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In the present paper we investigate a four-dimensional Einstein Lorentzian manifolds
(M, g) such that the characteristic coefficient Ji(p; X) of the Jacobi operator Rx is
a pointwise constant on the manifold and J3(p; X) =0 on M.

An n-dimensional Riemannian manifold (M, g) is called a Lorentzian manifold if at
any point p € M the tangent space M, is a vector space provided with a scalar product
g of signature (—,+,...,4) or (+,...,+,—). The set of all tangent vector X such that
9(X,X) =1 (g(X,X)=—1) we denote by TS,M (=S,M). Let n =4 and let
(1) €1,€2,€3,€4 (64 S _SpM)
be an arbitrary Lorentzian basis in the tangent space M, at a point p € M. We denote
by A%(M,) the (6-dimensional) space of 2-vectors of M,,. The space A?(M,) is equipped
with its standard inner product whose value on decomposable elements is given by g(v1 A
vg, w1 A wz) = det g(vi,wy), 1,7 = 1,2,...,n, where g and R are respectively the metric
tensor and the curvature tensor on M. The curvature tensor R is defined in A%(M),) by
the equality

(2) R(x Ay, zAv) = R(z,y,2,v)
where z,y,z,v € M,. If (1) is an orthonormal Lorentzian basis in the tangent space M,
then
(3) e1 Aea,e1 Aes, el Aey, ez N\ey,eq Nea,ex Aes
is an orthonormal basis in the 2-vector space /\Q(Mp) and it is a vector space of signature
(4+,+,+,—,—, —). This assertion has been proven in [1]:

Theorem 1 (A. Z. Petrov). Let (M, g) be a 4-dimensional Einstein Lorentzian man-

ifold (p = Ag). Then at any point p € M there exist a Lorentzian basis of type (1) in
the tangent space M, such that the matriz of the curvature operator in 2-vector space

A%(M,) with respect to an orthonoramal basis of type (3) has the form < _]\]4\7 ]\]\; >,

where the matrix M and N are one of the following three types:
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a1 0 0 51 0 0
Type 1. M = 0 ay 0 |, N = 0 B 0 |,

0 0 o3 0 0 pBs

a1 0 0 51 0 0
Type I1. M = 0 as+1 0 , N= 0 B 1 ,

0 0 ay — 1 0 1 p

a 1 0 0 0 0
Type III. M = 1 a 0 |, N = 0O 0 -1

0 0 « 0 -1 0

According to this result and (2) the next theorem can be obtained:

Theorem 2. Let (M, g) be a 4-dimensional Einstein Lorentzian manifold. Then at
any point p € M there exist an orthonormal Lorentzian basis of type (1) with respect to
which the components of the curvature tensor R are defined by one of the following three
types formulas:

4) Rio12 = —Ragzq = a1, Riz13 = —Rogoa = a, Roze3 = —Rig14 = a3;
(5) Ri212 = —Raszq = a1, Riz13 = —Rogoq = ag + 1,

Razz3 = —Rig1a = a2 — 1, R3114 = — R34 =1
(6) Ri212 = —R34314 = R1313 = —Rogo4 = Ra323 = —R1414 = 0,

R3114 = —R3204 =1, Rogq3 = —Ronz = 1.

Remark 1. The basis of this property further will be mentioned as Petrov basis.

The Jacobi operator Rx is a symmetric linear operator of the tangent space M, at
a point p € M defined by Rx(u) = R(u,X,X) [7]. The matrix of Rx with respect
to an arbitrary orthonormal Lorentzian basis in M, of type (1) has the entries a;; =
R(e;, X,X,e;), (i,j = 1,2,..n). Since X is an eigenvector of Rx corresponding with
an eigenvalue 0, then the characteristic equation of Rx can be represented in the form
i(—l)kac”_k =0, where Jp = 1, J, = 0; J; = Ji(p; X), (i = 1,2,...,n). Because

k=0
Ji(p; X) = trace Rx = p(X), where p is the Ricci tensor on M, then trace Rx is a

pointwise constant on the manifold (by dim M > 3) if and only if (M, g) is an Einstein
Lorentzian manifold [6]. The problem about a global constancy of the eigenvalues of Rx
was created in the Riemanian geometry from Bob Osserman [7]. The manifolds which
satisfy this hypothesis was called globally Oserman manifolds [4]. Tt was proven from Chi
[5] that (M, g) is a globally Osserman manifolds iff (M, g) locally is a rank one symmetric
space or (M, g) is flat by dim M = 4, if m is odd, or if m = 2(mod4) [5]. A manifolds
for which eigenvalues of Rx are pointwise constants on M are called pointwise Oserman
and they were investigated in details in [4]. The problem about a pointwise conctancy
of the eigenvalues of Ry was transfered from N. Blazic, N. Bokan and P. Gilkey [3] in
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the Lorentzian geometry as a pointwise conctancy of the characteristic polynomial of
Jacobi operator Ry for any tangent vector X €+ SpM at any point p € M because in
Lorentzian geometry Rx is not always diagonalizable. It was proven that (M, g) is a
pointwise Osserman manifold (by n > 3) iff (M, g) is a manifold of constant sectional
curvature [3]. Generalizing this result we proved that (M, g) is a pointwise Osserman
manifold (X €* S,M), dim M > 3 if and only if the characteristic coefficients Ji(p; X),
Ja(p; X) or Ji(p; X), J3(p; X) # 0 are a pointwise constants at any point p € M and for
any tangent vector X €* S, M [8]. The case when J;(p; X) is a pointwise constant and
J3(p; X) = 0 we investigate in this note.

Lemma 1. A j-dimensional Lorentzian manifold (M, g) is a manifold of pointwise
constant characteristic coefficients J1(p; X) and J3(p; X) = 0 of the Jacobi operator Rx
for any tangent vector X €* SpM if and only if at any point p € M for the invariants
of a Petrov basis in M, we have:

(7) for type (4) a1 =az=a3=p1=p2=pF3=0,
(8) or a1 #0,ae =a3 =01 =pPs=pLP3=0;
(9) for type (5) a1 =az=p1 = P2 =0;
(10) for type (6) a=0.

Proof. Let p be a point of M and let ey, es,e3,e4 (e2 €~ SpM) be a Petrov basis in
M,,. If a and b are a real numbers such that a* — b? = ¢, e = £1, then
aeq + bey,be1 + aey, ea, €3

is an orthonormal Lorentzian basis in M. If we have (4), then using the characteristic
equations of Rue;tbe,, Racstbess Raestbe, With respect to an orthonormal basis of type
(10) we obtain:

Js (paer + bea) = eag (@102 — a®? (@1 = a2)* + (81 — B2)*) ) = 0.
(11) J3 (p, aez + bes) = e (042043 - a®p? ((042 —ag)® + (B2 — 53)2)) =0,

Js (p, aes + bey) = eas <a3a1 — a?b? ((a3 - a1)2 + (B3 — ﬂ1)2)) =0
and J3(p;e1) = ajazaz = 0. It is evident that at least one of the invariants «; is equal
to zero. If @y = ap = a3z = 0, then according to the results in [1] we have that (M, g)
is flat. If at least one of the invariants «; is different from zero, say as, then ajas = 0.
Now from (11) we obtain a?b?((aq — a2)? + (81 — f2)?) = 0. From here it follows that
a1 = ag =0, f1 = B2 and using the first Bianci identity we obtain 53 = —23;. Thus we
have

(12) ar =\, az=a3 =0, 2= f3, f1 =20
Let 11,m2, 13,14, 15, be eigenvectors of $ and let ky, k2, ks, k1, k2, k3 be the corre-
sponding eigenvalues, where k; = a; +i3; and i2 = —1. If (12) are satisfied the matrix
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of curvature operator R with respect to the basis of type (3) has the form:

A—2iBs 0 0 0 0 0
0 iy 0 0 0 0
0 0 if; 0 0 0
0 0 0 A+28 0 0
0 0 0 0 iBs 0
0 0 0 0 0 B

Suppose the orthonormal basis 11,172,173, 74,75, 76 is decomposable, then an orthonor-
mal basis vi,va,v3,v4 (v4a € ~Sp M) exists in M, with respect to which there are rela-
tions R(v1i,ve,v2,v1) = R(v3,v4,v4,v3) = X — 2if32, R(v1,v3,v3,v1) = R(va,v3,v3,02) =
—R(ve,v4,v4,v2) = —R(v1,v4,v4,v1) = iB2. Now using the characteristic equations
of Jacobi operators R,,, Ry,, Ry, Ry, with respect to the basis v1,va,v3,v4 we obtain
A —2if3 2if> 2102 . —2if3o
, , , R,, has eigenvalues ———,
g(v2,v2)" g(vs,v3)" g(va,v4) g (vi,v1)
21 24 21 24 —2i
Pz , Bz , Ry, has eigenvalues Pz , Bz , Pz and R,, has
g (vs,v3) g§v4av4) g(vi,v1)" g(vs,v3)" g(va,v4)
21 —2i 24
+ 2if, Pz Bz . From the hypothesis J3(p;e1) = J3(p;e2) =

g (vi,v1)" g (v2,v2)" g(v3,v3)
J3(p;es) = J3(p;eq) = 0 it follows that (A — 2i82)2i82 = (A + 2if2)2iB2 = 0. If 2iBs # 0,

then A — 2i8s = X\ + 2if3 = 0 and hence A = B3 = 0. Hence a; = A = 0 and because we
have also ag = ag = 0, then according to the results in [1] we have that (M, g) is flat at
a point p and it contradict with the assumption s # 0. If S = 0, then for the curvature
component of R with respect to Petrov basis of type (1) in M, we have (8), eventually
by a3 =0 we have (7).

that R,, has eigenvalues

eigenvalues

Suppose we have (5) and let e, ez, e3,e4 (e4 € ~S,M) be Petrov basis in M, and a
and b are a real numbers such that a®> — b?> = ¢, ¢ = +1. Then for the characteristic
equations of the Jacobi operators Rge, +be, and Rge,+be, With respect to a Lorentzian
basis of type (10) we have respectively

(c+eKa3)(c® — (K12 + K13) + Ko K13 — a*b? (K12 — K13)* + (81 — (2)?)
+a®((a* K12 — b*Ka3) — ¢)) = 0,
(d+eK13)(d* — d(K1a + Ka3) + K12Ko3 — a*b*(K12 — Ka3)* + (83 — 51)?)
+a?((a® K19 — b*Ky3) — d)) = 0.
From the condition J3(p;aeq + bey) = J3(p; aex + beq) = 0 we have
(a2 = 1ag + (a2 +1)963 =0, (a2 +1)a3 + (a2 — 1)953 = 0,
and from this system we obtain (9). If we have (6), then J3(p;e1) = o® = 0, J3(p;es) =

—a(a? — 1) = 0 and from here we obtain (10).

Theorem 3. A 4-dimensional Lorentzian manifold (M, g) is a manifold of pointwise
constant characteristic coefficients Jy(p; X) and J3(p; X) = 0 of the Jacobi operator Rx
for any tangent vector X € £S,M if and only if at any point p € M the metrics of M is
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one of the following three types:
(13) ds* =0,
(14) a decomposable metrics which is decompose to the quadratic forms:
ds? = da? + cos®(V Az )da2 + dx? — cos?(VAxs)da?; A > 0;
ds? = da? + ch®(vV/=\z1)dx? + dz? — ch® (V= Ax3)da?; X > 0, \ = const;

(15) ds? = da? + sh?(xy — x4)dx3 + sin®(zy — 24)dz? — da?;

Remark 2. The metrics in (14) and (15) are given in a special coordinate system [1].

Proof. The if part. If e1,e2,e3,eq (ea € ~SpM) is a Petrov basis in the tangent
space Mp, at a point p € M, then for the curvature components with respect to this
basis we have one of the formulas (4)-(6). From our assumption J;(p; X) to be a point-
wise constant and Js(p; X) = 0, for any tangent vector X € iSpM, for the invariants of
a Petrov basis we have one of the possibilities (7)-(10). If (7) holds, then (M,g) is flat
at p and we have (13). If (8) are satisfied, then (M, g) is a decomposable space with a
metric given in a special coordinate system by the equalities (14) — these results follows
from the investigations in [1]. If (9) are satisfied, then we have the following system
of differential equations Vg, R(E;, Ej, Ex, Es) = 0, where E; are a smooth vector fields
defined in a neighbourhood U, around a point p € M such that E;, = e;, i = 1,2,3,4.
Finding conditions for the integralibility of these equations we differentiate once more
and alternate by index of differentiation. Then using the Ricci equality [5] we obtain
(16) Rslm[aRi]gd + Rslm[gRZ]ab =0.
where [.] denote an alternation. Now from (5), (16) and putting A = 1, p = 4 we receive
a1 = 1 = 0. Hence from (5) we have 2y = 7 again, where 7 is a scalar curvature on
M. Fixing indices in (16) and using the substitution A\ < 2, p < 4, a < 1, 5 + 4,
v < 1,6 < 2 we obtain ap = 0 and 7 = 0. In [1] was proven that an uniquely
Einstein Lorentzian manifold (M, g) exists, such that a3 = 1 = ag = B2 = 0 and it is
a Petrov space of maximal mobility of metrics given in a special coordinate system by
(16). Finally we remark that if we have (10), then putting in (16) these expressions we
obtain a contradiction and hence this case is impossible.

The only if part. If we have (13) for g, then (M, g) is flat at p and evidently (M, g)
is an Einstien Lorentzian manifold also Js5(p; X) = 0 for any unit spacelike or timelike
tangent vector X € M, at any point p € M. If for g we have (14), then (8) are satisfied
either. Let y is an arbitrary unit spacelike or timelike tangent vector in M), and let

6
(17) y:Zaiei, al+ ai+ a3 — ai=¢, e==I1,
i=1
where a; are an arbitrary real numbers and ey, eq, e3,e4 (e4 € _SpM) be a Petrov basis
in M,. Then the characteristic equation of the Jacobi operator R, is:

12 (1 — asp+ (0F — af) (a3 + a3) (967 + a3)) =0.
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Hence J3(p;y) = 0 and Jy(p;y) = 3 is a pointwise constant which means (M, g) is an
Einsteinium Lorentzian manifold. If for g we have (15), then we have also (9) and from
(5) we obtain K192 = 0, K13 = —1, Koz = 1, R3114 = —Rs3904 = 1. If y is an arbitrary
unit spacelike or timelike tangent vector in M, given by (17), then

(c+1)? 0 , —a(c+1t) —a(c+t)
o 0 —(c+1)? —blc+t) blc+t)
J3(pry) = Calct+t) —ble+t) a?—b B —a? 0.

—a(c+t) —blc+t) a®>—b? b? — a?

REFERENCES

[1] A. Z. PETROV. Einsteinian spaces. GIFML, Moskva (1961).

[2] A. EINSTEIN. Zur allgemeinen Relativitaetstheorie, Berl. Berichte(1915).

[3] N. Brazic, N. BokAN, P. GILKEY. A Note on Osserman Lorentzian manifolds. J. Bull.
London Math. Soc., 29 (1997), 227-230.

[4] P. GILKEY, A. SWANN, L. vAN HECKE. Isoparametric geodesic spheres and a conjecture of
Osserman regarding the Jacobi Operator. J. Quart. Math., 46 (1995), 299-320.

[6] Q. S. CHI. A curvature characterization of certain locally rank one symmetric spaces. J.
Diff. Geom., 28 (1988), 187-202.

[6] M. DaJCzZER, K. NoMIZU. On sectional curvature of indefinite metrics II. J. Math. Ann.,
247 (1980), 279-282.

[7] R. OSSERMAN. Curvature in the eighties. J. Amer. Math. Monthly, 97 (1990),731-756.

[8] V. VIDEV. Weakly conditions for a four -dimensional Lorentzian manifolds. Math. and
Education in Math., 26 (1998), 178-183.

Veselin Videv

Mathematics and Physics Department
Thracian University

6000 Stara Zagora

Bulgaria

XAPAKTPEN3NPAHE HA METPUKATA B BA3OBA TOYKA HA
YETUPNMEPHU AMHITIAVMHOBU JIOPEHITIOBM MHOT'OOBPA3MA
YPE3 OITEPATOPA HA AKOBU

Becenun Tomopos Bunes

B npencraBenara cTaTHs u3ciaensaMe derupuMepnn AlHmaitHoBu JlopeHnosn MHO-
roo0pasust CbC CBOMCTBOTO XapakTepucTuIHusT Koedunuent Ji(p; X) Ha oneparopa
Ha SIko6u Rx Za € TOYKOBO IIOCTOSIHEH, & XapaKTepUCTUIHUAT Koeduiment J3(p; X)
Ha Rx 51a e paBeH Ha HyJla B IPOM3BOJIHA TOYKa p € M 1 3a IPOM3BOJIEH €IMHUYIECH
Hem3oTporneH BeKTop X € M),.
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