SELF-DUAL [24,12,8] QUATERNARY CODES WITH A PERMUTATION AUTOMORPHISM OF ORDER 3*

Radka Russeva

In this paper we apply a general decomposition theorem to find all Hermitian selfdual quaternary $[24,12,8]$ codes which have a permutation automorphism of order 3. There exist at most 8 such codes up to equivalence.

1. Introduction. In [1] and [8] a complete enumeration of all self-dual quaternary codes of a length up to 16 is presented. It is reasonable for higher lengths n to investigate only those of the largest minimum weight $d=2[n / 6]+2$. Such codes are called extremal. The extremal self-dual codes of lengths 18 and 20 are classified in [6]. All inequivalent extremal self-dual codes of lengths 22,26 and 28 which have a nontrivial odd order automorphism are known [3,5]. In [7] the nonexistence of an [24, 12, 10] selfdual quaternary code was verified. All self-dual $[24,12,8]$ quaternary codes possessing a monoial automorphism of prime order $r>3$ are obtained up to equivalence in [9]. We proceed with the prime $r=3$ now. We construct all $[24,12,8]$ self-dual codes which have a permutation automorphism of order 3 . We use a general decomposition theory of self-dual quaternary codes which possess a monomial automorphism of order a power of 3 developed in $[4,5]$.

Let C be an $[\mathrm{n}, \mathrm{k}]$ code over $F_{4}=G F(4)$ where $F_{4}=\left\{0,1, \omega, \omega^{2}\right\}$, with $\omega^{2}=\omega+1$. The Hermitian inner product $<., .>$ in F_{4}^{n} is given by

$$
<u, v>=\sum_{i=1}^{n} u_{i} v_{i}^{2}, \text { where } u, v \in F_{4}^{n}, u=\left(u_{1}, \cdots, u_{n}\right), v=\left(v_{1}, \cdots, v_{n}\right)
$$

The dual of C is the [n, n-k] code $C^{\perp}=\left\{v \in F_{4}^{n}:<u, v>=0\right.$ for all $\left.u \in C\right\}$. If $C \subseteq C^{\perp}$ it is called self-ortogonal and if $C=C^{\perp}, C$ is self-dual.

Define M_{n} as the group of all $n \times n$ monomial matrices over F_{4}. Let $\operatorname{Gal}\left(F_{4}\right)=\{1, \tau\}$ be the Galois group of F_{4} and M_{n}^{\star} be the semidirect product of M_{n} extended by $\operatorname{Gal}\left(F_{4}\right)$. If $T \in M_{n}^{\star}$, we write $T=P D \nu$, where P is a permutation (matrix), D is a diagonal matrix and $\nu \in \operatorname{Gal}\left(F_{4}\right)$. Codes C and C^{\prime} of length n over F_{4} are called equivalent whenever $C^{\prime}=C T$ for some $T \in M_{n}^{\star}$. The automorphism group of the code C is the group $\operatorname{Aut}(C)=\left\{T \in M_{n}^{\star}: C T=C\right\}$. In [4] were examined the automorphisms M of a code C where M was of Type I or Type II.

[^0]2. Construction Method. For the remainder of the paper we assume C is an [24, 12, 8] self-dual quaternary code possessing a permutation automorphism P of order 3 with $c 3$-cycles and f fixed points, where $24=3 c+f$. We can assume that P acts as follows
\[

$$
\begin{equation*}
P=(1,2,3)(4,5,6) \ldots(3 c-2, \ldots, 3 c) \tag{1}
\end{equation*}
$$

\]

Denote the r-cycles of P by $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{c}$ and the fixed points by \mathcal{F}.To decompose the code C we applay the decomposition theory for a quaternary code possessing a Type I automorphism [5]. Denote by R the semisimple ring $F_{4}[X] /\left\langle X^{3}+1\right\rangle$, where X is an indeterminate. Then $R=I_{0} \oplus I_{1} \oplus I_{2}$, where the I_{k} for $k=0,1,2$ are the minimal ideals in R. Each I_{k} is a field isomorphic to F_{4}, with identity $i_{k}(X)=1+\omega^{2 k} X+\omega^{k} X^{2}$. Identify the element $a_{0}+a_{1} \omega^{2 k} X+a_{2} \omega^{k} X^{2} \in R$ with the quaternary triple $a_{0} a_{1} a_{2}$. In (2) are presented the isomorphisms between the fields F_{4} and I_{k} for $k=0,1,2$.

F_{4}	I_{0}	I_{1}	I_{2}
$\mathbf{0}$	000	000	000
$\mathbf{1}$	111	$1 \bar{\omega} \omega$	$1 \omega \bar{\omega}$
ω	$\omega \omega \omega$	$\omega 1 \bar{\omega}$	$\omega \bar{\omega} 1$
$\bar{\omega}=\omega^{\mathbf{2}}$	$\bar{\omega} \bar{\omega} \bar{\omega}$	$\bar{\omega} \omega 1$	$\bar{\omega} 1 \omega$

If $v \in F_{4}^{n}$ let $x \mid \Omega_{i}$ be the restriction of v to Ω_{i}. Define $E_{0}(M)=\left\{v \in C: v \mid \Omega_{i} \in I_{0}\right.$ for $1 \leq i \leq c\}=\{v \in C: v M=v\}$, and for $k=1,2 E_{k}(M)=\left\{v \in C: v \mid \Omega_{i} \in I_{k}\right.$ for $1 \leq i \leq c$ and $v_{i}=0$ if $\left.i \in \mathcal{F}\right\}$. Notice that if $v \in E_{k}(M), v M=\omega^{k} v$. By Theorem 1 of [4] $C=E_{0}(P) \oplus E_{1}(P) \oplus E_{2}(P)$. Associate to $u \in E_{0}(P)$ an element $u^{\star}=\left(u_{1}^{\star}, \cdots, u_{c+f}^{\star}\right) \in$ F_{4}^{c+f}, where for $1 \leq i \leq c, u_{i}^{\star}=u_{j}$ for some j in Ω_{i} and for $1 \leq i \leq c+f u_{i}^{\star}=u_{i}$. For $k=1,2$ associate to $u \in E_{k}(P)$ an element $u^{\star}=\left(u_{1}^{\star}, \cdots, u_{c}^{\star}\right) \in F_{4}^{c}$, where $u_{i}^{\star}=u \mid \Omega_{i}$ viewed as an element of I_{k}. Define $E_{k}(P)^{\star}=\left\{u^{\star}: u \in E_{k}(P)\right\}$ for $k=0,1,2$. Because C is self-dual, by Theorem 1 of [4], so are $E_{k}(P)^{\star}$ presented as codes over the fields I_{k} for $k=0,1,2$.

We use the following transformations which preserve the decomposition and lead the code C to an equivalent code C^{\prime} :
a) permutations of the first c 3 -cycles of C.
b) permutations of the last f coordinates of C.
c) multiplication of each 3 -cycle $\Omega_{i}, 1 \leq i \leq c$ and each fixed point by constants from F_{4}.
d) cycle shifts to the entries of the 3 -cycles independently which is equivalent to scaling the columns of $E_{k}(P)^{\star}$ by power of w^{k}.
e) transformation $s \tau$ where $s=(2,3)(5,6) \cdots(3 c-1,3 c)$ which acts as conjugation on $E_{k}(P)^{\star}$.
f) permutations to the fields I_{k} when the codes $E_{k}(P)^{\star}$ are of the same dimension which permute these codes .

Let the subgroups of M_{n}^{\star} generated by these transformations be $\Sigma_{c}, \Sigma_{f}, D, W$, $<s \tau>$, and S respectively.

The equivalence of two codes with the same Type I automorphism was discussed in [5]. In particular for $[24,12,8]$ self-dual codes with a permutation automorphism P defined in (1) we obtain the following theorem:

Theorem 1. Let C and C^{\prime} have the same permutation automorphism P.

1) Assume $<P, \omega I>$ is a Syllow 3-subgroup of $\operatorname{Aut}(C)$. Then C and C^{\prime} are equivalent iff $C^{\prime}=C N$ for some $N \in \Sigma_{c} \Sigma_{f} D<s \tau>S W$.
2) Suppose $C^{\prime}=C N$ with $N \in \Sigma_{c} \Sigma_{f} D<s \tau>S W$ then $N=T Q$ where $T \in$ $\Sigma_{c} \Sigma_{f} D<s \tau>$ and $Q \in S W$. Let \hat{T} be the action of T induced on $E_{0}(P)^{\star}$. Then $E_{0}(P)^{\star} \hat{T}=E_{0}^{\prime}(P)^{\star}$ and if $E_{0}(P)=E_{0}^{\prime}(P)$ then $\hat{T} \in \operatorname{Aut}\left(E_{0}(P)^{\star}\right)$.
2. Results. The only two possibilities for (c, f) are $(8,0)$ and $(6,6)$ [9].

The case $\mathbf{c}=\mathbf{8}, \mathbf{f}=\mathbf{0}$. Let C be a self-dual $[24,12,8]$ code with a permutation automorphism P with 83 -cycles without fixed points. The codes $E_{k}(P)^{\star}$ for $\mathrm{k}=0,1,2$ are self-dual [8, 4, d] quaternary codes with $d \geq \frac{8}{3}$ because of minimal distance of C. By [8] $E_{k}(P)^{\star}=E_{8}$. We can fix a binary generator matrix for $E_{0}(P)^{\star}$ in the form

$$
\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \tag{3}\\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

Generator matricies for $E_{i}(P)^{\star}, i=1,2$ may be obtained from $\operatorname{gen}\left(E_{0}(P)^{\star}\right)$ by transposition of the columns.

To construct a generator matrix of the code $E_{k}(P)$ we replace the entries of $\operatorname{gen}\left(E_{k}(P)^{\star}\right)$ by the corresponding 3 -tuples in (1).

Lemma 1. There is not a binary 4-weight vector contained in each $E_{k}(P)^{\star}$ at the same time.

Proof. Since $i_{o}(X)+i_{1}(X)+i_{2}(X)=1$ then if the codes $E_{k}(P)^{\star}$ contain one and the same 4 -weight binary vector, the sum of the corresponding vectors in $E_{k}(P)$ is a 4 -weight vector in C-a contradiction.

To determine generator matricies of $E_{1}(P)^{\star}$ and $E_{2}(P)^{\star}$ we use a terminology given in [2]. Call a duo any pair of coordinates. A cluster for a code is a set of disjoint duos such that the union of any two duos is a support of a 4 -weight vector of the code. A d-set for a cluster is a subset of coordinates containing precisely one element of each duo in the cluster. A defining set of a code consist of a cluster and a d-set provided that the 4 -weight vectors arrising from the cluster and the vector with support the d-set generate the code.
E_{8} has a defining set. We try to find defining sets of $E_{1}(P)^{\star}$ and $E_{2}(P)^{\star}$ satisfying Lemma 1. The 3 -transitivity of $\operatorname{Aut}\left(A_{8}\right)$ implies that a cluster for E_{8} can be chosen so that any pair of coordinates forms a duo. So we can assume that $\{1,2\}$ is a duo for $E_{1}(P)^{\star}$ and $E_{2}(P)^{\star}$. Applying permutation from $A u t\left(E_{0}(P)^{\star}\right)$ we obtain all possible defining sets for $E_{1}(P)^{\star}$. In a similar manner by the permutations that do not affect $\operatorname{gen}\left(E_{0}(P)^{\star}\right)$ and $\operatorname{gen}\left(E_{1}(P)^{\star}\right)$ we obtain all possibilities for $\operatorname{gen}\left(E_{2}(P)^{\star}\right)$. We find 43 cases for $\operatorname{gen}(C)$. Applying elements from $\Sigma_{c} S$ we by hand reduce the number of cases to check. We obtain 3 classes $[24,12,8]$ self-dual codes. Denote by C_{1}, C_{2} and C_{3} their representatives. The codes C_{2} and C_{3} have the same weight enumerators. In the next table we give a defining set of $E_{k}(P)^{\star}, k=1,2$ for these codes and the number A_{8} of 156

8-weight vectors in them.

	defining set of $E_{1}(P)^{\star}$	defining set of $E_{2}(P)^{\star}$	A_{8}
C_{1}	$\{1,2\},\{3,4\},\{5,6\},\{7,8\} ; 1,3,5,7$	$\{1,2\},\{3,5\},\{4,7\},\{6,8\} ; 1,3,4,8$	2277
C_{2}	$\{1,2\},\{3,4\},\{5,6\},\{7,8\} ; 1,3,5,8$	$\{1,2\},\{3,5\},\{4,7\},\{6,8\} ; 1,3,4,6$	1089
C_{3}	$\{1,2\},\{3,5\},\{4,7\},\{6,8\} ; 1,3,4,6$	$\{1,2\},\{3,8\},\{4,6\},\{5,7\} ; 1,3,4,5$	1089

In these notation for the code $C_{1} \operatorname{gen}\left(E_{1}(P)^{\star}=\operatorname{gen}\left(E_{0}(P)^{\star}\right.\right.$ presented in (3) and $\operatorname{gen}\left(E_{2}(P)^{\star}=\left(\begin{array}{cccccccc}1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1\end{array}\right)\right.$. We can formulate the following theorem.

Theorem 2. There exist at most 3 inequivalent [24, 12, 8] self-dual codes possessing a permutation automorphism of order 3 with 8 cycles without fixed points..

The case $\mathbf{c}=\mathbf{6}, \mathbf{f}=\mathbf{6}$. Let P be a permutation automorphism defined in (1) with 6 3 -cycles and 6 fixed points. We obtain the following theorem:

Theorem 3. There exist at most 6 inequivalent [24, 12, 8] self-dual codes possessing a permutation automorphism of order 3 with 6 cycles and 6 fixed points.

Proof: In this case $E_{0}(P)^{\star}$ is an [12, 6] self-dual quaternary code. Its minimal distance is at least $\frac{8}{3}$. Hence by $[8] E_{0}(P)^{\star}=E_{6} \oplus E_{6}, E_{12}, C_{12}, D_{12}$ or F_{12}. The codes $E_{k}(P)^{\star}$ are $[6,3,4]$ self-dual quaternary codes for $k=0,1,2$.

Let $E_{0}(P)^{\star}$ be $E_{6} \oplus E_{6}$. Since E_{6} is an $\operatorname{MDS}[6,3,4]$ code there is a 4 -weight vector in E_{6} nonzero on three fixed points, which leads to a low weight vector in C.

Let $E_{0}(P)^{\star}$ be E_{12}. This code has a defining set. If any of the duos consists of fixed points or cycle coordinates we would obtain a low weight vector in $E_{0}(P)$. Therefore we can fix the $\operatorname{gen}\left(E_{0}(P)^{\star}\right)$ in the form

$$
\operatorname{gen}\left(E_{0}(P)^{\star}=\left(\begin{array}{cccccc|cccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0
\end{array}\right)\right.
$$

with the fixed points on the right.
Let $E_{0}(P)^{\star}=C_{12}, D_{12}, F_{12}$. We examin the generator matricies of these codes given in [8] and the vectors of weight 4 in them. We consider all alternatives for fixed points.

When $E_{0}(P)^{\star}=C_{12}$ there always exists a 4 -weight vector in it nonzero on 3 or 4 fixed points. This contradicts $E_{0}(P)^{\star}=C_{12}$.

When $E_{0}(P)^{\star}=D_{12}$ or F_{12} we obtain a unique possibility for $\operatorname{gen}\left(E_{0}(P)^{\star}\right)$ up to equivalence in the form $\left(I_{6} \mid A\right)$, where A is the matrix

$$
\left(\begin{array}{llllll}
0 & 1 & 1 & \omega & \omega & \omega \\
1 & 0 & 1 & \omega & \omega & \omega \\
1 & 1 & 0 & \omega & \omega & \omega \\
\omega & \omega & \omega & 0 & 1 & 1 \\
\omega & \omega & \omega & 1 & 0 & 1 \\
\omega & \omega & \omega & 1 & 1 & 0
\end{array}\right) \text { and }\left(\begin{array}{cccccc}
1 & 0 & \bar{\omega} & \bar{\omega} & 1 & 1 \\
0 & 1 & \bar{\omega} & \bar{\omega} & 1 & 1 \\
\omega & \omega & 0 & 1 & 1 & 1 \\
\omega & \omega & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 1
\end{array}\right) \text { respectively. }
$$

We obtain $\operatorname{gen}\left(E_{1}(P)^{\star}\right)$ by row reducing, scaling columns and applying elements from $\operatorname{Aut}\left(E_{0}(P)^{\star}\right)$. In any choice of $\operatorname{gen}\left(E_{0}(P)^{\star}\right)$ the generator matrix for $E_{1}(P)^{\star}$ can be fixed in the form $\operatorname{gen}\left(E_{1}(P)^{\star}\right)=\left(\begin{array}{cccccc}1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & \omega & \bar{\omega} \\ 0 & 0 & 1 & 1 & \bar{\omega} & \omega\end{array}\right)$. Then by row reducing we obtain

$$
\operatorname{gen}\left(E_{2}(P)^{\star}\right)=\left(\begin{array}{cccccc}
1 & 0 & 0 & b & c & d \tag{4}\\
0 & 1 & 0 & e & x & y \\
0 & 0 & 1 & f & z & t
\end{array}\right)
$$

where $b, c, d, e, f \in\{1, \omega, \bar{\omega}\}, x=\bar{b} c e \gamma, y=\bar{b} d e \bar{\gamma}, z=\bar{b} c f \bar{\gamma}, t=\bar{b} d f \gamma$ and $\gamma \in\{\omega, \bar{\omega}\}$. All coordinates in $\operatorname{gen}\left(E_{1}(P)^{\star}\right)$ and $\operatorname{gen}\left(E_{2}(P)^{\star}\right)$ are cyclic. To obtain the generator matricies of subcodes $E_{k}(P), k=0,1,2$ we replace the cycle coordinates of $E_{k}(P)^{\star}$ by the corresponding triples in (2). We save the fixed points in $\operatorname{gen}\left(E_{0}(P)^{\star}\right)$ and adjoin 000000 at the end of each row in $\operatorname{gen}\left(E_{j}(P)^{\star}\right), j=1,2$. To reduce the number of cases to check we applay to code C by computer elements from groups $\hat{G}=\left\{\hat{T}: T \in \Sigma_{c} \Sigma_{f} D<\right.$ $s \tau>\} \cap A u t\left(E_{0}(P)^{\star}\right)$ followed by elements from $S W$. In any case of $E_{0}(P)^{\star}$ we receive two classes codes with representatives for $\operatorname{gen}\left(E_{2}(P)^{\star}\right)$ in the form (4) with $b=c=d=e=f$ and $\gamma=\omega$ or $\bar{\omega}$. The notation of the obtained codes is given in the table bellow. The codes are with 4 different spectrums.

	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}	C_{9}
$E_{0}(P)^{\star}$	E_{12}	E_{12}	D_{12}	D_{12}	F_{12}	F_{12}
γ in						
gen $\left(E_{2}(P)^{\star}\right)$	ω	$\bar{\omega}$	ω	$\bar{\omega}$	ω	$\bar{\omega}$
A_{8}	1413	2277	792	792	837	837

Remark: The code C_{1} has a binary generator matrix which generates over F_{2} the extended $[24,12,8]$ Golay code. It is known that this binary code has an automorphism of order 3 with 6 cycles and 6 fixed points. Therefore the quaternary code C_{1} has such automorphism too. Between the quaternary codes with such automorphism the code C_{5} is a unique which has the same weight enumerator as C_{1}. So these codes must be equivalent. It is an open question to distingish the other codes with identical weight distributions. The obtained codes are with 5 different spectrums.

The following theorem summarize the results of Theorem 1, Theorem 2, and the remark.

Theorem 4. All self-dual [24, 12, 8] quaternary codes with a permutation automorphism of order 3 are equivalent to one of the codes $C_{1}, C_{2}, C_{3}, C_{4}, C_{6}, C_{7}, C_{8}$ and C_{9} constructed above.

REFERENCES

[1] J. H. Conway, V. Pless and N.J.A.Sloane, Self-dual codes overGF(3) and GF(4) of length not exceeding 16,IEEE Trans. Info. Theory IT-25 (1979), 312-322.
[2] W.C.Huffman, Automorphisms of codes with applications to extremal doubly even codes of length 48,IEEE Trans. Inform. Theory IT-28 (1982), 511-521.
[3] W.C.Huffman, On extremal self-dual quaternary codes of length 18 to 28,I, IEEE Trans. Info. Theory IT-36 (1990), 651-660.
[4] W.C.Huffman, On 3-elements in Monomial Automorphism Groups of Quaternary Codes, and the group of a [24, 12, 10] Code, IEEE Trans. Info. Theory IT-36 (1990), 660-664.
[5] W.C.Huffman, On extremal self-dual quaternary codes of length 18 to 28, II,IEEE Trans. Info. Theory IT-37 (1991), 1206-1216.
[6] W.C.Huffman, Characterisation of Quaternary Extremal Codes of Lengths 18 and 20, IEEE Trans. Info. Theory 43 (1997), 1613-1616.
[7] C.W.H.Lam and V.Pless, There is no [24, 12, 10] self-dual quaternary code, IEEE Trans.Inform. Theory 36, (1990), 1153-1156.
[8] F.J.Mac Williams, A.M.Odlyzko, N.J.A.Sloane and H.N.Ward, Self-dual codes over GF(4), Journ. Combin. Theory A25 (1978), 288-318.
[9] V. Yorgov, R. Russeva, On the [24, 12, 8] Self-Dual quaternary codes, Math. and Education in Math. 27 (1998), 167-172.

Radka Peneva Russeva
University of Shoumen
Faculty of Mathematics Informatics and Economics
9700 Shoumen
Bulgaria

САМОДУАЛНИ [24, 12, 8] КОДОВЕ НАД ПОЛЕ С 4 ЕЛЕМЕНТА ПРИТЕЖАВАЩИ ПЕРМУТАЦИОНЕН АВТОМОРФИЗЪМ ОТ РЕД 3

Радка Пенева Русева

В тази статия се прилага общата теория за разлагане на кодове. Конструирани са всички самодуални $[24,12,8]$ кодове над поле с 4 елемента, притежаващи пермутационен автоморфизъм от ред 3 . Получихме, че съществуват най-много 8 такива кодове с точност до еквивалентност.

[^0]: *This work was partially supported by the Bulgarian national Science Fund under Contract No.MM503/1995.

