CHARACTERISATION OF A FOUR-DIMENSIONAL RIEMANNIAN MANIFOLDS BY CHARACTERISTIC COEFFICIENTS OF JACOBI OPERATOR

Veselin Totev Videv

Abstract

In the present paper we investigate 4-dimensional Riemannian manifolds (M, g) for which two of the characteristic coefficients of the Jacobi operator R_{X} are a pointwise constants at any point $p \in M$.

Let (M, g) be a four-dimensional Riemannian manifold with a metric tensor g and ∇ let be an uniquely Levi-Civita connection induced by a metric g. Let R be a curvature tensor of the manifold defined as bilinear mapping by the equality $R(x, y)=\left[\nabla_{X}, \nabla_{Y}\right]-$ $\nabla_{[x, y]}$, where x, y are arbitrary tangent vectors in the tangent space M_{p} at a point $p \in M$, and [.,.] are Lie brackets. The Jacobi operator R_{X} is a symmetric linear operator of the tangent space M_{p} at a point $p \in M$ defined by the equality $R_{X}(u)=R(u, X, X)$ [5]. For the matrix of R_{X} with respect to an arbitrary orthonormal Lorentzian basis in M_{p} of type (1) we have the entries $a_{i j}=R\left(e_{i}, X, X, e_{j}\right) ; i, j=1,2, \ldots, n$. Since X is an eigenvector of R_{X} with a corresponding eigenvalue 0 , then the characteristic equation $\operatorname{det}\left(a_{i j}-c g_{i j}\right)=0$ of R_{X} can be represented by $\sum_{k=0}^{n}(-1)^{k} J_{k} c^{n-k}$, where $J_{0}=1$, $J_{n}=0 ; J_{i}=J_{i}(p ; X), i=1,2, \ldots, n$. Because of $J_{1}(p ; X)=\operatorname{trace} R_{X}=\rho(X)$, where ρ is the Ricci tensor on M, then trace R_{X} is a pointwise constant on the manifold (by $\operatorname{dim} M \geq 3$) if and only if (M, g) is an Einstein Lorentzian manifold. The problem about a global constancy of the eigenvalues of RX was created in Riemanian geometry from Bob Osserman [5] and the manifolds satisfying this hypothesis was called globally Oserman manifolds [6] and it was proved from Chi [1] that (M, g) is a globally Osserman manifolds if and only if (M, g) locally is a rank one symmetric space or (M, g) is flat when $\operatorname{dim} M=4$ or m is odd or if $m \equiv 2(\bmod 4)$. Manifolds for which eigenvalues of R_{X} are pointwise constants on M are called point-wise Oserman manifolds and was investigated in [6]. In the case $\operatorname{dim} M=4$ the Jacobi operator R_{X} has the following characteristic equation: $c\left(c^{3}-J_{1} c^{2}+J_{2} c-J_{3}\right)=0$. Let p be a fixed point of M and let $e_{1}, e_{2}, e_{3}, e_{4}$ be an orthonormal basis in the tangent space M_{p}. Using the characteristic 160
equation of the Jacobi operator $R_{a e_{1}+b e_{2}}$ for any real numbers $a, b\left(a^{2}+b^{2}=1\right)$ we obtain

$$
\begin{align*}
& J_{2}\left(p ; a e_{1}+b e_{2}\right)=a^{4}\left(K_{13} K_{14}-R_{3114}^{2}\right)+b^{4}\left(K_{23} K_{24}-R_{3224}^{2}\right) \\
& \left.+2 a^{3} b\left(K_{13} R_{1442}+K_{14}\right) R_{1332}-\left(R_{3124}+R_{3214}\right)_{3114}\right) \\
& +a^{2} b^{2}\left(K_{13} K_{24}+4 R_{1332} R_{1442}+K_{14} K_{23}-\left(R_{3124}+R_{3214}\right)^{2}-2 R_{3114} R_{3224}\right) \\
& +2 a b^{3}\left(K_{24} R_{1332}+K_{23} R_{1442}-\left(R_{3124}+R_{3214}\right) R_{3224}\right) \tag{1}\\
& +2 a b\left(K_{12}\left(R_{1332}+R_{1442}\right)+R_{2113} R_{1223}+R_{2114} R_{1224}\right) \\
& +a^{2}\left(K_{12} K_{13}+K_{12} K_{14}-R_{2113}^{2}-R_{2114}^{2}\right) \\
& +b^{2}\left(K_{12} K_{23}+K_{12} K_{24}-R_{1223}^{2}-R_{1224}^{2}\right), \\
& J_{3}\left(p ; a e_{1}+b e_{2}\right)= \\
& a^{4}\left(2 R_{2113} R_{3114} R_{2114}+K_{12} K_{13} K_{14}-K_{12} R_{3114}^{2}-K_{13} R_{2114}^{2}-K_{4} R_{2113}^{2}\right) \\
& +2 a 3^{b}\left(R_{2114} R_{2113}\left(R_{3124}+R_{3214}\right)-R_{2113} R_{3114} R_{1224}-R_{1223} R_{3114} R_{2114}\right. \\
& +K_{12} K_{14} R_{1332}+K_{12} K_{13} R_{1442}-K_{12}\left(R_{3124}+R_{3214}\right) R_{3114} \\
& \left.-R_{1332} R_{2114}^{2}+K_{13} R_{2114} R_{1224}+K_{14} R_{2113} R_{1223}-R_{1442} R_{2113}^{2}\right) \\
& +a^{2} b^{2}\left(K_{12} K_{13} K_{24}+4 K_{12} R_{1442}-2 R_{1224} R_{2113}\left(R_{3124}+R_{3214}\right)\right. \\
& +K_{12} K_{14} K_{24}+2 R_{1223} R_{3224} R_{2114}-2 R_{1223} R_{3114} R_{1224} \\
& -2\left(R_{3124}+R_{3214}\right) R_{1223} R_{2114}-K_{23} R_{2114}^{2}+4 R_{1332} R_{2114} R_{1224}-K_{13} R_{1224}^{2} \\
& -K_{12}\left(R_{3124}+R_{3214}\right)^{2}-2 K_{12} R_{3114} R_{3224}-K_{24} R_{2113}^{2}+4 R_{1442} R_{2113} R_{1223} \\
& \left.-K_{14} R_{1223}^{2}\right)+2 a b^{3}\left(K_{12} K_{23} R_{1442}+K_{12} K_{24} R_{1332}-R_{2113} R_{3224} R_{1224}\right. \\
& -R_{1224} R_{1223}\left(R_{3124}+R_{3214}\right)-R_{2114} R_{1223}\left(R_{3124}+R_{3214}\right) \\
& +K_{23} R_{2114} R_{1224}-R_{1224}^{2} R_{1332}-K_{12} R_{3224}\left(R_{3124}+R_{3214}\right) \\
& \left.+K_{24} R_{1223} R_{2113}-R_{1223}^{2} R_{1442}\right) \\
& +b^{4}\left(K_{12} K_{23} K_{24}-2 R_{1223} R_{3224} R_{1224}-K_{12} R_{3224}^{2}-K_{23} R_{1224}^{2}-K_{24} R_{1223}^{2}\right) .
\end{align*}
$$

Suppose $e_{1}, e_{2}, e_{3}, e_{4}$ are eigenvectors of the Jacobi operator $R_{e_{1}}$. Then we have equalities $R_{2113}=R_{2114}=R_{3114}=0$. From the condition $J_{2}\left(p ; a e_{1}+b e_{2}\right)=J_{2}\left(p ;-a e_{1}+b e_{2}\right)$ and (1) we obtain the system

$$
\begin{align*}
& \left(K_{12}+K_{13}\right) R_{1442}+\left(K_{12}+K_{14}\right) R_{1332}=0, \\
& \left(K_{12}+K_{13}\right) R_{1443}+\left(K_{13}+K_{14}\right) R_{1223}=0, \tag{2}\\
& \left(K_{12}+K_{14}\right) R_{1334}+\left(K_{13}+K_{14}\right) R_{1224}=0 .
\end{align*}
$$

Also from the condition $J_{3}\left(p ; a e_{1}+b e_{3}\right)=J_{3}\left(p ;-a e_{1}+b e_{3}\right)$ and according to (1) we have

$$
\begin{gathered}
K_{12}\left(K_{13} R_{1442}+K_{14} R_{1332}\right)=0, \quad K_{13}\left(K_{14} R_{1223}+K_{12} R_{1443}\right)=0 \\
K_{14}\left(K_{12} R_{1334}+K_{13} R_{1224}\right)=0
\end{gathered}
$$

Suppose $J_{3}\left(p ; e_{1}\right)=K_{12} K_{13} K_{14}$ is different from zero. Then all eigenvalues K_{12}, K_{13},
K_{14} of $R_{e_{1}}$ are different from zero. From the last system we receive:

$$
\begin{aligned}
& K_{12} R_{1334}+K_{13} R_{1224}=0, \\
& K_{12} R_{1443}+K_{14} R_{1223}=0, \\
& K_{13} R_{1442}+K_{14} R_{1332}=0 .
\end{aligned}
$$

Now from (2) and (3) we obtain following two systems:

$$
\begin{gather*}
\left(K_{12}-K_{13}\right) R_{1334}=0, \quad\left(K_{13}-K_{14}\right) R_{1442}=0, \quad\left(K_{12}-K_{14}\right) R_{1223}=0 \tag{4}\\
R_{1442}+R_{1332}=0, \quad R_{1443}+R_{1223=0}, \quad R_{1334}+R_{1224}=0 \tag{5}
\end{gather*}
$$

From the eigenvalues of the Jacobi operator $R_{e_{1}}$ we have the following possibilities:

$$
\begin{align*}
& K_{12}=K_{13}=K_{14} \tag{6}\\
& K_{12} \neq K_{13} \neq K_{14} \tag{7}
\end{align*}
$$

Two of eigenvalues of $R_{e_{1}}$ are equal for example $K_{12}=K_{13}$

$$
\text { and also } K_{12}=K_{13} \neq K_{14} .
$$

Suppose (6) holds. Then from arbitrarity of e_{1} it follows that (M, g) is a space of constant sectional curvature K_{12} at a fixed point $p \in M$, i.e. $R(x, y, z)=\mu(g(y, z) x-$ $g() y)$, for any $x, y, z \in M_{p}$.

Suppose (7) is hold. Then from the system(4) we obtain

$$
\begin{equation*}
R_{1 j j k}=0, \quad j \neq k \quad(j, k=1,2,3,4) \tag{9}
\end{equation*}
$$

and then from the equalities (3), (4) and (10) it follows that

$$
\begin{align*}
& J_{2}\left(p ; e_{1}\right)=K_{12} K_{13}+K_{12} K_{14}+K_{13} K_{14}, \\
& J_{3}\left(p ; e_{1}\right)=K_{12} K_{13} K_{14} ; \\
& J_{2}\left(p ; e_{2}\right)=K_{12} K_{23}+K_{12} K_{24}+K_{23} K_{24}-R_{3224}^{2}, \\
& J_{3}\left(p ; e_{2}\right)=K_{12} K_{23} K_{24}-K_{12} R_{3224}^{2} ; \\
& J_{2}\left(p ; e_{3}\right)=K_{13} K_{23}+K_{13} K_{34}+K_{23} K_{34}-R_{2334}^{2}, \tag{10}\\
& J_{3}\left(p ; e_{3}\right)=K_{13} K_{23} K_{34}-K_{13} R_{2334}^{2} ; \\
& J_{2}\left(p ; e_{4}\right)=K_{14} K_{24}+K_{14} K_{34}+K_{24} K_{34}-R_{2443}^{2}, \\
& J_{3}\left(p ; e_{4}\right)=K_{12} K_{24} K_{34}-K_{14}^{R} 2_{2443} .
\end{align*}
$$

From the condition $J_{3}\left(p ; e_{1}\right)=J_{3}\left(p ; e_{2}\right)$ we have $K_{12} K_{13} K_{14}=K_{12}\left(K_{23} K_{24}-R_{2334}^{2}\right)$ and since $K_{12} \neq 0$, then from the last equality we have:

$$
\begin{equation*}
K_{13} K_{14}=K_{23} K_{24}-R_{3224}^{2} \tag{11}
\end{equation*}
$$

From the condition $J_{2}\left(p ; e_{1}\right)=J_{2}\left(p ; e_{2}\right)$ we receive $K_{12} K_{13}+K_{12} K_{14}+K_{13} K_{14}=$ $K_{12} K_{23}+K_{12} K_{24}+K_{23} K_{24}-R_{3224}^{2}$. Now from the last equality and (11) it follows that $K_{12}\left(K_{13}+K_{14}\right)=K_{12}\left(K_{23}+K_{24}\right)$ and since $K_{12} \neq 0$ then we obtain $K_{13}+K_{14}=K_{23}+K_{24}$. Further using the conditions $J_{2}\left(p ; e_{1}\right)=J_{2}\left(p ; e_{3}\right)=J_{2}\left(p ; e_{4}\right)$, $J_{3}\left(p ; e_{1}\right)=J_{3}\left(p ; e_{3}\right)=J_{3}\left(p ; e_{4}\right)$ and (10) we have $K_{12}+K_{14}=K_{23}+K_{34}, K_{12}+K_{13}=$ $K_{24}+K_{34}$. Thus the pointwise conditions of the characteristic coefficients $J_{2}\left(p ; e_{1}\right)$ and 162
$J_{3}\left(p ; e_{1}\right)$ give us the system

$$
\begin{align*}
& K_{12}+K_{13}=K_{24}+K_{34}, \\
& K_{12}+K_{14}=K_{23}+K_{34}, \tag{12}\\
& K_{13}+K_{14}=K_{23}+K_{24},
\end{align*}
$$

and from this system we obtain directly

$$
\begin{equation*}
K_{12}=K_{34}, \quad K_{13}=K_{24}, \quad K_{14}=K_{23} . \tag{13}
\end{equation*}
$$

From here and from the condition

$$
J_{2}\left(p ; e_{1}\right)=J_{2}\left(p ; e_{2}\right)=J_{2}\left(p ; e_{3}\right)=J_{2}\left(p ; e_{4}\right),
$$

it follows that

$$
\begin{equation*}
R_{i j j k}=0, \quad i \neq j \neq k, \quad(i, j, k=1,2,3,4) \tag{14}
\end{equation*}
$$

The equalities (13) and (14) means that eigenvalues of the Jacobi operator $R_{e_{1}}$ formed a Singer-Thorpe basis in the tangent space M_{p}. Following [3] we use the standard denoting: $K_{12}=K_{34}=1, K_{13}=K_{24}=2, K_{14}=K_{23}=3, R_{1234}=1, R_{1342}=2, R_{1423}=3$. Then from the characteristic equation of $R_{a e_{1}+b e_{2}}\left(a^{2}+b^{2}=1 ; a, b \in R\right)$ we have:

$$
\left(c-\lambda_{1}\right)\left(c^{2}-\left(\lambda_{2}+\lambda_{3}\right) c+\lambda_{2} \lambda_{3}+a^{2} b^{2}\left(\left(\lambda_{2}-\lambda_{3}\right)^{2}+\left(\mu_{2}-\mu_{3}\right)^{2}\right)\right)=0
$$

and from here it follows that

$$
J_{2}\left(p ; a e_{1}+b e_{2}\right)=\lambda_{1}\left(\lambda_{2}+\lambda_{3}\right)+\lambda_{2} \lambda_{3}+a^{2} b^{2}\left(\left(\lambda_{2}-\lambda_{3}\right)^{2}+\left(\mu_{2}-\mu_{3}\right)^{2}\right) .
$$

If the characteristic polynomial of the Jacobi operator $R_{e_{1}}$ is a point-wise constant, then we obtain the equality $\lambda_{2}-\lambda_{3}=+\left(\mu_{2}-\mu_{3}\right)$. Analogously from the pointwise conditions of the characteristic coefficients $J_{2}\left(p ; a e_{1}+b e_{3}\right)$ and $J_{2}\left(p ; a e_{1}+b e_{4}\right)$ we obtain two equalities $\lambda_{3}-\lambda_{1}=+\left(\mu_{3}-\mu_{1}\right)$ and $\lambda_{1}-\lambda_{2}=+\left(\mu_{1}-\mu_{2}\right)$. Hence we have the system

$$
\lambda_{2}-\lambda_{3}= \pm\left(\mu_{2}-\mu_{3}\right), \quad \lambda_{3}-\lambda_{1}= \pm\left(\mu_{3}-\mu_{1}\right), \quad \lambda_{1}-\lambda_{2}= \pm\left(\mu_{1}-\mu_{2}\right)
$$

and according to the results in [3] we obtain that (M, g) is a pointwise constant at the fixed point p of M.

If we have (8), then using (7) we receive:

$$
\begin{equation*}
R_{1442}=R_{1443}=R_{1223}=R_{1332}=0 \tag{15}
\end{equation*}
$$

and the characteristic equation of the Jacobi operator $R_{a e_{1}+b e_{2}}$ with respect to the orthonormal basis $a e_{1}+b e_{2},-b e_{1}+a e_{2}, e_{3}, e_{4}$, has the form

$$
\left|\begin{array}{ccc}
K_{12}-c & 0 & b R_{1224} \\
0 & a^{2} K_{13}+b^{2} K_{23}-c & b^{2} R_{3224}+a b\left(R_{3124}+R_{3214}\right) \\
b R_{1224} & b^{2} R_{3224}+a b\left(R_{3124}+R_{3214}\right) & a^{2} K_{14}+b^{2} K_{24}-c
\end{array}\right|=0 .
$$

From here it follows that

$$
\begin{gathered}
J_{3}\left(p ; a e_{1}+b e_{3}\right)=K_{12}\left(\left(a^{2} K_{13}+b^{2} K_{23}\right)\left(a^{2} K_{14}+b^{2} K_{24}\right)-\left(b^{2} R_{3224}+a b\left(R_{3124}+R_{3214}\right)^{2}\right)\right) \\
-b^{2} R_{1224}^{2}\left(a^{2} K_{13}+b^{2} K_{23}\right)
\end{gathered}
$$

According to our assumption this coefficient to be a pointwise constant we obtain $K_{23} R_{1334}$ $=K_{23} R_{1224}=0$. Then we have $R_{1334}=R_{1224}=0$ or $K_{23}=0$. In the first case we have
the equalities (10)-(15) again and from these equalities it follows that (M, g) is a space of constant sectional curvature at a fixed point p.

In the case $K_{23}=0$ from the pointwise condition $J_{2}\left(p ; e_{1}\right)=J_{2}\left(p ; e_{2}\right)$ we obtain that $K_{12}\left(K_{13}+K_{14}\right)-K_{13} K_{14}=K_{12} K_{24}$ and hence $K_{13} K_{14}=0$. Then $J_{3}\left(p ; e_{1}\right)=0$ which contradict with our assumption $J_{3}\left(p ; e_{1}\right)=K_{12} K_{13} K_{14} \neq 0$.

Suppose $J_{3}\left(p ; e_{1}\right)=K_{12} K_{13} K_{14}=0$. Now we have the following logistic possibilities:
a) $K_{12}=K_{13}=K_{14}=0-$ then (M, g) is flat at a fixed point p.
b) $K_{12} \neq 0, K_{13}=K_{14}=0$. Then $K_{12}=\operatorname{trace} R_{e_{1}}=\frac{\tau}{4}$, where is a scalar curvature on the manifold and hence the eigenvalues of the Jacobi $R_{e_{1}}$ are constants.
c) Let $K 12 \neq 0, K_{13} \neq 0, K_{14} \neq 0$. Then from (10) it follows that

$$
K_{12}\left(K_{23} K_{24}-R_{3224}^{2}\right)=K_{12}\left(K_{23} K_{24}-R_{2334}^{2}\right)=K_{12} K_{24} K_{34}=0
$$

and from here we have

$$
\begin{equation*}
K_{23} K_{24}-R_{3224}^{2}=K_{23} K_{24}-R_{2334}^{2}=K_{24} K_{34}=0 \tag{16}
\end{equation*}
$$

and (10) again. Hence

$$
\begin{equation*}
J_{2}=K_{12} K_{13}=K_{12}\left(K_{23}+K_{24}\right)=K_{13}\left(K_{23}+K_{34}\right)=-R_{2443}^{2} \tag{17}
\end{equation*}
$$

From here we receive:

$$
\begin{align*}
& K_{12}=K_{23}+K_{24}, \\
& K_{13}=K_{23}+K_{34} . \tag{18}
\end{align*}
$$

If $K_{23} K_{24}=0$, then at least one of the sectional curvature K_{23}, K_{24} is equal to zero. If $K_{23}=K_{24}=0$, then all eigenvalues of the Jacobi operator $R_{e_{1}}$ are equal at a fixed point p.

Suppose one of the sectional curvature K_{23}, K_{24} is different from zero, say K_{24}, then from (18) we have

$$
\begin{equation*}
K_{12}=K_{23}, \quad K_{13}=K_{23}+K_{24} \tag{19}
\end{equation*}
$$

and from here and (17) it follows that

$$
R_{2334}^{2}=-K_{12} K_{23}
$$

From the last equality, (17) and (19) we obtain:

$$
R_{2334}^{2}=K_{23} K_{24}=K_{13}\left(K_{12}-K_{23}\right)=K_{12} K_{13}-K_{23}^{2}=-R_{2443}^{2}-K_{12}^{2}
$$

Then $R_{2334}^{2}+R_{2443}^{2}+K_{12}^{2}=0$ and from here it follows that $K_{12}=0$ which contradict with a hypothesis $K_{12} \neq 0$. From the result above we can formulate

Theorem 1. Let (M, g) be a 4-dimensional Riemannian manifold such that the characteristic coefficients $J_{2}(p ; x)$ and $J_{3}(p ; x)$ of the Jacobi operator R_{X} are a pointwise constants for any unit tangent vector $X \in S_{p} M$ and at any fixed point $p \in M$. If $e_{1}, e_{2}, e_{3}, e_{4}$ is orthonormal basis in the tangent space M_{p} we have one of the following possibilities:
a) $e_{1}, e_{2}, e_{3}, e_{4}$ is a Singer Thorpe basis such that $\lambda_{1}=\lambda_{2}=\lambda_{3}=0$,
b) $e_{1}, e_{2}, e_{3}, e_{4}$ is a Singer Thorpe basis such that $\lambda_{1}=\lambda_{2}=\lambda_{3} \neq 0$,
c) $e_{1}, e_{2}, e_{3}, e_{4}$ is an arbitrary orthonormal basis such that $K_{12}=\frac{\tau}{4}, K_{13}=K_{14}=0$,
d) $e_{1}, e_{2}, e_{3}, e_{4}$ is a Singer Thorpe basis such that

$$
\lambda_{2}-\lambda_{3}=+\left(\mu_{2}-\mu_{3}\right), \lambda_{3}-\lambda_{1}=+\left(\mu_{3}-\mu_{1}\right), \lambda_{1}-\lambda_{2}=+\left(\mu_{1}-\mu_{2}\right)
$$

and at least two of the invariants $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are different.
Theorem 2. Let (M, g) be a four-dimensional Riemannian manifold such that the characteristic coefficients $J_{2}(p ; x)$ and $J_{3}(p ; x)$ of the Jacobi operator R_{X} are a pointwise constants for each unit tangent vector $X \in M_{p}$ and at any fixed point $p \in M$. Then (M, g) locally is almost every where one of the following types of the manifolds:
a) a flat manifold,
b) a space of constant sectional curvature,
c) a pointwise Osserman manifold.

Proof. Let the set of all points on M is such that the number of eigenavlues of the Jacobi operator $R_{e_{1}}$ is a locally constant. Because of $R_{e_{1}}$ is a symmetric linear operator, then this set is almost everywhere open and dense on M [2]. Because of $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are eigenvalues of the Jacobi operator $R_{e_{1}}$, then from Theorem 1 we have one of the possibilities a)-d). If we have a) and b), then (M, g) is respectively a flat manifold and a space of constant sectional curvature on Ω. If c) holds, then (M, g) locally is a globally Osserman manifold which contradict the result of Chi [1] that in this case the eigenvalues of Jacobi operator R_{X} are equal to 1 and $\frac{1}{4}$. Finally if d) holds, then (M, g) is a pointwise Osserman manifold on Ω.

In our paper [7] we have obtained the following results:
Theorem 3. Let (M, g) be a 4-dimensional Riemannian manifold such that the characteristic coefficients $J_{1}(p ; X)$ and $J_{2}(p, X)$ of the Jacobi operator R_{X} are a point-wise constants. Then all eigen values R_{X} are also point-wise constants and the same is also true for the characteristic coefficien $J_{2}(p ; X)$.

Theorem 4. Let (M, g) be a 4-dimensional Riemannian manifold such that the characteristic coefficients $J_{1}(p ; X)$ and $J_{3}(p, X) \neq 0$ of the Jacobi operator R_{X} are a pointwise constants. Then all eigen values R_{X} are also point-wise constants and the same is also true for the characteristic coefficien $J_{2}(p ; X)$.

Finally we can formulate the main result:
Theorem 5. Let (M, g) be a 4-dimensional Riemannian manifold such that two of the characteristic coefficients of a non-degenerated Jacobi operator R_{X} are a point-wise constants for any unit tangent vector $X \in M_{p}$ and at any fixed point $p \in M$. Then (M, g) locally is one of the following types of manifolds:
a) a flat manifold,
b) a space of constant sectional curvature,
c) a pointwise Osserman manifold.

REFERENCES

[1] Quo-Shin-Chi. Curvature characterisation and classification of the rank-one symmetric spaces. Pacific J. Math. 150 (1991), 31-42.
[2] T. Kato. Perturbation theory for linear operators. Berlin, Springer-Verlag, 1996.
[3] I. Singer, J. Thorpe. The curvature of 4-dimensional Einstein spaces. Global Analysis. Papers in Honour of K. Kodaira. University of Tokio press, Princeton University Press, 1969.
[4] Gr. Stanilov. On the geometry of the Jacobi operators on 4-dimensional Riemannian manifolds. Tensor, N. S. 51, (1992), 9-15.
[5] R. Osserman. Curvature in the eighties. Jour. Amer. Math. Monthly 97 (1990), 731-756.
[6] P. Gilkey, A. Swann, L. van Hecke. Isoparametric geodesic spheres and a conjecture of Osserman regarding the Jacobi Operator. Jour Quart. Math. 46 (1995), 299-320.

Veselin Videv
Mathematics and Physics Department
Thracian University
6000 Stara Zagora
Bulgaria

ХАРАКТЕРИЗИРАНЕ НА ЧЕТИРИМЕРНИ РИМАНОВИ
 МНОГООБРАЗИЯ ЧРЕЗ ХАРАКТЕРИСТИЧНИТЕ КОЕФИЦИЕНТИ НА ОПЕРАТОРА НА ЯКОБИ

Веселин Тотев Видев

Abstract

В представената статия изследваме чеетримерните Риманови многообразия (M, g) със свойството два от характеристичните коефициенти на оператора на Якоби R_{X} да са точково постоянни в произволна точка от многообразието.

