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Ljudmil Ivanov Karandzjulov

A generalized Cauchy problem for linear systems of differential equations with gener-
alized pulse effects in a fixed moments of time is considered. Necessary and sufficient
conditions for existence of a parametric and unique solution are obtained.

1. Statement of a problem. We consider the linear differential system

(1) ẋ = A(t)x + f(t), t ∈ [a, b], t 6= τi, i = 1, p,

a = τ0 < τ1 < . . . < τp < τp+1 = b,

where the coefficients of the system satisfy the conditions:
(H1) A(t) — (n× n) matrix, which has a continuous elements in the interval [a, b];
(H2) f(t) is a partially continuous n-dimensional vector function, which has a breaks
of the first kind in the points τi, i.e.

f(t) = fi(t), t ∈ (τi−1, τi], i = 1, p+ 1, f(a) = f1(τ0),
f(b) = fp+1(τp+1), fi+1(τi) = lim

t→τi+0
f(t), i = 1, p.

We seek an n-dimensional partially continuous vector-function x(t), which will satisfy
the system (1), the generalize condition of Cauchy

(2) Dx(a) = v,

where D is a given (s × n) matrix with constant elements, v is a given column vector
with s components and the generalize impulse conditions in fixed moments of time

(3) Mix(τi − 0) +Nix(τi + 0) = hi, i = 1, p.

The matrices Mi and Ni have the same dimension (k × n) and hi ∈ Rk.
The problem (1), (2) is considered in [4]. A lines to research of the problem (1), (3)

can be found in [5]. The condition (3) when k = n and generalize linear differential
equations in the form

dx = d[A]x + df.

are considered in [10]. In [3] the pulse system (1), (3) is transformed in the form

ẋ = A(t)x(t) +
∑

k

δikck (here deltaik is Dirac’s function),
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where f = 0, Ni = −Mi = En and the researches are done with the help of the theory
of the distributions.

The problem of Cauchy (1), (2), when D = En (En is the nth order unit matrix) and
impulse conditions in the form

(4) ∆x|t=τi = Bix+ ai,

where En + Bi is nonsingular (n × n) matrix with constant elements, ai are given n-
dimensional vectors, is considered in [2].

Diverse questions connected to impulse systems can be seen in [6].
In this paper the problem (1)–(3) will be researched similarly to the way in [7].

2. Modification of the problem. Let we denote by Θ (k × n)-matrix of zero
elements and by xi(t) — the solution of the system (1) in the intervals [τ0, τ1], ]τi−1, τi],
i = 2, p+ 1, i.e.

x(t) =

{

x1(t), t ∈ [τ0, τ1],
xi(t), t ∈]τi−1, τi].

Then x(a) = x1(τ0), x(τi + 0) = xi+1(τi) = lim
t→τi+0

xi+1(t), i = 1, p.

The impulse conditions (3) we rewrite in the form

p+1
∑

i=1

lixi(·) = h, h ∈ R
pk,

where li are (pk × n)-matrix operators, acting on the functions x1(t) : [τ0, τ1] → Rn,
xi(t) :]τi−1, τi] → Rn in the following way

(6)
l1x1(·) = [M1 Θ · · · Θ]Tx1(τ1),

lixi(·) = [Θ · · ·Θ Ni−1 Θ · · ·Θ]Txi−1(τi−1) + [Θ · · ·Θ Mi Θ · · ·Θ]Txi(τi), i = 2, p,
lp+1xp+1(·) = [Θ · · · Θ Np]

Txp+1(τp), h = [h1 · · ·hp]
T

Here hi ∈ Rk and the (k × n) matrices Ni−1 and Mi take up (i − 1)−th and i−th

blocks, respectively.
The problem (1,2,6) can be written as follows

(7)

ẋ = A(t)x+ f(t), t ∈ [a, b], t 6= τi, i = 1, p, τi ∈ (a, b), a = τ0, b = τp+1,

Dx(a) = v,
p+1
∑

i=1

lixi(·) = h, h ∈ Rpk .

We shall call the problem (7) a generalized problem of Cauchy with pulse effects.
Let we remark that pulse conditions (4) can be written in the form (3). In (3) or

(6) additional conditions for the matrices Ni and Mi are not put. This shows that we
will consider also the case when in (4) det(E +Bi) = 0. Consequently we can not use a
fundamental matrix which is constructed in [2] for the problem (1,4).

Main results. We seek the solution x(t) of the problem (1) in each interval [τ0, τ1],
]τi−1, τi], i = 2, n in the form

(8) xi(t) = X(t)X−1(τi−1)ci−1 +

∫ t

τi−1

X(t)X−1(s)fi(s)ds, i = 1, p+ 1, ci−1 ∈ R
n,
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where X(t) is the normal fundamental matrix of the solutions of the system ẋ = Ax,
X(a) = En.

3.1. Let the following condition hold
(H3) rankD = k1 < min(s, n).
We denote by D+ the unique Moore-Penrose inverse matrix of the matrix D. By PD and
PD∗ we denote the matrix orthoprojectors PD : Rn → ker(D) and PD∗ : Rs → ker(D∗),
D∗ = DT [8], [9], [1]. Then the (n×n) matrix PD has a rank d1 = n−k1 and the (s× s)
matrix PD∗ has a rank d2 = s− k1. Therefore there exist d1 linear independent columns
in PD and d2 linear independent rows in PD∗ .

We denote by P d2

D∗ (d2 × s) matrix, which consists of arbitrary d2 linear independent
rows from the matrix PD∗ .

From (2) we obtain that

(9) c0 = x1(τ0) = PDξ +D+v, ξ ∈ R
n

if and only if
(H4) PD∗v = 0 =⇒ P d2

D∗v = 0.
We introduce (pk× (p+1)n) matrix Q = [Q1 Q2 · · · Qp+1], where Q1 = l1(X(·)PD),

Qi = li(X(·)X−1(τi−1)), i = 2, p+ 1 are (pk × n) matrices, and (p + 1)n-dimensional
vector c = col(ξ, c1, · · · , cp).

We substitute (8) and (9) in (5) and we get algebraic system with respect to c

(10) Qc = h, h = h− l(X(·))D+v −
p+1
∑

i=1

li

(

∫ (·)

τi−1

X(·)X−1(s)fi(s)ds

)

.

Let the following condition be fulfilled
(H5) rankQ = k2 < min(pk, (p+ 1)n).
In this case, the solution of the system (10) is

(11) c = P r
Qη +Q+h, η ∈ R

r

if and only if

(H6) PQ∗h = 0 =⇒ P d
Q∗h = 0,

where r = (p+ 1)n− k2, d = pk − k2. The matrix P r
Q is formed by r linear independent

columns of the matrix PQ.
The solution (11) can be written in the form

(12) ξ0 = [P r
Q]n1

η + [Q+h]n1
, ci = [P r

Q]ni+1
η + [Q+h]ni+1

, i = 1, p,

where [Q+h]ni
, i = 1, p+ 1 are sequential n-dimensional components of n(p+1)-dimensional

vector Q+h, n1 + n2 + · · ·+ np+1 = n(p+ 1), and [P r
Q]ni

are (ni × r) matrices obtained
from P r

Q.
Keeping in mind (9) we obtain from (8) for the solution xi(t)

(13)

x1(t) = X(t)PD[P r
Q]n1

η +X(t)PD[Q+h]n1
+X(t)D+v

+

∫ t

a

X(t)X−1(s)f1(s)ds, t ∈ [a, τ1],

xi(t) = Xni
(t)η +X(t)X−1(τi−1)[Q

+h]ni

+

∫ t

τi−1

X(t)X−1(s)fi(s)ds, t ∈]τi−1, τi],
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where Xni
(t) = X(t)X−1(τi−1)[P

r
Q]ni

, i = 2, p+ 1.
Thus we proof the following theorem.

Theorem 1.Let the conditions (H1)–(H3) and (H5) be fulfilled. Initial value prob-
lem with impulse effects (7) has a r-parametric solution, which in the intervals [τ0, τ1],
]τi−1, τi], i = 2, p+ 1 has the representation (13) if and only if v, h and f(t) satisfy the
conditions (H4) and (H6).

We assume that Q has a full rank and instead of (H5) the following condition is
fulfilled
(H7) rankQ = pk (pk < (p+ 1)n).
Hence d = 0 and PQ∗ = 0. This means that the condition for solvability (H6) is always
fulfilled. The solution of the system (10) has the same representation from (12), moreover
r = (p+ 1)n− pk.

Corollary 1.Let the condition (H1)–(H3) and (H7) be fulfilled. Then the problem
(7) has a r-parametric solution in the form (13) if and only if v satisfies (H4), for each
function f(t) ∈ C([a, b] \ τi) and each vector h ∈ Rpk.

Let the following condition be fulfilled
(H8) rankQ = k2 = (p+ 1)n, (pk > (p+ 1)n).
Then r = 0 and PQ = 0. The system (10) has an unique solution c = Q+h if and only if
the condition (H6) is fulfilled (d = pk − (p+ 1)n). The components of the vector c take
the form ξ = [Q+h]n1

, ci = [Q+h]ni+1
, and the pulse problem (7) has an unique solution

(14)
x1(t) = X(t)PD[Q+h]n1

+X(t)D+v +
∫ t

a
X(t)X−1(s)f1(s)ds, t ∈ [a, τ1],

xi(t)=X(t)X−1(τi−1)[Q
+h]ni

+

∫ t

τi

X(t)X−1(s)fi(s)ds, t ∈]τi−1, τi], i=2, p+1.

Corollary 2. Let the conditions (H1)–(H3) and (H8) be fulfilled. The problem (7) has
an unique solution in the form (14) if and only if v, h and f(t) satisfy (H4)–(H6).

Remark 1.Let we assume that pk = (p + 1)n. Then Q is a quadratic matrix.
If rankQ < pk = (p + 1)n, then d = r and we can reason analogous as above. If
rankQ = pk = (p + 1)n, then Q+ = Q−1 and the system (10) has an unique solution
c = Q−1h for every h. The solution of the problem (7) has the representation (14).

3.2. Let we consider the case when D has a full rank. Let rankD = s, (n > s). Then
PD∗ = 0, i.e. condition (H4) is always fulfilled. The expression (9) and the equation
(10) do not change. Consequently all calculations further do not change. Condition (H4)
does not appear in analogous to Theorem 1 contention.

We assume that the following condition is fulfilled
(H9) rankD = n, (n < s).
Then PD = 0, d2 = s−n and c0 = D+v, i.e. c0 does not depend on an arbitrary constant
vector. The system (10) is changed as following

(15) Qc = h,

where Q = [Q2, Q3, · · · , Qp+1], c = col(c1, c2, · · · , cp), Q — (pk × pn) matrix, c ∈ Rpn,
h — expression indicated above.
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If the following condition is fulfilled
(H10) rankQ = k3 < min(pk, pn),
then we denote by r = pn− k3, d = pk − k3. The condition for existence of the solution
of the system (15) has the form

(H11) P
Q

∗h = 0 =⇒ P d

Q
∗h = 0,

and the solution is

c = P r

Q
η +Q

+
h, η ∈ R

r

or in the co-ordinate record

ci =
[

P r

Q

]

ni

η +
[

Q
+
h
]

ni

, i = 1, p.

For the solution xi(t) of the system (7) we find

(16) x1(t) = X(t)D+v +

∫ t

τ0

X(t)X−1(s)f1(s)ds, t ∈ [τ0, τ1],

(17) xi(t) = Xni
(t)η +X(t)X−1(τi−1)

[

Q
+
h
]

ni

+

∫ t

τi

X(t)X−1(s)fi(s)ds, t ∈]τi−1, τi],

where Xni
= X(t)X−1(τi−1)[P

r

Q
]ni

, i = 2, p+ 1.

Theorem 2.Let the condition (H1), (H2), (H9) and (H10) be fulfilled. Then ini-
tial value problem with impulse effects (7) in the intervals ]τi−1, τi], i = 2, p+ 1 has
r-parametric solution in the form (17), but in the interval [τ0, τ1] has an unique solution,
which has the representation (16) if and only if v, h and f(t) satisfy (H11).

Corollary 3.Let the conditions (H1), (H2), (H7) be fulfilled and rankQ = pk, (k <

n). Then the problem (7) has a r-parametric solution in the form (16) in the intervals
]τi−1, τi], i = 2, p+ 1 and an unique solution in the form (17) in the interval [τ0, τ1], for
each function f(t) ∈ C([a, b] \ τi), for each h ∈ Rpk and for each v ∈ Rs.

Obviously, in this case d = 0 and P
Q

∗ = 0, i.e. the condition (H11) is always real.

The solution of the system (15) c has the same form as above.

Corollary 4.Let the conditions (H1), (H2), (H9) be fulfilled and rankQ = pn, (k >

n). The problem (7) has an unique solution
(18)

x(t)=











X(t)D+v +
∫ t

τ0
X(t)X−1(s)f1(s)ds, t ∈ [τ0, τ1],

X(t)X−1(τi−1)
[

Q
+
h
]

ni

+

∫ t

τi

X(t)X−1(s)fi(s)ds, t ∈]τi−1, τi], i=2, p+1,

if and only if v, h and f(t) satisfy the condition (H11).

Remark 2.Let we assume that k = n. Then Q is a quadratic matrix and if rankQ =

pk = pn then Q
+

= Q
−1

and the system (15) has an unique solution c = Q
−1

h. The
solution of the problem (7) has the representation (18).

124



Example. Let us consider the generalized Cauchy’s problem with two pulse effects

in the points τ1 =
1

4
, τ2 =

1

2

ẋ = Ax+ f(t), t ∈ [0, 1] \ {τ1, τ2},
Dx(0) = v,

M1x(τ1 − 0) +N1x(τ1 + 0) = h1,

M2x(τ2 − 0) +N2x(τ2 + 0) = h2,

where
x(t) ∈ R

2, f(t) = [f1(t) f2(t)]
T , h1 = h2 = [1 1]T ,

A =

[

3 −1
2 0

]

, M1 =

[

−2 1
−2 1

]

, N1 =

[

−2 1
0 0

]

, M2 =

[

−2 1
0 0

]

,

N2 =

[

−1 1
−1 1

]

, f1(t) = f2(t) =































exp(2t), t ∈
[

0,
1

4

]

,

0, t ∈
(

1

4
,
1

2

]

,

exp(t), t ∈
(

1

2
, 1

]

,

v is an arbitrary constant, D = [1 1]T .

We denote by xi(t), i = 1, 2, 3 the solution of the impulse problem in the intervals

[

0,
1

4

]

,
(

1

4
,
1

2

]

,

(

1

2
, 1

]

, respectively. We introduce the generalize conditions (5)
3
∑

i=1

lixi(·) = h,

where

l1x1(·) =









−2 1
−2 1
0 0
0 0









x1

(

1

4

)

, l2x2(·) =









−2 1
0 0
0 0
0 0









x2

(

1

4

)

+









0 0
0 0

−2 1
0 0









x2

(

1

2

)

,

l3x3(·) =









0 0
0 0

−1 1
−1 1









x3

(

1

2

)

, h =









1
1
1
1









.

We find the normal fundamental matrix X(t) and its inverse matrix X−1(t)

X(t) =

[

2e2t − et et − e2t

2e2t − 2et 2et − e2t

]

, X−1 =

[

2e−2t − e−t e−t − e−2t

2e−2t − 2e−t 2e−t − e−2t

]

.

The matrix Q has the representation Q = [Q1 Q2 Q3] from (10), where the matrices Q1,
Q2, Q3 have the form

Q1 = −
√
e

2









1 1
1 1
0 0
0 0









, Q2 =









−2 1
0 0

−2e
√
e e

√
e

0 0









, Q3 =









0 0
0 0

−1 1
−1 1









.
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Sequently we find

Q+ =
1

5e(1 + e3)



































−5

2
e3
√
e −5

(√
e+

√
e

2
e3
)

5

2
e2 −5

2
e2

−5

2
e3
√
e −5

(√
e+

√
e

2
e3
)

5

2
e2 −5

2
e2

−2e 2e −2e2
√
e 2e2

√
e

e −e e2
√
e −e2

√
e

5

4
e2
√
e −5

4
e2
√
e −5

4
e −5

(

e

4
+

e4

2

)

−5

4
e2
√
e

5

4
e2
√
e

5

4
e 5

(

e

4
+

e4

2

)



































,

PQ =
1

10

















5 −5 0 0 0 0
−5 5 0 0 0 0
0 0 2 4 0 0
0 0 4 8 0 0
0 0 0 0 5 5
0 0 0 0 5 5

















,

PQ∗ =
1

2(1 + e3)









e3 −e3 −e
√
e e

√
e

−e3 e3 e
√
e −e

√
e

−e
√
e e

√
e 1 −1

e
√
e −e

√
e −1 1









, h =















1 +

√
e

4
− 3

2
v
√
e

1 +

√
e

4
− 3

2
v
√
e

1
1















.

Since rankD = 1 and rankQ = 3, then

D+ =
1

2

[

−1
1

]

, PD =
1

2

[

1 1
1 1

]

, PD∗ = 0

and rankPQ∗ = 1. According to item 3.2 d1 = 1, the conditions (H4), (H6) are fulfilled,
r = 3, d = 1.

For the solution of the problem from (14) we find

x1(t) = X(t)PD

1

2

[

1 0 0
−1 0 0

]

η +X(t)PD









−
(

1

4
+

√
e

e
− 3

2
v

)

−
(

1

4
+

√
e

e
− 3

2
v

)









+X(t)
1

2
v

[

−1
1

]

+

[

te2t

te2t

]

, t ∈
[

0,
1

4

]

, η ∈ R
3,

x2(t) = X(t)X−1

(

1

4

)

· 1

10

[

0 2 0
0 4 0

]

η, t ∈
(

1

4
,
1

2

]

,
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x3(t) = X(t)X−1

(

1

2

)

·1
2

[

0 0 1
0 0 1

]

η+X(t)X−1

(

1

2

)







−1

2
1

2






+











e
2t−

1

2 − et

e
2t−

1

2 − et











, t ∈
(

1

2
, 1

]

.
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ОБОБЩЕНА ЗАДАЧА НА КОШИ ЗА ЛИНЕЙНИ ИМПУЛСНИ
ДИФЕРЕНЦИАЛНИ СИСТЕМИ

Людмил Иванов Каранджулов

В работата се разглежда обощена задача на Коши за линейни системи от ди-

ференциални уравнения с обощени импулсни условия във фиксирани моменти

от времето. Получени са необходими и достатъчни условия за съществуване на

параметрично и единствено решение.
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