МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 1999 MATHEMATICS AND EDUCATION IN MATHEMATICS, 1999 Proceedings of Twenty Eighth Spring Conference of the Union of Bulgarian Mathematicians Montana, April 5–8, 1999

CHARACTERISATION OF A FOUR-DIMENSIONAL RIEMANNIAN MANIFOLDS BY CHARACTERISTIC COEFFICIENTS OF JACOBI OPERATOR

Veselin Totev Videv

In the present paper we investigate 4-dimensional Riemannian manifolds (M, g) for which two of the characteristic coefficients of the Jacobi operator R_X are a pointwise constants at any point $p \in M$.

Let (M, g) be a four-dimensional Riemannian manifold with a metric tensor g and ∇ let be an uniquely Levi-Civita connection induced by a metric g. Let R be a curvature tensor of the manifold defined as bilinear mapping by the equality $R(x,y) = [\nabla_X, \nabla_Y]$ $\nabla_{[x,y]}$, where x, y are arbitrary tangent vectors in the tangent space M_p at a point $p \in M$, and [.,.] are Lie brackets. The Jacobi operator R_X is a symmetric linear operator of the tangent space M_p at a point $p \in M$ defined by the equality $R_X(u) = R(u, X, X)$ [5]. For the matrix of R_X with respect to an arbitrary orthonormal Lorentzian basis in M_p of type (1) we have the entries $a_{ij} = R(e_i, X, X, e_j); i, j = 1, 2, \ldots, n$. Since X is an eigenvector of R_X with a corresponding eigenvalue 0, then the characteristic equation det $(a_{ij} - cg_{ij}) = 0$ of R_X can be represented by $\sum_{k=0}^{n} (-1)^k J_k c^{n-k}$, where $J_0 = 1$, $J_n = 0$; $J_i = J_i(p; X)$, i = 1, 2, ..., n. Because of $J_1(p; X) = \text{trace } R_X = \rho(X)$, where ρ is the Ricci tensor on M, then trace R_X is a pointwise constant on the manifold (by $\dim M \geq 3$) if and only if (M, g) is an Einstein Lorentzian manifold. The problem about a global constancy of the eigenvalues of RX was created in Riemanian geometry from Bob Osserman [5] and the manifolds satisfying this hypothesis was called *qlobally* Oserman manifolds [6] and it was proved from Chi [1] that (M, q) is a globally Osserman manifolds if and only if (M,g) locally is a rank one symmetric space or (M,g) is flat when dim M = 4 or m is odd or if $m \equiv 2 \pmod{4}$. Manifolds for which eigenvalues of R_X are pointwise constants on M are called *point-wise Oserman manifolds* and was investigated in [6]. In the case dim M = 4 the Jacobi operator R_X has the following characteristic equation: $c(c^3 - J_1c^2 + J_2c - J_3) = 0$. Let p be a fixed point of M and let e_1, e_2, e_3, e_4 be an orthonormal basis in the tangent space M_p . Using the characteristic 160

equation of the Jacobi operator $R_{ae_1+be_2}$ for any real numbers $a, b (a^2+b^2=1)$ we obtain $J_2(p; ae_1+be_2) = a^4(K_{13}K_{14}-R_{2114}^2) + b^4(K_{22}K_{24}-R_{2224}^2)$

$$J_{2}(p; ae_{1} + be_{2}) = a^{*}(K_{13}K_{14} - R_{3114}^{2}) + b^{*}(K_{23}K_{24} - R_{3224}^{2}) + 2a^{3}b(K_{13}R_{1442} + K_{14})R_{1332} - (R_{3124} + R_{3214})_{3114}) + a^{2}b^{2}(K_{13}K_{24} + 4R_{1332}R_{1442} + K_{14}K_{23} - (R_{3124} + R_{3214})^{2} - 2R_{3114}R_{3224}) + a^{2}b^{3}(K_{22} - R_{22}) + b^{2}(R_{22} - R_{22}) +$$

(1)
$$+2ab^{3}(K_{24}R_{1332} + K_{23}R_{1442} - (R_{3124} + R_{3214})R_{3224}) +2ab(K_{12}(R_{1332} + R_{1442}) + R_{2113}R_{1223} + R_{2114}R_{1224}) +a^{2}(K_{12}K_{13} + K_{12}K_{14} - R_{2113}^{2} - R_{2114}^{2}) +b^{2}(K_{12}K_{23} + K_{12}K_{24} - R_{1223}^{2} - R_{1224}^{2}),$$

$$J_3(p;ae_1+be_2) =$$

$$\begin{aligned} &a^4(2R_{2113}R_{3114}R_{2114} + K_{12}K_{13}K_{14} - K_{12}R_{3114}^2 - K_{13}R_{2114}^2 - K_4R_{2113}^2) \\ &+ 2a3^b(R_{2114}R_{2113}(R_{3124} + R_{3214}) - R_{2113}R_{3114}R_{1224} - R_{1223}R_{3114}R_{2114} \\ &+ K_{12}K_{14}R_{1332} + K_{12}K_{13}R_{1442} - K_{12}(R_{3124} + R_{3214})R_{3114} \\ &- R_{1332}R_{2114}^2 + K_{13}R_{2114}R_{1224} + K_{14}R_{2113}R_{1223} - R_{1442}R_{2113}^2) \\ &+ a^2b^2(K_{12}K_{13}K_{24} + 4K_{12}R_{1442} - 2R_{1223}R_{3114}R_{1224} \\ &- 2(R_{3124} + R_{3214})R_{1223}R_{2114} - 2R_{1223}R_{3114}R_{1224} \\ &- 2(R_{3124} + R_{3214})R_{1223}R_{2114} - K_{23}R_{2114}^2 + 4R_{1332}R_{2114}R_{1224} - K_{13}R_{1224}^2 \\ &- K_{12}(R_{3124} + R_{3214})^2 - 2K_{12}R_{3114}R_{3224} - K_{24}R_{2113}^2 + 4R_{1442}R_{2113}R_{1223} \\ &- K_{14}R_{1223}^2) + 2ab^3(K_{12}K_{23}R_{1442} + K_{12}K_{24}R_{1332} - R_{2113}R_{3224}R_{1224} \\ &- R_{1224}R_{1223}(R_{3124} + R_{3214}) - R_{2114}R_{1223}(R_{3124} + R_{3214}) \\ &+ K_{23}R_{2114}R_{1224} - R_{1224}^2R_{1332} - K_{12}R_{3224}(R_{3124} + R_{3214}) \\ &+ K_{23}R_{2114}R_{1224} - R_{1223}^2R_{1442}) \end{aligned}$$

 $+b^4(K_{12}K_{23}K_{24} - 2R_{1223}R_{3224}R_{1224} - K_{12}R_{3224}^2 - K_{23}R_{1224}^2 - K_{24}R_{1223}^2).$ Suppose e_1, e_2, e_3, e_4 are eigenvectors of the Jacobi operator R_{e_1} . Then we have equalities $R_{2113} = R_{2114} = R_{3114} = 0$. From the condition $J_2(p; ae_1 + be_2) = J_2(p; -ae_1 + be_2)$ and (1) we obtain the system

(2)
$$(K_{12} + K_{13})R_{1442} + (K_{12} + K_{14})R_{1332} = 0,$$
$$(K_{12} + K_{13})R_{1443} + (K_{13} + K_{14})R_{1223} = 0,$$

 $(K_{12} + K_{14})R_{1334} + (K_{13} + K_{14})R_{1224} = 0.$

Also from the condition $J_3(p; ae_1 + be_3) = J_3(p; -ae_1 + be_3)$ and according to (1) we have $K_{12}(K_{13}R_{1442} + K_{14}R_{1332}) = 0, \qquad K_{13}(K_{14}R_{1223} + K_{12}R_{1443}) = 0,$

$$K_{14}(K_{12}R_{1334} + K_{13}R_{1224}) = 0.$$

se $J_2(n;e_1) = K_{12}K_{12}K_{14}$ is different from zero. Then all eigenvalues K_{12} , K_{13}

Suppose $J_3(p; e_1) = K_{12}K_{13}K_{14}$ is different from zero. Then all eigenvalues K_{12} , K_{13} , 161 K_{14} of R_{e_1} are different from zero. From the last system we receive:

$$K_{12}R_{1334} + K_{13}R_{1224} = 0,$$

(3)
$$K_{12}R_{1443} + K_{14}R_{1223} = 0,$$

$$K_{13}R_{1442} + K_{14}R_{1332} = 0$$

Now from (2) and (3) we obtain following two systems:

(4)
$$(K_{12} - K_{13})R_{1334} = 0, \quad (K_{13} - K_{14})R_{1442} = 0, \quad (K_{12} - K_{14})R_{1223} = 0;$$

(5)
$$R_{1442} + R_{1332} = 0, \quad R_{1443} + R_{1223=0}, \quad R_{1334} + R_{1224} = 0$$

From the eigenvalues of the Jacobi operator R_{e_1} we have the following possibilities:

(6)
$$K_{12} = K_{13} = K_{14}$$

(7)
$$K_{12} \neq K_{13} \neq K_{14}$$

(8) Two of eigenvalues of
$$R_{e_1}$$
 are equal for example $K_{12} = K_{13}$
and also $K_{12} = K_{13} \neq K_{14}$.

Suppose (6) holds. Then from arbitrarity of e_1 it follows that (M,g) is a space of constant sectional curvature K_{12} at a fixed point $p \in M$, i.e. $R(x, y, z) = \mu(g(y, z)x - g(y))$, for any $x, y, z \in M_p$.

Suppose (7) is hold. Then from the system(4) we obtain

(9)
$$R_{1jjk} = 0, \qquad j \neq k \quad (j, k = 1, 2, 3, 4),$$

and then from the equalities (3), (4) and (10) it follows that $J_2(p; e_1) = K_{12}K_{13} + K_{12}K_{14} + K_{13}K_{14},$ $J_3(p; e_1) = K_{12}K_{13}K_{14};$ $I_2(p; e_2) = K_{12}K_{22} + K_{12}K_{24} + K_{22}K_{24} - R^2_2$

(10)

$$J_{2}(p; e_{2}) = K_{12}K_{23} + K_{12}K_{24} + K_{23}K_{24} - R_{\overline{3}224},$$

$$J_{3}(p; e_{2}) = K_{12}K_{23}K_{24} - K_{12}R_{3224}^{2};$$

$$J_{2}(p; e_{3}) = K_{13}K_{23} + K_{13}K_{34} + K_{23}K_{34} - R_{2334}^{2},$$

$$J_{3}(p; e_{3}) = K_{13}K_{23}K_{34} - K_{13}R_{2334}^{2};$$

$$J_{2}(p; e_{4}) = K_{14}K_{24} + K_{14}K_{34} + K_{24}K_{34} - R_{2443}^{2},$$

$$J_{3}(p; e_{4}) = K_{12}K_{24}K_{34} - K_{14}^{R}2_{2443}.$$

From the condition $J_3(p; e_1) = J_3(p; e_2)$ we have $K_{12}K_{13}K_{14} = K_{12}(K_{23}K_{24} - R_{2334}^2)$ and since $K_{12} \neq 0$, then from the last equality we have:

(11)
$$K_{13}K_{14} = K_{23}K_{24} - R_{3224}^2$$

From the condition $J_2(p; e_1) = J_2(p; e_2)$ we receive $K_{12}K_{13} + K_{12}K_{14} + K_{13}K_{14} = K_{12}K_{23} + K_{12}K_{24} + K_{23}K_{24} - R_{3224}^2$. Now from the last equality and (11) it follows that $K_{12}(K_{13} + K_{14}) = K_{12}(K_{23} + K_{24})$ and since $K_{12} \neq 0$ then we obtain $K_{13} + K_{14} = K_{23} + K_{24}$. Further using the conditions $J_2(p; e_1) = J_2(p; e_3) = J_2(p; e_4)$, $J_3(p; e_1) = J_3(p; e_3) = J_3(p; e_4)$ and (10) we have $K_{12} + K_{14} = K_{23} + K_{34}$, $K_{12} + K_{13} = K_{24} + K_{34}$. Thus the pointwise conditions of the characteristic coefficients $J_2(p; e_1)$ and 162

 $J_3(p;e_1)$ give us the system

(12)
$$K_{12} + K_{13} = K_{24} + K_{34},$$
$$K_{12} + K_{14} = K_{23} + K_{34},$$
$$K_{13} + K_{14} = K_{23} + K_{24},$$

and from this system we obtain directly

(13)
$$K_{12} = K_{34}, \quad K_{13} = K_{24}, \quad K_{14} = K_{23}.$$

From here and from the condition

$$J_2(p;e_1) = J_2(p;e_2) = J_2(p;e_3) = J_2(p;e_4)$$

it follows that

(14)
$$R_{ijjk} = 0, \quad i \neq j \neq k, \quad (i, j, k = 1, 2, 3, 4).$$

The equalities (13) and (14) means that eigenvalues of the Jacobi operator R_{e_1} formed a Singer-Thorpe basis in the tangent space M_p . Following [3] we use the standard denoting: $K_{12} = K_{34} = 1$, $K_{13} = K_{24} = 2$, $K_{14} = K_{23} = 3$, $R_{1234} = 1$, $R_{1342} = 2$, $R_{1423} = 3$. Then from the characteristic equation of $R_{ae_1+be_2}$ ($a^2 + b^2 = 1$; $a, b \in R$) we have:

$$(c - \lambda_1)(c^2 - (\lambda_2 + \lambda_3)c + \lambda_2\lambda_3 + a^2b^2((\lambda_2 - \lambda_3)^2 + (\mu_2 - \mu_3)^2)) = 0$$

and from here it follows that

$$J_2(p; ae_1 + be_2) = \lambda_1(\lambda_2 + \lambda_3) + \lambda_2\lambda_3 + a^2b^2((\lambda_2 - \lambda_3)^2 + (\mu_2 - \mu_3)^2).$$

If the characteristic polynomial of the Jacobi operator R_{e_1} is a point-wise constant, then we obtain the equality $\lambda_2 - \lambda_3 = +(\mu_2 - \mu_3)$. Analogously from the pointwise conditions of the characteristic coefficients $J_2(p; ae_1 + be_3)$ and $J_2(p; ae_1 + be_4)$ we obtain two equalities $\lambda_3 - \lambda_1 = +(\mu_3 - \mu_1)$ and $\lambda_1 - \lambda_2 = +(\mu_1 - \mu_2)$. Hence we have the system

$$\lambda_2 - \lambda_3 = \pm (\mu_2 - \mu_3), \qquad \lambda_3 - \lambda_1 = \pm (\mu_3 - \mu_1), \qquad \lambda_1 - \lambda_2 = \pm (\mu_1 - \mu_2)$$

according to the results in [3] we obtain that (M, g) is a pointwise constant at

the

fixed point p of M.

and

If we have (8), then using (7) we receive:

(15)
$$R_{1442} = R_{1443} = R_{1223} = R_{1332} = 0$$

and the characteristic equation of the Jacobi operator $R_{ae_1+be_2}$ with respect to the orthonormal basis $ae_1 + be_2$, $-be_1 + ae_2$, e_3 , e_4 , has the form

$$\begin{vmatrix} K_{12} - c & 0 & bR_{1224} \\ 0 & a^2 K_{13} + b^2 K_{23} - c & b^2 R_{3224} + ab(R_{3124} + R_{3214}) \\ bR_{1224} & b^2 R_{3224} + ab(R_{3124} + R_{3214}) & a^2 K_{14} + b^2 K_{24} - c \end{vmatrix} = 0.$$

From here it follows that

$$\begin{aligned} J_3(p;ae_1+be_3) &= K_{12}((a^2K_{13}+b^2K_{23})(a^2K_{14}+b^2K_{24})-(b^2R_{3224}+ab(R_{3124}+R_{3214})^2))\\ &\quad -b^2R_{1224}^2(a^2K_{13}+b^2K_{23}). \end{aligned}$$

According to our assumption this coefficient to be a pointwise constant we obtain $K_{23}R_{1334} = K_{23}R_{1224} = 0$. Then we have $R_{1334} = R_{1224} = 0$ or $K_{23} = 0$. In the first case we have 163

the equalities (10)–(15) again and from these equalities it follows that (M, g) is a space of constant sectional curvature at a fixed point p.

In the case $K_{23} = 0$ from the pointwise condition $J_2(p; e_1) = J_2(p; e_2)$ we obtain that $K_{12}(K_{13} + K_{14}) - K_{13}K_{14} = K_{12}K_{24}$ and hence $K_{13}K_{14} = 0$. Then $J_3(p; e_1) = 0$ which contradict with our assumption $J_3(p; e_1) = K_{12}K_{13}K_{14} \neq 0$.

Suppose $J_3(p; e_1) = K_{12}K_{13}K_{14} = 0$. Now we have the following logistic possibilities: a) $K_{12} = K_{13} = K_{14} = 0$ - then (M, g) is flat at a fixed point p.

b) $K_{12} \neq 0$, $K_{13} = K_{14} = 0$. Then $K_{12} = \text{trace } R_{e_1} = \frac{\tau}{4}$, where is a scalar curvature on the manifold and hence the eigenvalues of the Jacobi R_{e_1} are constants.

c) Let $K_{12} \neq 0$, $K_{13} \neq 0$, $K_{14} \neq 0$. Then from (10) it follows that

$$K_{12}(K_{23}K_{24} - R_{3224}^2) = K_{12}(K_{23}K_{24} - R_{2334}^2) = K_{12}K_{24}K_{34} = 0,$$

and from here we have

(16)
$$K_{23}K_{24} - R_{3224}^2 = K_{23}K_{24} - R_{2334}^2 = K_{24}K_{34} = 0$$

and (10) again. Hence

(17)
$$J_2 = K_{12}K_{13} = K_{12}(K_{23} + K_{24}) = K_{13}(K_{23} + K_{34}) = -R_{2443}^2.$$

From here we receive:

(18)
$$\begin{aligned} K_{12} &= K_{23} + K_{24}, \\ K_{13} &= K_{23} + K_{34}. \end{aligned}$$

If $K_{23}K_{24} = 0$, then at least one of the sectional curvature K_{23}, K_{24} is equal to zero. If $K_{23} = K_{24} = 0$, then all eigenvalues of the Jacobi operator R_{e_1} are equal at a fixed point p.

Suppose one of the sectional curvature K_{23}, K_{24} is different from zero, say K_{24} , then from (18) we have

(19)
$$K_{12} = K_{23}, \quad K_{13} = K_{23} + K_{24}$$

and from here and (17) it follows that

$$R_{2334}^2 = -K_{12}K_{23}.$$

From the last equality, (17) and (19) we obtain:

$$R_{2334}^2 = K_{23}K_{24} = K_{13}(K_{12} - K_{23}) = K_{12}K_{13} - K_{23}^2 = -R_{2443}^2 - K_{12}^2$$

Then $R_{2334}^2 + R_{2443}^2 + K_{12}^2 = 0$ and from here it follows that $K_{12} = 0$ which contradict with a hypothesis $K_{12} \neq 0$. From the result above we can formulate

Theorem 1. Let (M, g) be a 4-dimensional Riemannian manifold such that the characteristic coefficients $J_2(p; x)$ and $J_3(p; x)$ of the Jacobi operator R_X are a pointwise constants for any unit tangent vector $X \in S_pM$ and at any fixed point $p \in M$. If e_1, e_2, e_3, e_4 is orthonormal basis in the tangent space M_p we have one of the following possibilities:

a) e_1, e_2, e_3, e_4 is a Singer Thorpe basis such that $\lambda_1 = \lambda_2 = \lambda_3 = 0$,

b) e_1, e_2, e_3, e_4 is a Singer Thorpe basis such that $\lambda_1 = \lambda_2 = \lambda_3 \neq 0$,

c) e_1, e_2, e_3, e_4 is an arbitrary orthonormal basis such that $K_{12} = \frac{\tau}{4}$, $K_{13} = K_{14} = 0$, 164 d) e_1, e_2, e_3, e_4 is a Singer Thorpe basis such that

 $\lambda_2 - \lambda_3 = +(\mu_2 - \mu_3), \lambda_3 - \lambda_1 = +(\mu_3 - \mu_1), \lambda_1 - \lambda_2 = +(\mu_1 - \mu_2)$

and at least two of the invariants $\lambda_1, \lambda_2, \lambda_3$ are different.

Theorem 2. Let (M, g) be a four-dimensional Riemannian manifold such that the characteristic coefficients $J_2(p; x)$ and $J_3(p; x)$ of the Jacobi operator R_X are a pointwise constants for each unit tangent vector $X \in M_p$ and at any fixed point $p \in M$. Then (M, g) locally is almost every where one of the following types of the manifolds:

a) a flat manifold,

b) a space of constant sectional curvature,

c) a pointwise Osserman manifold.

Proof. Let the set of all points on M is such that the number of eigenavlues of the Jacobi operator R_{e_1} is a locally constant. Because of R_{e_1} is a symmetric linear operator, then this set is almost everywhere open and dense on M [2]. Because of $\lambda_1, \lambda_2, \lambda_3$ are eigenvalues of the Jacobi operator R_{e_1} , then from Theorem 1 we have one of the possibilities a)-d). If we have a) and b), then (M, g) is respectively a flat manifold and a space of constant sectional curvature on Ω . If c) holds, then (M, g) locally is a globally Osserman manifold which contradict the result of Chi [1] that in this case the eigenvalues of Jacobi operator R_X are equal to 1 and $\frac{1}{4}$. Finally if d) holds, then (M, g) is a pointwise Osserman manifold on Ω .

In our paper [7] we have obtained the following results:

Theorem 3. Let (M, g) be a 4-dimensional Riemannian manifold such that the characteristic coefficients $J_1(p; X)$ and $J_2(p, X)$ of the Jacobi operator R_X are a point-wise constants. Then all eigen values R_X are also point-wise constants and the same is also true for the characteristic coefficien $J_2(p; X)$.

Theorem 4. Let (M, g) be a 4-dimensional Riemannian manifold such that the characteristic coefficients $J_1(p; X)$ and $J_3(p, X) \neq 0$ of the Jacobi operator R_X are a pointwise constants. Then all eigen values R_X are also point-wise constants and the same is also true for the characteristic coefficien $J_2(p; X)$.

Finally we can formulate the main result:

Theorem 5. Let (M, g) be a 4-dimensional Riemannian manifold such that two of the characteristic coefficients of a non-degenerated Jacobi operator R_X are a point-wise constants for any unit tangent vector $X \in M_p$ and at any fixed point $p \in M$. Then (M, g)locally is one of the following types of manifolds:

a) a flat manifold,

b) a space of constant sectional curvature,

c) a pointwise Osserman manifold.

REFERENCES

[1] QUO-SHIN-CHI. Curvature characterisation and classification of the rank-one symmetric spaces. *Pacific J. Math.* **150** (1991), 31-42.

[2] T. KATO. Perturbation theory for linear operators. Berlin, Springer-Verlag, 1996.

[3] I. SINGER, J. THORPE. The curvature of 4-dimensional Einstein spaces. Global Analysis. Papers in Honour of K. Kodaira. University of Tokio press, Princeton University Press, 1969.
[4] GR. STANILOV. On the geometry of the Jacobi operators on 4-dimensional Riemannian manifolds. *Tensor, N. S.* 51, (1992), 9-15.

[5] R. OSSERMAN. Curvature in the eighties. Jour. Amer. Math. Monthly 97 (1990), 731-756.
[6] P. GILKEY, A. SWANN, L. VAN HECKE. Isoparametric geodesic spheres and a conjecture of Osserman regarding the Jacobi Operator. Jour Quart. Math. 46 (1995), 299-320.

Veselin Videv Mathematics and Physics Department Thracian University 6000 Stara Zagora Bulgaria

ХАРАКТЕРИЗИРАНЕ НА ЧЕТИРИМЕРНИ РИМАНОВИ МНОГООБРАЗИЯ ЧРЕЗ ХАРАКТЕРИСТИЧНИТЕ КОЕФИЦИЕНТИ НА ОПЕРАТОРА НА ЯКОБИ

Веселин Тотев Видев

В представената статия изследваме чеетримерните Риманови многообразия (M,g) със свойството два от характеристичните коефициенти на оператора на Якоби R_X да са точково постоянни в произволна точка от многообразието.