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GENERALIZED CAUCHY PROBLEM FOR LINEAR PULSE
DIFFERENTIAL SYSTEMS

Ljudmil Ivanov Karandzjulov

A generalized Cauchy problem for linear systems of differential equations with gener-
alized pulse effects in a fixed moments of time is considered. Necessary and sufficient
conditions for existence of a parametric and unique solution are obtained.

1. Statement of a problem. We consider the linear differential system
(1) :C:A(t)lﬂ+f(t), tE[a,b] t#m7, i=1,p,

a=10<T7 <...<Tp < Tpt1 =D,

where the coefficients of the system satisfy the conditions:

(H1) A(t) — (n x n) matrix, which has a continuous elements in the interval [a, b];
(H2) f(t) is a partially continuous n-dimensional vector function, which has a breaks
of the first kind in the points 7;, i.e.

f(t)=fit), t € (ric1, ], i=1,p+1, f(a) = fi(r0),
J(0) = for1(Tpr1), fi+1(7'i): lim f(t), i =1,p.

—71;+0

We seek an n-dimensional partially continuous vector-function x(t), which will satisfy
the system (1), the generalize condition of Cauchy

(2) Dz(a) = v,

where D is a given (s X m) matrix with constant elements, v is a given column vector
with s components and the generalize impulse conditions in fixed moments of time

(3) Miac(n - O) + Nix(ri + O) =h;, i = m

The matrices M; and N; have the same dimension (k x n) and h; € R¥.
The problem (1), (2) is considered in [4]. A lines to research of the problem (1), (3)
can be found in [5]. The condition (3) when k& = n and generalize linear differential

equations in the form
dx = d[Alx + df.

are considered in [10]. In [3] the pulse system (1), (3) is transformed in the form
t) + Z dicr,  (here delta;, is Dirac’s function),
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where f =0, N; = —M; = E,, and the researches are done with the help of the theory
of the distributions.

The problem of Cauchy (1), (2), when D = E,, (E, is the n'® order unit matrix) and
impulse conditions in the form

(4) Ax|t—r;, = Bix + a;,

where E,, + B; is nonsingular (n x n) matrix with constant elements, a; are given n-
dimensional vectors, is considered in [2].

Diverse questions connected to impulse systems can be seen in [6].

In this paper the problem (1)—(3) will be researched similarly to the way in [7].

2. Modification of the problem. Let we denote by © (k x n)-matrix of zero
elements and by z;(t) — the solution of the system (1) in the intervals [ro, 1], |7i—1, 73],
t=2,p+1,ie.

$(t) _ { Il(t), te [7’0,7‘1]7

I'Z(t), t G]Tifl,Ti].

Then z(a) = x1(19), (1; +0) = 2;41(7:) = tii;n+0 xig1(t), i =1,p.
The impulse conditions (3) we rewrite in the form

p+1
lemz() =h, heR™,
i=1

where I; are (pk x n)-matrix operators, acting on the functions z1(t) : [r0,71] — R",
x;(t) :]7i-1, 7] = R™ in the following way

lel(') = [Ml e ... @]T$1(Tl),
(6) lZIfL() = [@ .. @ Ni—l @ s @]TIi_l(Ti_l) + [@ s @ i @ s @]Taci(n), 7= 2,p,
lpr12pt1() = [0 -+ © Np|Tayi1(rp), h=[hy - hy]"

Here h; € R* and the (k x n) matrices N;_; and M; take up (i — 1)~*" and i—th
blocks, respectively.
The problem (1,2,6) can be written as follows

& =A)z + f(t), t€lab], t #7, i =1,p, 7 € (a,b), a =70, b= Tpt1,
Dx(a) = v,
(7) p+1 ( )
Z lZIfL() =h, he Rpk.
i=1

We shall call the problem (7) a generalized problem of Cauchy with pulse effects.

Let we remark that pulse conditions (4) can be written in the form (3). In (3) or
(6) additional conditions for the matrices N; and M; are not put. This shows that we
will consider also the case when in (4) det(F + B;) = 0. Consequently we can not use a
fundamental matrix which is constructed in [2] for the problem (1,4).

Main results. We seek the solution z(t) of the problem (1) in each interval [y, 71],
|71, 7], i = 2,n in the form

¢
(8)  i(t) = X)X N(ri1)eim +/ X)X '(s)fi(s)ds, i =T,p+1, ¢;1 €R™,
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where X (¢) is the normal fundamental matrix of the solutions of the system & = Az,
X(a) = E,.

3.1. Let the following condition hold
(H3) rankD = k; < min(s,n).
We denote by DT the unique Moore-Penrose inverse matrix of the matrix D. By Pp and
Pp+ we denote the matrix orthoprojectors Pp : R™ — ker(D) and Pp- : R® — ker(D*),
D* = DT [8], [9], [1]. Then the (n x n) matrix Pp has a rank d; = n—k; and the (s x s)
matrix Pp+ has a rank dy = s — k1. Therefore there exist d; linear independent columns
in Pp and ds linear mdependent rows in Ppx.

We denote by P (d2 x s) matrix, which consists of arbitrary ds linear independent
rows from the matrix Pp-.

From (2) we obtain that

(9) Co ZIl(TQ) :PD€—|—D-"_’U7 EeR”
if and only if
(H4) Pp-v=0= P2y =0,

We introduce (pk x (p—|— 1)n) matrix Q = [Q1 Q2 -+ Qp+1], where Q1 = 11(X (-)Pp),
Qi = L;(X()X Y(1i_1)), i = 2,p+ 1 are (pk x n) matrices, and (p + 1)n-dimensional
vector ¢ = col(, c1,- -, ¢p).

We substitute (8) and (9) in (5) and we get algebraic system with respect to ¢

_ p+1 )
(10) Qc=h, h=h—-I(X U—Zz < X( l(s)fi(s)ds>.
Let the following condition be fulfilled
(H5) rank@ = ko < min(pk, (p + 1)n).
In this case, the solution of the system (10) is

(11) c=Pon+Q%h, neRr’
if and only if
(H6) Po+h=0= P3.h =0,
where r = (p + 1)n — ko, d = pk — ko. The matrix Py is formed by r linear independent
columns of the matrix Pg.
The solution (11) can be written in the form

(12) §o = [ng]nﬂ? + [Q—i_ﬁ]nn Ci = [ng]mHn + [Q+E]m+1v i=1,p,

where [Q*E]ni, i = 1, p+ 1 are sequential n-dimensional components of n(p+1)-dimensional
vector QT h, ny +ng + -+ +npp1 = n(p+ 1), and [Pl,, are (n; x r) matrices obtained

from Fp).
Keeping in mind (9) we obtain from (8) for the solution z;(t)
x1 (t) = X(t)P? [Pé]'rhn + X(t)PD [Q+E]n1 + X(t)D+U
+/ XX ($)ds, £ € [a.m).
(3 wilt) = X (g + X( >X )@l
/ X )fz( )dS, t G]Tifl,Ti],
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where X, (t) = X ()X ' (7i-1)[Pp]n,, i = 2,p + 1.

Thus we proof the following theorem.

Theorem 1. Let the conditions (H1)-(H3) and (H5) be fulfilled. Initial value prob-
lem with impulse effects (7) has a r-parametric solution, which in the intervals [1o, 1],
Jic1, 7], i = 2,p+ 1 has the representation (13) if and only if v, h and f(t) satisfy the
conditions (H4) and (H6).

We assume that ¢ has a full rank and instead of (H5) the following condition is
fulfilled
(H7) rank@ = pk (pk < (p+ 1)n).

Hence d = 0 and Py~ = 0. This means that the condition for solvability (H6) is always
fulfilled. The solution of the system (10) has the same representation from (12), moreover
r=(p+1)n— pk.

Corollary 1. Let the condition (H1)-(H3) and (H7) be fulfilled. Then the problem
(7) has a r-parametric solution in the form (13) if and only if v satisfies (H4), for each
function f(t) € C([a,b] \ 7:) and each vector h € RP¥.

Let the following condition be fulfilled
(H8) rank@ =Fky = (p+ 1)n, (pk > (p+ 1)n).

Then r = 0 and Py = 0. The system (10) has an unique solution ¢ = Q*h if and only if
the condition (H6) is fulfilled (d = pk — (p + 1)n). The components of the vector ¢ take
the form & = [QThln,, ¢; = [Q1h],,,,, and the pulse problem (7) has an unique solution

21(t) = X(t)Pp[QFhn, + X(t)tDJrv +[LX X (s) fi(s)ds, t € [a, 7],
aci(t):X(t)X_l(Ti_1)[Q+E]m—i—/vX(t)X_l(s)fi(s)ds, t €lric1, 7], i=2,p+1.

Corollary 2. Let the conditions (H1)—-(H3) and (H8) be fulfilled. The problem (7) has
an unique solution in the form (14) if and only if v, h and f(t) satisfy (H4)—(H6).

Remark 1. Let we assume that pk = (p + 1)n. Then Q is a quadratic matriz.
If rank@Q < pk = (p + 1)n, then d = r and we can reason analogous as above. If
rankQ = pk = (p + 1)n, then QT = Q= and the system (10) has an unique solution
c = Q7 'h for every h. The solution of the problem (7) has the representation (14).

3.2. Let we consider the case when D has a full rank. Let rank D = s, (n > s). Then
Pp+« = 0, i.e. condition (H4) is always fulfilled. The expression (9) and the equation
(10) do not change. Consequently all calculations further do not change. Condition (H4)
does not appear in analogous to Theorem 1 contention.

We assume that the following condition is fulfilled
(H9) rankD =n, (n < s).

Then Pp =0, do = s—mn and ¢g = DVw, i.e. ¢o does not depend on an arbitrary constant
vector. The system (10) is changed as following

(15) Qc=h,

yhere @ = [QQ; Q37 T Qp+1]7 c= COl(ch C2, ", cp)a @ 7 (pk X pn) matriX; ce ana
h — expression indicated above.
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If the following condition is fulfilled
(H10) rank @ = k3 < min(pk, pn),
then we denote by 7 = pn — ks, d = pk — k3. The condition for existence of the solution
of the system (15) has the form
(H11) PQ*E =0= Pg,ﬁ =0,

and the solution is
_ T — -+ _ T

or in the co-ordinate record

¢ = {P%}mﬁ—f— [@*E} L i=Top.

ni

For the solution z;(t) of the system (7) we find

(16) r1(t) = X(t)DTv +/ X)X Y(s)f1(s)ds, t€ [0, 7],

(17) .ﬁl(t) = Xni (t)ﬁ-i- X(t)X_l(Ti_l) {@JFE} s + / X(t)X_l(S)fi(S)dS, t E]Ti_l,Ti],

where X,,, = X(t)X_l(Ti_l)[Pé]m, i=2,p+ 1.

Theorem 2. Let the condition (H1), (H2), (H9) and (H10) be fulfilled. Then ini-
tial value problem with impulse effects (7) in the intervals |7,—1,7], i = 2,p+1 has
r-parametric solution in the form (17), but in the interval [19, 71| has an unique solution,
which has the representation (16) if and only if v, h and f(t) satisfy (H11).

Corollary 3. Let the conditions (H1), (H2), (H7) be fulfilled and rank Q = pk, (k <
n). Then the problem (7) has a r-parametric solution in the form (16) in the intervals
J7i—1, 7], it =2,p+ 1 and an unique solution in the form (17) in the interval 1o, 71], for
each function f(t) € C([a,b] \ 7i), for each h € RP* and for each v € R®.

Obviously, in this case d = 0 and P@* = 0, i.e. the condition (H11) is always real.
The solution of the system (15) ¢ has the same form as above.

Corollary 4. Let the conditions (H1), (H2), (H9) be fulfilled and rank Q = pn, (k >

n). The problem (7) has an unique solution
(18)

X()DVv+ [L X(6)XY(s) fu(s)ds, t € [0, 7],
X(t)Xil(Tifl) [@4_;} n1+/X(t)X71(S)f1(S)dS, t E]Ti,l,’ri], Z:2,p+1,

x(t)=

if and only if v, h and f(t) satisfy the condition (H11).

Remark 2. Let we assume that k = n. Then Q is a quadratic matriz and if rank Q =
pk = pn then @+ = Q_l and the system (15) has an unique solution ¢ = Q_IE. The
solution of the problem (7) has the representation (18).
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Example. Let us consider the generalized Cauchy’s problem with two pulse effects
1

1
in the points 4 = —, 79 = =
p 1= 2=5

x=Ax+ f(t), te[0,1)\ {mr, 7},
Dz(0) = v,
MllL'(Tl - 0) + Nll'(’l'l + 0) = h,l,
MQI(TQ — O) + NQI(TQ + O) = hg,

z(t) €R* f() = [(t) @O, h=hy=[11]",

3 -1 —2 1 —2 1 =)
A:[Q o}’ Ml_{Q 1}’ Nl_[ 0 0]’ MQ__ 0 0]’

—_

—
—

v is an arbitrary constant, D = [11]%.

1
We denote by z;(t), i = 1,2, 3 the solution of the impulse problem in the intervals [0, Z] ,
h

11 1 3
(Z’ 5} , (5, 1], respectively. We introduce the generalize conditions (5) > l;z;(+) =

1=1
where
—2 1 -2 1 0 0
—2 1 1 0 0 1 0 0 1
ha()=1 o | = (Z)’ Lra() =1 o o | (Z>+ o 1|72 (5)
0 0 0 0 0 0
0 0 1
0 0 1 1
bs() = | 4 z3<§>’ =10
1 1 1

We find the normal fundamental matrix X (¢) and its inverse matrix X ~*(¢)

22t _ ot et — 2t . 262t _ o=t et _ =2t
X(t) = 2e2t _ 9t et _ 2t , X = 9e=2t _ 9=t 9o—t _ o2t

The matrix @ has the representation @ = [Q1 Q2 Q3] from (10), where the matrices @1,
@2, Q3 have the form

1 1 -2 1 0 0

o Wel 11 B 0 0 B 0 0
@1 5 o ol Q2= “9e/e eve | @s=1 _1 4
0 0 0 0 -1 1
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Sequently we find

Spve s(veiYis) Se 5
2 2 2
5 5 5
_563\/5 _5 (\/E-i-g 3 562 _562
. 1 —2e 2e —2e%\/e 2¢%\/e
@ " Be(1+¢3) e —e e?\/e —e?\/e ’
5 5 5 4
Ve geve 3¢ P (§+%)
4
_7%62 e 262 e ge 5<Z+%> |
5 =5 0 0 0 O
-5 5 0 0 0 O
p_Llo 0 2400
T 10| 0 0 48 0 0]
0 0O 0 0 5 5
0 0O 0 0 5 5
Ve 3
633 723 fe\/\éé e\/j_ 1+?§v\/5
1 —e e eye —ey/e — e 3
P = ——— h = ~y - _ -
@ 2(1+e3) | —eve eye 1 -1 ’ L+ 4 2”‘/E

—_

eve —eye —1 1

—_

Since rank D = 1 and rank @ = 3, then

17 -1 171 1
e TN Y A

and rank Pg« = 1. According to item 3.2 dy = 1, the conditions (H4), (H6) are fulfilled,

r=3,d=1.
For the solution of the problem from (14) we find

21(t) = X(t)PD% _
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OBOBIIIEHA 3AJAYA HA KOIIIU 3A JIMHEMHU UMIIYJICHU
ANPEPEHIINNAJIHN CUCTEMN

JIrogmua MBanos KapaumkyiioB

B paborara ce pasriexma obomena 3ajada Ha Komm 3a JIMHEHHU CHCTEMH OT JIH-
depeHImaTHN ypaBHEHUsT ¢ OOOIIEHN MMITYJICHA YCJIOBUsI BbB (PUKCUPAHU MOMEHTH
ot Bpemero. [losyuenn ca HEOOXOIUMY U JIOCTATHYHU YCJIOBUSI 33 ChIIECTBYBaHE HA
ITapaMeTpPUIHO U €INHCTBEHO PEIIeHUe.
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