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SELF-DUAL [24,12,8] QUATERNARY CODES WITH A
PERMUTATION AUTOMORPHISM OF ORDER 3∗

Radka Russeva

In this paper we apply a general decomposition theorem to find all Hermitian self-
dual quaternary [24, 12, 8] codes which have a permutation automorphism of order
3. There exist at most 8 such codes up to equivalence.

1. Introduction. In [1] and [8] a complete enumeration of all self-dual quaternary
codes of a length up to 16 is presented. It is reasonable for higher lengths n to investigate
only those of the largest minimum weight d = 2 [n/6] + 2 . Such codes are called
extremal. The extremal self-dual codes of lengths 18 and 20 are classified in [6]. All
inequivalent extremal self-dual codes of lengths 22, 26 and 28 which have a nontrivial
odd order automorphism are known [3,5]. In [7] the nonexistence of an [24, 12, 10] self-
dual quaternary code was verified. All self-dual [24, 12, 8] quaternary codes possessing
a monoial automorphism of prime order r > 3 are obtained up to equivalence in [9]. We
proceed with the prime r = 3 now. We construct all [24, 12, 8] self-dual codes which
have a permutation automorphism of order 3. We use a general decomposition theory of
self-dual quaternary codes which possess a monomial automorphism of order a power of
3 developed in [4,5].

Let C be an [n, k] code over F4 = GF (4) where F4 = {0, 1, ω, ω2}, with ω2 = ω + 1.
The Hermitian inner product < ., . > in Fn

4 is given by

< u, v >=

n
∑

i=1

uiv
2
i ,where u, v ∈ Fn

4 , u = (u1, · · · , un), v = (v1, · · · , vn).

The dual of C is the [n, n-k] code C⊥ = {v ∈ Fn
4 :< u, v >= 0 for all u ∈ C}. If

C ⊆ C⊥ it is called self-ortogonal and if C = C⊥, C is self-dual.
Define Mn as the group of all n×n monomial matrices over F4. Let Gal(F4) = {1, τ}

be the Galois group of F4 and M⋆
n be the semidirect product of Mn extended by Gal(F4).

If T ∈ M⋆
n, we write T = PDν, where P is a permutation (matrix), D is a diagonal matrix

and ν ∈ Gal(F4). Codes C and C′ of length n over F4 are called equivalent whenever
C′ = CT for some T ∈ M⋆

n. The automorphism group of the code C is the group
Aut(C) = {T ∈ M⋆

n : CT = C}. In [4] were examined the automorphisms M of a code
C where M was of Type I or Type II.
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2. Construction Method. For the remainder of the paper we assume C is an
[24, 12, 8] self-dual quaternary code possessing a permutation automorphism P of order
3 with c 3-cycles and f fixed points, where 24 = 3c+ f . We can assume that P acts as
follows

(1) P = (1, 2, 3)(4, 5, 6) . . . (3c− 2, . . . , 3c)

Denote the r-cycles of P by Ω1,Ω2, . . . ,Ωc and the fixed points by F .To decompose
the code C we applay the decomposition theory for a quaternary code possessing a Type
I automorphism [5]. Denote by R the semisimple ring F4[X ]/

〈

X3 + 1
〉

, where X is an
indeterminate. Then R = I0 ⊕ I1 ⊕ I2, where the Ik for k = 0, 1, 2 are the minimal ideals
in R. Each Ik is a field isomorphic to F4, with identity ik(X) = 1 + ω2kX + ωkX2.
Identify the element a0 + a1ω

2kX + a2ω
kX2 ∈ R with the quaternary triple a0a1a2. In

(2) are presented the isomorphisms between the fields F4 and Ik for k = 0, 1, 2.

(2)

F4 I0 I1 I2
0 000 000 000
1 111 1 ω̄ ω 1 ω ω̄
ω ω ω ω ω 1 ω̄ ω ω̄ 1

ω̄ = ω2 ω̄ ω̄ ω̄ ω̄ ω 1 ω̄ 1 ω

If v ∈ Fn
4 let x|Ωi be the restriction of v to Ωi. Define E0(M) = {v ∈ C : v|Ωi ∈ I0

for 1 ≤ i ≤ c} = {v ∈ C : vM = v}, and for k = 1, 2 Ek(M) = {v ∈ C : v|Ωi ∈ Ik for
1 ≤ i ≤ c and vi = 0 if i ∈ F}. Notice that if v ∈ Ek(M), vM = ωkv. By Theorem 1 of [4]
C = E0(P )⊕E1(P )⊕E2(P ). Associate to u ∈ E0(P ) an element u⋆ = (u⋆

1, · · · , u
⋆
c+f) ∈

F c+f
4 , where for 1 ≤ i ≤ c, u⋆

i = uj for some j in Ωi and for 1 ≤ i ≤ c+ f u⋆
i = ui. For

k = 1, 2 associate to u ∈ Ek(P ) an element u⋆ = (u⋆
1, · · · , u

⋆
c) ∈ F c

4 , where u⋆
i = u|Ωi

viewed as an element of Ik. Define Ek(P )⋆ = {u⋆ : u ∈ Ek(P )} for k = 0, 1, 2. Because
C is self-dual, by Theorem 1 of [4], so are Ek(P )⋆ presented as codes over the fields Ik
for k = 0, 1, 2.

We use the following transformations which preserve the decomposition and lead the
code C to an equivalent code C′:

a) permutations of the first c 3-cycles of C.

b) permutations of the last f coordinates of C.

c) multiplication of each 3-cycle Ωi, 1 ≤ i ≤ c and each fixed point by constants from
F4.

d) cycle shifts to the entries of the 3-cycles independently which is equivalent to
scaling the columns of Ek(P )⋆ by power of wk.

e) transformation sτ where s = (2, 3)(5, 6) · · · (3c − 1, 3c) which acts as conjugation
on Ek(P )⋆.

f) permutations to the fields Ik when the codes Ek(P )⋆ are of the same dimension
which permute these codes .

Let the subgroups of M⋆
n generated by these transformations be Σc,Σf , D,W,

< sτ >, and S respectively.

The equivalence of two codes with the same Type I automorphism was discussed in
[5]. In particular for [24, 12, 8] self-dual codes with a permutation automorphism P
defined in (1) we obtain the following theorem:

Theorem 1.Let C and C′ have the same permutation automorphism P .
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1) Assume < P, ωI > is a Syllow 3-subgroup of Aut(C). Then C and C′ are equivalent
iff C′ = CN for some N ∈ ΣcΣfD < sτ > SW .

2) Suppose C′ = CN with N ∈ ΣcΣfD < sτ > SW then N = TQ where T ∈

ΣcΣfD < sτ > and Q ∈ SW . Let T̂ be the action of T induced on E0(P )⋆. Then

E0(P )⋆T̂ = E′
0(P )⋆ and if E0(P ) = E′

0(P ) then T̂ ∈ Aut(E0(P )⋆).

2. Results. The only two possibilities for (c, f) are (8, 0) and (6, 6) [9].

The case c=8, f=0. Let C be a self-dual [24, 12, 8] code with a permutation
automorphism P with 8 3-cycles without fixed points. The codes Ek(P )⋆ for k=0,1,2 are
self-dual [8, 4, d] quaternary codes with d ≥ 8

3
because of minimal distance of C. By [8]

Ek(P )⋆ = E8. We can fix a binary generator matrix for E0(P )⋆ in the form

(3)









1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
1 0 1 0 1 0 1 0









Generator matricies for Ei(P )⋆, i = 1, 2 may be obtained from gen(E0(P )⋆) by transpo-
sition of the columns.

To construct a generator matrix of the code Ek(P ) we replace the entries of
gen(Ek(P )⋆) by the corresponding 3-tuples in (1).

Lemma 1.There is not a binary 4-weight vector contained in each Ek(P )⋆ at the
same time.

Proof. Since io(X) + i1(X) + i2(X) = 1 then if the codes Ek(P )⋆ contain one and
the same 4-weight binary vector, the sum of the corresponding vectors in Ek(P ) is a
4-weight vector in C - a contradiction.

To determine generator matricies of E1(P )⋆ and E2(P )⋆ we use a terminology given
in [2]. Call a duo any pair of coordinates. A cluster for a code is a set of disjoint duos
such that the union of any two duos is a support of a 4-weight vector of the code. A
d-set for a cluster is a subset of coordinates containing precisely one element of each duo
in the cluster. A defining set of a code consist of a cluster and a d-set provided that the
4-weight vectors arrising from the cluster and the vector with support the d-set generate
the code.

E8 has a defining set. We try to find defining sets of E1(P )⋆ and E2(P )⋆ satisfying
Lemma 1. The 3-transitivity of Aut(A8) implies that a cluster for E8 can be chosen so
that any pair of coordinates forms a duo. So we can assume that {1, 2} is a duo for
E1(P )⋆ and E2(P )⋆. Applying permutation from Aut(E0(P )⋆) we obtain all possible
defining sets for E1(P )⋆. In a similar manner by the permutations that do not affect
gen(E0(P )⋆) and gen(E1(P )⋆) we obtain all possibilities for gen(E2(P )⋆). We find 43
cases for gen(C). Applying elements from ΣcS we by hand reduce the number of cases
to check. We obtain 3 classes [24, 12, 8] self-dual codes. Denote by C1, C2 and C3 their
representatives. The codes C2 and C3 have the same weight enumerators. In the next
table we give a defining set of Ek(P )⋆, k = 1, 2 for these codes and the number A8 of
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8-weight vectors in them.

defining set of E1(P )⋆ defining set of E2(P )⋆ A8

C1 {1,2}, {3,4}, {5,6}, {7,8}; 1,3,5,7 {1,2}, {3,5}, {4,7}, {6,8}; 1,3,4,8 2277
C2 {1,2}, {3,4}, {5,6}, {7,8}; 1,3,5,8 {1,2}, {3,5}, {4,7}, {6,8}; 1,3,4,6 1089
C3 {1,2}, {3,5}, {4,7}, {6,8}; 1,3,4,6 {1,2}, {3,8}, {4,6}, {5,7}; 1,3,4,5 1089

In these notation for the code C1 gen(E1(P )⋆ = gen(E0(P )⋆ presented in (3) and

gen(E2(P )⋆ =









1 1 1 0 1 0 0 0
0 0 1 1 1 0 1 0
0 0 0 1 0 1 1 1
1 0 1 1 0 0 0 1









. We can formulate the following theo-

rem.

Theorem 2.There exist at most 3 inequivalent [24, 12, 8] self-dual codes possessing
a permutation automorphism of order 3 with 8 cycles without fixed points..

The case c=6, f=6. Let P be a permutation automorphism defined in (1) with 6
3-cycles and 6 fixed points. We obtain the following theorem:

Theorem 3.There exist at most 6 inequivalent [24, 12, 8] self-dual codes possessing
a permutation automorphism of order 3 with 6 cycles and 6 fixed points.

Proof: In this case E0(P )⋆ is an [12, 6] self-dual quaternary code. Its minimal
distance is at least 8

3
. Hence by [8] E0(P )⋆ = E6 ⊕ E6, E12, C12, D12 or F12. The codes

Ek(P )⋆ are [6, 3, 4] self-dual quaternary codes for k = 0, 1, 2.
Let E0(P )⋆ be E6 ⊕E6. Since E6 is an MDS [6, 3, 4] code there is a 4-weight vector

in E6 nonzero on three fixed points, which leads to a low weight vector in C.
Let E0(P )⋆ be E12. This code has a defining set. If any of the duos consists of fixed

points or cycle coordinates we would obtain a low weight vector in E0(P ). Therefore we
can fix the gen(E0(P )⋆) in the form

gen(E0(P )⋆ =

















1 0 0 0 0 0 0 1 1 1 1 1
0 1 0 0 0 0 1 0 1 1 1 1
0 0 1 0 0 0 1 1 0 1 1 1
0 0 0 1 0 0 1 1 1 0 1 1
0 0 0 0 1 0 1 1 1 1 0 1
0 0 0 0 0 1 1 1 1 1 1 0

















with the fixed points on the right.
Let E0(P )⋆ = C12, D12, F12. We examin the generator matricies of these codes given

in [8] and the vectors of weight 4 in them. We consider all alternatives for fixed points.
When E0(P )⋆ = C12 there always exists a 4-weight vector in it nonzero on 3 or 4

fixed points. This contradicts E0(P )⋆ = C12.
When E0(P )⋆ = D12 or F12 we obtain a unique possibility for gen(E0(P )⋆) up to

equivalence in the form
(

I6 A
)

, where A is the matrix

















0 1 1 ω ω ω
1 0 1 ω ω ω
1 1 0 ω ω ω
ω ω ω 0 1 1
ω ω ω 1 0 1
ω ω ω 1 1 0

















and

















1 0 ω̄ ω̄ 1 1
0 1 ω̄ ω̄ 1 1
ω ω 0 1 1 1
ω ω 1 0 1 1
1 1 1 1 1 0
1 1 1 1 0 1

















respectively.
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We obtain gen(E1(P )⋆) by row reducing, scaling columns and applying elements from
Aut(E0(P )⋆). In any choice of gen(E0(P )⋆) the generator matrix for E1(P )⋆ can be fixed

in the form gen(E1(P )⋆) =





1 0 0 1 1 1
0 1 0 1 ω ω̄
0 0 1 1 ω̄ ω



. Then by row reducing we obtain

(4) gen(E2(P )⋆) =





1 0 0 b c d
0 1 0 e x y
0 0 1 f z t





where b, c, d, e, f ∈ {1, ω, ω̄}, x = b̄ceγ, y = b̄deγ̄, z = b̄cf γ̄, t = b̄dfγ and γ ∈ {ω, ω̄}.
All coordinates in gen(E1(P )⋆) and gen(E2(P )⋆) are cyclic. To obtain the generator
matricies of subcodes Ek(P ), k = 0, 1, 2 we replace the cycle coordinates of Ek(P )⋆ by
the corresponding triples in (2). We save the fixed points in gen(E0(P )⋆) and adjoin
000000 at the end of each row in gen(Ej(P )⋆), j = 1, 2. To reduce the number of cases to

check we applay to code C by computer elements from groups Ĝ = {T̂ : T ∈ ΣcΣfD <
sτ >}∩Aut(E0(P )⋆) followed by elements from SW . In any case of E0(P )⋆ we receive two
classes codes with representatives for gen(E2(P )⋆) in the form (4) with b = c = d = e = f
and γ = ω or ω̄. The notation of the obtained codes is given in the table bellow. The
codes are with 4 different spectrums.

C4 C5 C6 C7 C8 C9

E0(P )⋆ E12 E12 D12 D12 F12 F12

γ in
gen(E2(P )⋆) ω ω̄ ω ω̄ ω ω̄

A8 1413 2277 792 792 837 837

Remark: The code C1 has a binary generator matrix which generates over F2 the
extended [24,12,8] Golay code. It is known that this binary code has an automorphism
of order 3 with 6 cycles and 6 fixed points. Therefore the quaternary code C1 has such
automorphism too. Between the quaternary codes with such automorphism the code
C5 is a unique which has the same weight enumerator as C1. So these codes must be
equivalent. It is an open question to distingish the other codes with identical weight
distributions. The obtained codes are with 5 different spectrums.

The following theorem summarize the results of Theorem 1, Theorem 2, and the
remark.

Theorem 4.All self-dual [24, 12, 8] quaternary codes with a permutation automor-
phism of order 3 are equivalent to one of the codes C1, C2, C3, C4, C6, C7, C8 and C9

constructed above.
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САМОДУАЛНИ [24, 12, 8] КОДОВЕ НАД ПОЛЕ С 4 ЕЛЕМЕНТА
ПРИТЕЖАВАЩИ ПЕРМУТАЦИОНЕН АВТОМОРФИЗЪМ ОТ

РЕД 3

Радка Пенева Русева

В тази статия се прилага общата теория за разлагане на кодове. Конструирани
са всички самодуални [24, 12, 8] кодове над поле с 4 елемента, притежаващи
пермутационен автоморфизъм от ред 3. Получихме, че съществуват най-много
8 такива кодове с точност до еквивалентност.
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