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TOTAL PROGENY IN AGE–DEPENDENT BRANCHING

PROCESSES WITH STATE–DEPENDENT IMMIGRATION
*

Kosto V. Mitov

We study critical Bellman-Harris branching processes with immigration in the state
zero. For these processes the limiting behavior of the total number of particles in the
interval [0, t] is investigated.

Definition and basic result. A model of branching process with state-dependent

immigration was first investigated by Foster (1971) and Pakes (1971a). They considered

a modification of the Galton-Watson branching process which admits immigration only

in the state zero. Later this model was generalized for Markov branching processes by

Yamazato (1977) and for Bellman-Harris processes by Mitov and Yanev (1985), (1989).

An interesting characteristic of the processes is the total number of particles born in the

time interval [0, t]. It has been studied for different models of branching processes with

and without immigration (see e.g. Pakes(1971b), (1972), Kulkarni and Pakes (1983) and

references therein).

The aim of this note is to extend the results for Galton-Watson processes with state-

dependent immigration obtained in Kulkarni and Pakes (1983) to the Bellman-Harris

processes with state-dependent immigration (BHIO).

The definition of BHIO is given in Mitov and Yanev (1985) as follows. Let on the

probability space (Ω,A, P ) be given:

i) A set X = {Xi, i = 1, 2, ...} of independent, identicaly distributed (i.i.d.), positive

random variables (r.v.) with a common cumulative distribution function (c.d.f.) K(x) =

P (Xi ≤ x), K(0) = 0

ii) An independent of X set Z = {Zi(t), t ≥ 0, i = 1, 2, ...} of independent Bellman-

Harris branching processes with probability generating function (p.g.f.) of initial number

of particles f(s), |s| ≤ 1, f(0) = 0, particle-life c.d.f. G(t), G(0) = 0 and offspring p.g.f.

h(s), |s| ≤ 1.

Denote by Ti the life-period of the process {Zi(t)}, i.e., Ti is a r.v. such that

Zi(t) > 0, 0 ≤ t < Ti, Zi(Ti) = 0.

*This work is supported by the Bulgarian National Foundation of Scientific Investigations, grant
MM-704/97.

137



The sequence Ui = Xi + Ti, i = 1, 2, ... defines the renewal process

S0 = 0, Sn+1 = Sn + Un+1, n ≥ 1, N(t) = max{n : Sn ≤ t}.

Now, a Bellman-Harris process with state dependent immigration Z(t) is defined as

follows:

Z(t) =
{

Z(t− SN(t) −XN(t)+1) t− SN(t) −XN(t)+1 ≥ 0

0, t− SN(t) −XN(t)+1 < 0

By the definition it is clear that the process {Z(t)} is regenerative with embedded

renewal process {Sn}.

The total number of particles in the process Z(t) born in the interval [0, t] is defined

by the integral

W (t) =

∫ t

0

Z(x)dx.

From now on we assume that the following conditions hold:

i) h′(1) = 1, 0 < h′′(1) = σ2 < ∞, (the critical case).

ii) G(t) is non-lattice, µ =
∫

∞

0 tdG(t) < ∞, and 1−G(t) = o(1/t2) as t → ∞.

iii) K(t) is non-latice ν =
∫

∞

0 tdK(t) < ∞.

iv) β = f ′(1) = EZi(0) < ∞.

The basic result is given in the following theorem.

Theorem 1. Let i)-iv) hold. Then as t → ∞

(log t/t)2W (t)
d
→

σ2

4µ2
W,

where W is a stable random variable with index 1/2.

Proof. a) By the regenerative properties of the process {Z(t)} it is clear that almost

surely

N(t)
∑

i=1

Wi ≤ W (t) ≤

N(t)+1
∑

i=1

Wi,(1)

where

Wi =

∫

Ti

0

Zi(t)dt,

is the total number of particles in the process Zi(t) during its life-period.

b) It has been noted in Jagers (1975) that the random variable Wi has the same

distribution as the total number of particles in a simple Galton-Watson branching process

having the same p.g.f. of ancestors f(s) and the same offspring p.g.f. h(s). Appealing

to this observation we can conclude that under the condition i) (see Kulkarni and Pakes
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(1983))

n−2
n
∑

i=1

Wi

d
→ (β/σ)2W, t → ∞.(2)

c) Under the conditions i)-iv) it is known that (see Mitov and Yanev (1985))

P (Ui > t) ∼ γt−1, t → ∞.(3)

where γ = 2βµ/σ2.

d) By (3) and the weak law of large numbers (see Feller (1984), vol.2., Th.2,Sect.

VII.8), it follows that

Sn/b(γn)
P
→ 1, n → ∞,(4)

where b(x) is the inverse function of x/ log x for x ≥ 1. Hence, from P (N(t) ≥ n) =

P (Sn ≤ t) and (4) and the fact that b(x) is a regularly varying function with exponent

1, it is not difficult to prove that

γ log t

t
N(t)

P
→ 1, t → ∞.(5)

e) Now, we are in a position to prove that

(γ log t/t)2
N(t)
∑

i=1

Wi

d
→ (β/σ)2W.(6)

Denote by C(x) the c.d.f. of (β/σ)2W .

Let ε > 0 be fixed. There exists T > 0 such that for t ≥ T

P
(

|
γ log t

t
N(t)− 1| > ε

)

< ε.(7)

Hence,

P
((γ log t

t

)2
N(t)
∑

i=1

Wi ≤ x
)

= P
((γ log t

t

)2
N(t)
∑

i=1

Wi ≤ x,
γ log t

t
N(t) ∈ (1− ε, 1 + ε)

)

+P
((γ log t

t

)2
N(t)
∑

i=1

Wi ≤ x,
γ log t

t
N(t)

−

∈ (1 − ε, 1 + ε)
)

= P1(t) + P2(t).

(8)
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From (7) we obtain for t sufficiently large that

P1(t) = P
((γ log t

t

)2
N(t)
∑

i=1

Wi ≤ x|
γ log t

t
N(t) ∈ (1 − ε, 1 + ε)

)

×P
(γ log t

t
N(t) ∈ (1 − ε, 1 + ε)

)

≤ P
((γ log t

t

)2
[ γ log t

t
(1−ε)]

∑

i=1

Wi ≤ x
)

,

and similarly

P1(t) ≥ P
((γ log t

t

)2
[ γ log t

t
(1+ε)]+1
∑

i=1

Wi ≤ x
)

(1 − ε).

Now, by (2) and the fact that
(γ log t

t

)2

is a regularly varying function with exponent

−2 we see that

lim sup
t→∞

P1(t) ≤ C(
x

(1 − ε)2
) lim inf

t→∞

P1(t) ≥ C(
x

(1 + ε)2
)(1− ε).(9)

On the other hand, from (7) we obtain for P2(t)

P2(t) = P
((γ log t

t

)2
N(t)
∑

i=1

Wi ≤ x|
γ log t

t
N(t)

−

∈ (1 − ε, 1 + ε)
)

×P
(γ log t

t
N(t)

−

∈ (1 − ε, 1 + ε)
)

< ε.

(10)

Finally, (8), (9) and (10) prove (6) because ε was arbitrary.

Taking into account that γ = 2βµ/σ2 and (6) one can see that as t → ∞,

(log t/t)2
N(t)
∑

i=1

Wi

d
→

β2

σ2

1

γ2
W =

σ2

4µ2
W.

The last relation and (1) complete the proof of the theorem.
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ОБЩ БРОЙ НА ЧАСТИЦИТЕ В РАЗКЛОНЯВАЩ СЕ ПРОЦЕС
СЪС ЗАВИСЕЩА ОТ СЪСТОЯНИЕТО ИМИГРАЦИЯ

Косто Вълов Митов

Разглеждат се критически разклоняващи се процеси на Белман-Харис с имигра-

ция в нулата. За тези процеси се изследва граничното поведение на общият брой

частици, родени в интервала [0, t].
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