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MAXIMUM FAMILY SIZE IN BRANCHING PROCESSES

WITH STATE–DEPENDENT IMMIGRATION

Kosto V. Mitov, George P. Yanev∗

The number Wn of offspring of the most prolific particle in the n-th generation of
a simple branching process with state-dependent immigration is studied. Limit the-
orems for Wn and EWn are proved. The results are obtained by combining the
methods of [8] with known behavior of the population size in branching processes
with state–dependent immigration.

1. Introduction. Let on a probability space (Ω,A,P) be given:
i) A setX = {Xi(n), i, n = 1, 2, . . .} of independent identically distributed (i.i.d.) non-

negative integer valued random variables with common probability generating function
(p.g.f.) f(s) and cumulative probability distribution function (c.d.f.) F (x).

ii) An independent of X set Y = {Yn, n = 0, 1, 2, . . .} of i.i.d. positive integer valued
random variables with common p.g.f. g(s).

We consider a branching process with immigration in the state zero only, defined by

Z0 = Y0 , Zn =

Zn−1
∑

i=1

Xi(n) + I{Zn−1 = 0}Yn, n = 1, 2, . . .

where IA stands for the indicator of A, and

0
∑

i=1

· = 0.

Usually, Zn is interpreted as the number of particles living in the nth generation of
an evolving population. The process starts with a positive random number of ancestors
Y0 at time n = 0 and evolves as a Bienaymé-Galton-Watson (BGW) branching process
up to its visit to state zero. At the next moment, Y1 > 0 new particles immigrate and
the process starts again, and so on. This model of branching process was introduced by
Foster [3] and Pakes [5] and was investigated in several papers later. In [5] one can find
another interpretation of the process {Zn} in terms of queueing theory.

In the present work we focus our attention on the sequence {Wn}
∞
n=0 defined by

W0 = Y0, Wn =

{

max
1≤i≤Zn−1

{Xi(n)}, Zn−1 > 0

0, Zn−1 = 0
, n = 1, 2, . . .(1)

The random variable Wn can be interpreted as the number of ‘children’ of the most
prolific among the particles living in the (n − 1)st generation. There have been several
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recent works developing results for certain kinds of extremes in branching processes, see
e.g. [2] and references therein. The results obtained here are closely related to those in [8],
where the sequence Wn is studied when {Zn} is a BGW process without immigration.
Note that in [6] the case of critical reproduction process is investigated by means of
the regenerative properties of {Zn}. In the present work the subcritical, critical, and
supercritical cases are all studied applying the methods of [8].

Let Φn(s) be p.g.f. of Zn. It is not difficult to check that (1) is equivalent to

P{Wn ≤ x} =

∞
∑

k=0

P{Zn−1 = k}F k(x) = Φn−1(F (x)).(2)

Relation (2) is the basis of obtaining limit theorems for Wn and EWn which are
presented in sections 3 through 5. Next section contains some preliminary results.

2. Preliminaries. Let us denote m = EXi(n) and µ = EYn. We shall treat the
subcritical (m < 1), critical (m = 1), and supercritical (1 < m <∞) cases separately.

It is known (see [5]) that the p.g.f. Φn(s) of Zn satisfies the equation

Φn(s) = Φn−1(f(s))− (1 − g(s))Φn−1(0),

and

EZn = µmn + µ
n−1
∑

i=0

miΦn−1−i(0).(3)

Further on, we will need the following results proved in [8]. Recall that a nondegener-
ate c.d.f. H(x) is max-stable if and only if for a c.d.f. F (x) there exist functions a(n) > 0
and b(n) such that

lim
n→∞

F (a(n)x+ b(n)) = H(x),(4)

weakly. If (4) holds then F (x) is said to belong to the domain of attraction of H(x), i.e.,
F ∈ D(H). According to the classical Gnedenko’s result, H(x) = exp{−h(x)}, where
h(x) is of the type of one of the following three classes:

h(x) = (−x)a for x ∈ (−∞, 0), = 1, x ∈ [0,∞)
h(x) = x−a for x ∈ (0,∞), = 0, x ∈ (−∞, 0]
h(x) = e−x for x ∈ (−∞,∞),

where a > 0. Moreover, F ∈ D(exp{−x−a)}, a > 0 if and only if for x > 0

1− F (x) = x−aL(x) ,(5)

where L(·) is a slowly varying at infinity function (s.v.f.), see e.g. [9], Prop.1.11.

Lemma 1. ([8]) Let {ηi(n), i = 1, 2, . . .} be sequences of independent for each n =
0, 1, 2, . . . random variables with common c.d.f. F (x) for which (4) holds. Let {ν(n), n =
0, 1, 2, . . .} be a sequence of nonnegative integer valued random variables independent of
{ηi(n)} for each n = 0, 1, 2, . . .

If there exist a function r : N → R with r(n) → ∞ as n→ ∞, and a random variable
ν such that

lim
n→∞

P{
ν(n)

r(n)
≤ x|Bn} = P{ν ≤ x},
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weakly, where Bn is a sequence of events such that {ν(n) ≥ 0} ⊂ Bn, then

lim
n→∞

P
{

max
1≤i≤ν(n)

{ηi(n)} − b(r(n))

a(r(n))
≤ x|Bn

}

= χ(h(x)),

where a(n) and b(n) are defined in (4), and χ(u) is the Laplace transform of ν.

Lemma 2. ([8]) Let Vn be a sequence of nonnegative random variables such that
limn→∞ P{Vn ≤ x|Bn} = P{V ≤ x} weakly, for a sequence of events Bn, and let EV <
∞. If

lim
N→∞

lim sup
n→∞

∞
∑

j=N+1

P{Vn > j|Bn} = 0,

then

lim
n→∞

EVn = EV.

3. Subcritical case. Suppose that

0 < m < 1, E(log Yn) <∞.(6)

Pakes in [5] proves that (6) are necessary and sufficient conditions for the existence
of a limiting stationary distribution for Zn

πj = lim
n→∞

P{Zn = j}, j = 0, 1, 2, . . . ,

such that its p.g.f.

Π(s) =
∞
∑

j=0

πjs
j = 1− π0

∞
∑

n=0

(1− g(fn(s))),

where fn(s) is the nth functional iterate of f(s), i.e., f0(s) = s, fn(s) = f(fn−1(s)) and

π0 = {1 +
∞
∑

n=0

(1− g(fn(0)))}
−1 ∈ (0, 1).

Moreover, see [5],

lim
n→∞

EZn = Π′(1−) = π0µ/(1−m).(7)

Now, we are in a position to prove the following result.

Theorem 1. If (6) hold, then

(i) lim
n→∞

P{Wn ≤ x} = Π(F (x)), x ∈ R,

(ii) lim
n→∞

EWn =

∞
∑

k=0

(1−Π(F (k))).

Proof. (i) The assertion follows from (2) appealing to the continuity theorem for
p.g.f.’s, i.e., limn→∞ Φn(s) = Π(s) .
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(ii) We shall apply Lemma 2. First, for j ≥ 1

P{Wn > j} =
∞
∑

k=1

P{ max
1≤i≤Zn−1

{Xi(n)} > j|Zn−1 = k}P{Zn−1 = k}

=

∞
∑

k=1

(1− F k(j))P{Zn−1 = k} ≤

∞
∑

k=1

(1− F (j))kP{Zn−1 = k}

= (1− F (j))EZn−1.

(8)

Now, (7) and (8) imply

lim
N→∞

lim sup
n→∞

∞
∑

j=N+1

P{Wn > j} ≤ lim
N→∞

π0µ

1−m

∞
∑

j=N+1

(1− F (j)) = 0

Thus, by Lemma 2

lim
n→∞

EWn =

∫ ∞

0

1−Π(F (x))dx,

which is equivalent to (ii). The proof of the theorem is completed.

Notice that, Theorem 1 and (7) imply

lim
n→∞

EWn ≤ m lim
n→∞

EZn = π0µ
m

1−m
.(9)

Example 1. Let f(s) = (1 + m − ms)−1 and g(s) = 1 − (µ/m) log(1 +m −ms),
where 0 < m < 1. It is not difficult to check that EXi(n) = m and EYn = µ. In this
case Π(s) has the closed form Π(s) = (m− µ log(1−ms))/(m− µ log(1−m)). Now, by
Theorem 1

lim
n→∞

P{Wn ≤ x} =
m− µ log(1−mF (x))

m− µ log(1−m)
,

and

lim
n→∞

EWn = µ

m+

∞
∑

k=0

log{(1−mF (x))/(1−m)}

m− µ log(1 −m)
,

where for integer k we have F (k) = (1 +m)k+1 −mk+1.

Using (9) one can obtain

lim
n→∞

Wn ≤
µm

m− µ log(1−m)

m

1−m
.

It is worth comparing this upper bound for Wn with that in [8], Example 4.1, where
if {Z∗

n} is the ordinary BGW process with the same offspring p.g.f. f(s)

lim
n→∞

E(Wn|Z
∗
n > 0) ≤

m

1−m
.

4. Critical case. Assume that

m = 1, EX2
i (n) <∞, and 0 < µ <∞.(10)
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It is proved by Foster [3] that under (10)

lim
n→∞

P
( logZn

logn
≤ x

)

= x ,(11)

for 0 < x < 1. We will prove the following result for Wn.

Theorem 2. Let (10) hold and

lim
n→∞

P (X1(1) > n)

P (X1(1) > n+ 1)
= 1 .(12)

Then for 0 < x < 1,

lim
n→∞

P
( logU(Wn)

logn
≤ x

)

= x,(13)

where U(y) = 1/(1− F (y)).

Proof. It follows from (12) that (cf. [5], p.24) there exists a sequence {un} such
that for y > 0,

lim
n→∞

1− F (un)

n−x
= y .(14)

On the other hand, (11) implies (see [3]) for 0 < x < 1

lim
n→∞

E(exp{−uZnn
−x}) = lim

n→∞
fn(exp{−un

−x}) = x .

Since limn→∞(1 − F (un)) = 0, we have as n→ ∞,

P (Wn > un) = 1− fn−1(F (un)) = 1− fn−1(exp{lnF (un)})

= 1− fn−1(exp{−(1− F (un))(1 + o(1))}) = 1− fn−1(exp{−yn
−x(1 + o(1))})

→ 1− x .

(15)

Further, from (14), using Lemma 2.2.1 in [4], one can obtain for 0 < x < 1,

limn→∞ P
(

1− F (Wn)
n−x ≤ y

)

= limn→∞ P
(

1− F (Wn)
n−x ≤

1− F (un)
n−x + y −

1− F (un)
n−x

)

= limn→∞ P (Wn > un) .

From here, taking into account (15), we obtain for U(z) = 1/(1− F (z)),

lim
n→∞

P (U(Wn) ≤ nx/y) = x ,

which with y = 1 implies (13). The proof is completed.

Remark. It is known (cf. [4], Cor.2.4.1) that (12) is a necessary condition for a c.d.f.
F (x) to belong to the domain of attraction of one of the three distribution lows given
in Section 1. In particular if F (x) satisfies (5) then it also satisfies (12). On the other
hand, one can verify that (12) is not true for geometric and Poisson distributions (see
also [8], Remark 2).

5. Supercritical case. Suppose that

1 < m <∞, 0 < µ <∞.(16)

It is known (see [5]) that under the conditions (16) there exists a sequence {Cn} with
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Cn → ∞ and Cn+1/Cn → m as n→ ∞, such that

lim
n→∞

Zn

Cn
= Z,

almost surely, where Z is a continuous positive random variable with Laplace transform
ψ(u) given by

ψ(u) = g(ϕ(u))−

∞
∑

n=0

(1− f(ϕ(
u

mn
)))Φn(0),(17)

and ϕ(·) satisfies the equation ϕ(mu) = f(ϕ(u)). If in addition

EXi(n) log(1 +Xi(n)) <∞,(18)

then Cn can be chosen as mn.

Recall that the de Bruijn conjugate of a s.v.f. L(x) is a s.v.f. L∗(x) , unique up to
asymptotic equivalence, with (see Seneta (1976), Thm. 1.5)

lim
x→∞

L(x)L∗(xL(x)) = 1, lim
x→∞

L∗(x)L(xL∗(x)) = 1.

We shall prove the following theorem.

Theorem 3. Let (16) hold and ψ(u) be the Laplace transform in (17).

(i) If (4) holds, then for any x ∈ R,

lim
n→∞

P
{Wn − b(Cn)

a(Cn)
≤ x

}

= ψ(h(x)).

(ii) If (5) and (18) hold, then

lim
n→∞

EWn

mn/a(L1(mn/a))1/a
=

∫ ∞

0

(1− ψ(x−a))dx,

where L1(·) is the de Bruijn conjugate of 1/L(·), with

lim
x→∞

L1(x/L(x))/L(x) = 1, lim
x→∞

L1(x)/L(xL1(x)) = 1.

Proof. (i) Since {Zn/Cn} converges to Z almost surely, and hence in distribution,
the assertion follows by Lemma 1.

(ii) Under the additional hypotheses in (ii) the result in (i) can be written as

lim
n→∞

P
{ Wn

a(mn)
≤ x

}

= ψ(x−a), x ∈ R,(19)

with a(n) = n1/a(L1(n
1/a))1/a where the s.v.f. L1(·) is the one defined above, see e.g.

[9], Prop.1.11.

In addition, by (3) one can obtain

EZn ∼Mmn, n→ ∞,(20)

where M = µ(1 +
∑∞

k=0 Φk(0)/m
k+1) ∈ (0,∞).

Now, similarly to (8) using (20) we obtain that for j ≥ 1

P
{ Wn

a(mn)
> j

}

≤ (1− F (ja(mn)))EZn−1

=
1− F (ja(mn))

1− F (a(mn))
Mmn(1− F (a(mn))).
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For fixed ε > 0 and large n it follows from [9], Prop. 0.8 (ii) that

1− F (ja(mn))

1− F (a(mn))
≤ (1 + ε)j−a+ε.

On the other hand by Theorem 1.5.12 in [1]

lim sup
n→∞

mn(1− F (a(mn)) = 1.

Therefore,

lim sup
n→∞

∞
∑

j=N+1

P
{ Wn

a(mn)
> j

}

≤M
∞
∑

j=N+1

j−a+ε,

and hence

lim
N→∞

lim sup
n→∞

∞
∑

j=N+1

P
{ Wn

a(mn)
> j

}

= 0,(21)

by the convergence of

∞
∑

j=N+1

j−a+ε for a > 1 and 0 < ε < a− 1.

Now, from (19), (21), and Lemma 2 with Vn =Wn/a(m
n) we obtain

lim
n→∞

E
( Wn

a(mn)

)

=

∫ ∞

0

(1− ψ(x−a))dx,

which is equivalent to the assertion in (ii).

6. Concluding remarks. The comparison of the obtained results with those for
the maximum number of offspring in the BGW processes without immigration from [8]
is interesting. In the supercritical case it is not surprising that the immigration has little
effect on the limiting behavior of Wn. Theorem 2 differs from the corresponding results
in [8] only in the form of the Laplace transform ψ(u). In the subcritical and critical
cases the mechanism of immigration at zero replaces the conditioning on non–extinction.
Instead of the conditional limit theorems given in [8], here we obtain unconditional ones
under immigration at zero which acts as a reflecting barrier. Theorem 2 is a new result
(see also [6], Theorem 1) which differs significantly from the limit theorem for Wn in the
critical process without immigration. Due to the nonlinear normalization, the study of
the limiting behavior of EWn in this case needs additional efforts. To what extend the
immigration rate can change the behavior of Wn as the reproduction process is ”close”,
in some sense, to a critical one, is another open problem.
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МАКСИМАЛЕН БРОЙ ПОТОМЦИ В НЕКРИТИЧЕСКИ
РАЗКЛОНЯВАЩ СЕ ПРОЦЕС СЪС ЗАВИСЕЩА ОТ

СЪСТОЯНИЕТО ИМИГРАЦИЯ

Косто Вълов Митов, Георги Петров Янев

Разглежда се броят Wn на потомците на най-продуктивната частица от n− 1-то
поколение в разклоняващ се процес с имиграция, зависеща от състоянието на
процеса. Доказани са гранични теореми за Wn и EWn. Резултатите са получени
като са използувани методите от [8] и известните резултати за общата численост
на популацията в разклоняващ се процес с имиграция в нулата.
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