t) with
either the upper or the lower boundary. If there is a crossing with the upper boundary
it means that the bank has no money to pay the claim. The crossing with the lower
boundary means that the bank retains too much non-invested money.

Our purpose is to determine the probability P(T > z) for any real number z.

Let us note that there are many investigations on the absorption problem. The papers
by Gallot (1966, 1993), Ph. Picard and C. Lefevre (1997) are only concerned with upper
boundaries. In Daniels (1963), Zacks (1991) and Ph. Picard, C. Lefevre (1996), both
kinds of boundaries are discussed.

2. Main results. Let us define

97 y) =inf{t: g(t) >y}, h™'(y) = nf{t: h(t) > y};
v; = max{0,9 (i)}, w; = h~'(i—1), i=1,2,... (Figure 1)

For convenience we suppose v; < w; for i =1,2,....
In order that the trajectory of the process k(t) to be under the boundary g(t), it is

necessary and sufficient to accomplish the event

;@Ol{/@(vi) <i—1}.

The trajectory of the process x(t) until the moment x is under the boundary g(¢) if
and only if the event .Or?l{/i(min(vi, x)) <i— 1} takes place.
=

On the other hand the trajectory does not cross the lower boundary h(t) till the

moment z if and only if the event .Or%l{fi(wi) > min(i, h(x))} occurs.
1=

Introduce
L h(z), h(z) e N
| [h@)] + Lh(z) ¢N
where [h(z)] is the integer part of 2 and N is the set of nonnegative integers. Clearly,
for any integer ¢ is true that min(i, h(z)) = min(é, h).
For the probability P(T > x) we have
P(T > x) = P(h(t) < k(t) < g(t), YVt € (0,z2]) =
=P [(_ﬁl k(min(v;, z)) < i — 1) N (Dl k(w;) > min(4, h))]
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The expression in (2.1.) can be transformed into

(2.2.) P(T > x) [ 5 min(v;, x)) <14 — 1) N (151 K(w;) > min(, h))} =
=P (zr_ﬁ K(min(v;, z) 1) Klr_w K (min(v;, ))Si—l) N (ZL_J #(w;)< min(i, h))}

:P(ﬁl K (min(v;, x))gi—l) -P Kﬁl £ (min(v;, x))gi—l) N (icgl K(w;)<min(i—1, h—l))} ,

where the upper bar denotes the complement of the event staying under this bar. For
any integer k, such that vp_1 < x < vx we have min(v;,z) = z for i > k. Therefore for
1 > k follows (k(min(v;, x)) <i—1= (k(z) <i—1) D (k(z) <k —1) and

(2.3) i?jl(fi(min(vi, x)<i—1)= irfl(fi(min(vi, ) <i—1)
By analogy with the above for ¢ > h we have:
(k(w;) <min(i — 1,h — 1)) = (k(w;) < h—1) C (k(wp) < h—1) and
(24) iijol(/i(wi)gmin(i—l,h—l))zigl( ()< min(i—1,h — 1))= Q (k(w;)<i—1)

Combining (2.2), (2.3) and (2.4) we get

Ti*Cw

(2.5) P(T>x):P(rl%1(ﬁ(min(vi, :U))Si—l) _p (ir]%(/@(min(vi, 2))<i—1)n

Eﬁ(wi)gi—l))

h
U (k(w;) < i—1)) on the right hand

k
The event B = (.ﬂl(/@(min(vi,x)) <i—1)N )
1= 1=
h k
side of (2.5) can be written as B = _EJIA N (k(w;) <i—1) where A = n (k(min(v;, z))
<i-— 1). Applying the inclusion exclusion formula to the event B we get

p(B)P(_(ﬁAm(( <zl) ZPAm D <i—1))—

=1

- Y PAN(kw) <i—-1)N(k(w) <j—1)+...+

1<i<j<h
HED™E ST PAN ((wiy) < iy — 1) 0 (k(wi,) < g — 1)) N
1<i1<i2<...<im<h
N(k(w;,,) <im — 1))+ ... +P(AN(Lk(w1)<0) N (k(w2)<1) N ... N(k(wp)<h—1))
For 1 <4 < k min(v;, z) = v; and min(vg, ) = x, so the general term in (2.6.) can
be expressed in the form:
(27) P(H(Ul)go, R(UQ)S]-; LR n(vk71)§k727 n(x)gk—l, n(wh Silfla LR R(wim)gim*l)
From the definition of A and k it is clear that h < k.
Construct the sequences 71 (i1, ... ,%m), - -, Th—1(¢1,. .., m), briefly 7;, 5 = 1,... k=1,
through the following table:

(2.6)

T1|T2|...|Ti1,1 Tiq |~-~|Ti271 Tiq | Tiim|...|7'k,1
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and the sequence z;(i1,...,4m) = max(7;(i1,...,im),v;), j = 1,2,...,k — 1, briefly z,.
Substitute z(i1,...,im) = .
It can be easily seen that

(2.8) zi<xz,i=1,....k—1
In terms of the new notations (2.7.) can be transformed to:
P(k(v1)<0, k(v2)<1,. .., K(vp—1)<k — 2, k(x) <k — 1, K(w;, )<y — 1,... .,

k-1

(2.9) K(wj,, <im —1) =P << n Kz (i1, o im) < J— 1) N (k(z) < k — 1)> _

Jj=

—p <ﬁ{ﬁ(mm(zj(z‘1, i) ) < §— 1)})

Now we will use the following result from [1] and [5]

. . p— 1 fL“]
(2.10) P (JQ {k(min(z;(i1,...,0m),z) <j— 1)}) =e ;(—1) 0 jz:; T
ift; <ty <...<tp_1 <x<ty, where d; is the determinant
t1
m 1 0 0o ... 0 0
t3 to
B 0 1 0O ... 0 o0
= t2 tl >
5l(t1,...,tl) 3 3 3 1 0 0 fOI'l_].
3! 2! 1!
¢ o
nog=-n @g-2» 02t 1
and &g = 1.
Finally from (2.5), (2.6), (2.9) and (2.10) we obtain
k—1 k—1-l
,z T
P(T>z)=e (=D (v1, ..., u 27
=0 7=0
(2.11) , o
. — 2
DT Y S D Bl in)) 3 =
m=1 l<11<zz< <im<h =0 7=0

Clearly, when h = 0 the formula (2.11) coincides with (2.10).
If h > 1, then (2.11) can be simplified. Let us first show that the expressions before
do are equal to zero. We have:

k-1 h j k Lo
)35 25 ST D) o (HZ " (n ))
j=0 7"  m=1 1<iy<...<im<h j= —oJ Jj= o /

k*lx] m h . k*lzj N

125 ZO (n)=c= (X5 a-v=o

J= m=
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So for h > 1 the formula (2.11) can be written in the form

k—1 k—1—1
_ )
P(T>I):e x Z(—l)l(sl(vl,,vl) Z 74—
(2.12) =1 =0
h k=1—1_;
+Z Z Z 51 Z1 21,...,im),...,zl(il,...,im) Z =
m=1 l<]1<]2< <jm<h l=1 j=0 J:

Multiply the both sides of (2.12) with e* and exchange the order of the summation
with respect to the indices [ and m. We have

k— k—1-1 xj
P(T > x) Z 51 (v1,...,v1) Z FJF
=1 j=0
k—1 h k—l—lxj
SN YT Szl im)s s 2 i) Y 5
=1 m=1 1<igp < <im<h 7=0

Let us fix the number [ : 1 <! < h — 1 and consider all the terms (—1)"d;(z1 (i1, .. .,

im)y .-+, 21(i1,...,9m)) in the second sum so that the first ¢ indices smaller than [ are
fixed, i.e. 1 <if < ... <49 <[, and the other m — t indices are not fixed but are after
. Then & (21(3%,...,i% sty yim)s - 20(19, .o, 4441, .., im)) does not change its
value and that allows us to write
kflfll‘j t+h—1
1 .0 .0 - . .0 .0 - .
(-1) Z ﬁ5l(Z1(21, U o AT DY M5 I 1+ SN o P SR ,zm))Z(fl)m Z 1=
j=0 M= << <im<h
i1=19
iy =19
iep1>1
(2.13)
k—1—1 t+h—1
IJ .0 - . .0 .0 - . h—I
Z 7 [1CTECs PP o TUR BN 0 NS+ SO 0 P T ,zm))Z(—l)m met) =
=0 m=t
k—1— lx
l .0 - . .0 .0 - . h—1
Z Zl Zla'"7Zta7't+17"'7Zm)7"'7zl(zlv"'7Ztazt+1a"'azm))(171) =0
7=0 '

The last equation can be written because h —1 > 1. In the case t = 0, i.e. 73 > [ it is

true that z1(i1,...,4m) = v1,...,21(i1,...,im) = v and if we transform the expressions
containing d0;(v1,...,v;) they are again zero. In fact this terms with fixed ! satisfy the
following:
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(=1)'6(v1, ..., w1) £(1+ S=npm > 1>:

3=0 m=1 1<y < <im<h
i1 >1
k—1-1 h—1
(2.14) - . x’ h—1 m(h—=1\| _
*(71) 5l(vla"'7vl) ' F 0 + (71) m =
j=0 m=1
k—1-1
l z’ h—1
= (71) 51(”17"'77}1) Z F (171) =0
j=0
Combining (2.12), (2.13) and (2.14) we can write:
k—1 k=1-l
_ 1) il
P(T>z)=e (=1)'Si(vr, .. m) Y Tt
=1 §=0
(2.15) k—1 h k—lflxj
A EDD D™ DT izl im), e 2100 i) 7
l=h m=1 1<1<-<jm<h J=0
The last formula we derived under the assumptions v; < w; for ¢ = 1,2,.... The

following lemma allows us to remove the condition v; < w; for i =1,2,.. ..

Lemma. If for some j (j = 1,...,h) v; > w;, then P(T > z) in formula (2.15) is
equal to zero.

Proof. The vanishing of P(T > x) is obvious from the following:

P(T >z)=P <{_r’%1n(o,min(ui,x)) <i-— 1} N {ir}jln(O,wi) > z}) =

1=

2.16 k h
( ) :P({§1+ : -+§j2vj}ﬂ{§1+ . ~+§j}ﬂ{ N (&+ - '+fj27)j)ﬂ{ N (&+- +§]§wl)})
j=1 j=1
i#j i#]
From the assumption v; > w; follows that the event {&; +---+&; > v;}N{&+---+&;
< wj} is the impossible event. Then from the equality (2.16) we obtain:
(2.17) P(T>z)=P©)=0
The formal proof of (2.17) from the formula (2.15) will be dropped.
From all the above we can formulate the following theorem.
Theorem 1. The probability that the Poisson process trajectory will not cross the
boundaries g(t) and h(t) till the moment x (x < ), is
k—1 k—1—1

. x’
P(T>z)=e "> (=1)'di(vr,..,00) Y 5
=1 j=0
k—1 h k1l g
A DD ED™ YT dlzlin i) 2 im) D 5
I=h m=1 1<j1 < <jm<h j=0
Using Theorem 1 in the particular case g(z) = oo, i.e. v; = 0,4 =1,2,... it can be
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derived

Theorem 2. The probability that the Poisson process trajectory will not cross the
lower boundary h(t) till the moment x (v < 00), is
n
(2.18) P(tl < Wi, teg < Wy ..ty < wn) =1- Zeiwjéj_l(wj_l, . ,wl)
j=1

Consequently, the probability that the trajectory of the Poisson process will cross for
the first time h(t) on the level n + 1 can be calculated with the formula

P(tl <wiy,ty <wa, ...ty < Wpytpyr > wn+1) = e_wn+16n(wnawn—1a cee awl)
The last result was found by A. Wald and J. Wolfowitz (1939).
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ABCOPBUMPAHE HA IIOACOHOB ITPOIIEC ME2K/1Y ABE 'PAHUIIN

IIseran Uruaros, Jobpun Mapuen, Tarsna Mamxkaposa

B tasm crarus pasriexgame abcopbupaHe Ha IIOACOHOB IIPOIEC MEXKY JBE KPHUBHU
rpanuru. 3Benena e popmMysa 3a BEpOATHOCTTA TPAEKTOPUATA HA IOACOHOBUS MIPO-
1ec J1a He HAIlyCKa 00J1acTTa MEXKy TOPHATA U J0JIHA TPAHUIM 0 (DUKCHPAH MOMEHT.
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