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In the present paper we investigate a four-dimensional Einstein Lorentzian manifolds
(M, g) such that the characteristic coefficient J1(p;X) of the Jacobi operator RX is
a pointwise constant on the manifold and J3(p;X) = 0 on M .

An n-dimensional Riemannian manifold (M, g) is called a Lorentzian manifold if at

any point p ∈ M the tangent space Mp is a vector space provided with a scalar product

g of signature (−,+, ...,+) or (+, ...,+,−). The set of all tangent vector X such that

g(X,X) = 1 (g(X,X) = −1) we denote by +SpM (−SpM). Let n = 4 and let

(1) e1, e2, e3, e4 (e4 ∈ −SpM)

be an arbitrary Lorentzian basis in the tangent space Mp at a point p ∈ M . We denote

by ∧2(Mp) the (6-dimensional) space of 2-vectors of Mp. The space ∧2(Mp) is equipped

with its standard inner product whose value on decomposable elements is given by ĝ(v1∧
v2, w1 ∧ w2) = det g(vi, wj), i, j = 1, 2, ..., n, where g and R are respectively the metric

tensor and the curvature tensor on M . The curvature tensor ℜ is defined in ∧2(Mp) by

the equality

(2) ℜ(x ∧ y, z ∧ v) = R(x, y, z, v)

where x, y, z, v ∈ Mp. If (1) is an orthonormal Lorentzian basis in the tangent space Mp

then

(3) e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e3 ∧ e4, e4 ∧ e2, e2 ∧ e3

is an orthonormal basis in the 2-vector space ∧2(Mp) and it is a vector space of signature

(+,+,+,−,−,−). This assertion has been proven in [1]:

Theorem 1 (A. Z. Petrov). Let (M, g) be a 4-dimensional Einstein Lorentzian man-

ifold (ρ = λg). Then at any point p ∈ M there exist a Lorentzian basis of type (1) in

the tangent space Mp such that the matrix of the curvature operator in 2-vector space

∧2(Mp) with respect to an orthonoramal basis of type (3) has the form

(
M N

−N M

)
,

where the matrix M and N are one of the following three types:
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Type I. M =




α1 0 0
0 α2 0
0 0 α3


, N =




β1 0 0
0 β2 0
0 0 β3


,

Type II. M =




α1 0 0
0 α2 + 1 0
0 0 α2 − 1


, N =




β1 0 0
0 β2 1
0 1 β2


,

Type III. M =




α 1 0
1 α 0
0 0 α


, N =




0 0 0
0 0 −1
0 −1 0


.

According to this result and (2) the next theorem can be obtained:

Theorem 2.Let (M, g) be a 4-dimensional Einstein Lorentzian manifold. Then at

any point p ∈ M there exist an orthonormal Lorentzian basis of type (1) with respect to

which the components of the curvature tensor R are defined by one of the following three

types formulas:

R1212 = −R3434 = α1, R1313 = −R2424 = α2, R2323 = −R1414 = α3;(4)

R1212 = −R3434 = α1, R1313 = −R2424 = α2 + 1,(5)

R2323 = −R1414 = α2 − 1, R3114 = −R3224 = 1;

R1212 = −R3434 = R1313 = −R2424 = R2323 = −R1414 = α,(6)

R3114 = −R3224 = 1, R2443 = −R2113 = 1.

Remark 1. The basis of this property further will be mentioned as Petrov basis.

The Jacobi operator RX is a symmetric linear operator of the tangent space Mp at

a point p ∈ M defined by RX(u) = R(u,X,X) [7]. The matrix of RX with respect

to an arbitrary orthonormal Lorentzian basis in Mp of type (1) has the entries aij =

R(ei, X,X, ej), (i, j = 1, 2, ...n). Since X is an eigenvector of RX corresponding with

an eigenvalue 0, then the characteristic equation of RX can be represented in the form
n∑

k=0

(−1)kJkc
n−k = 0, where J0 = 1, Jn = 0; Ji = Ji(p;X), (i = 1, 2, ..., n). Because

J1(p;X) = traceRX = ρ(X), where ρ is the Ricci tensor on M , then traceRX is a

pointwise constant on the manifold (by dimM ≥ 3) if and only if (M, g) is an Einstein

Lorentzian manifold [6]. The problem about a global constancy of the eigenvalues of RX

was created in the Riemanian geometry from Bob Osserman [7]. The manifolds which

satisfy this hypothesis was called globally Oserman manifolds [4]. It was proven from Chi

[5] that (M, g) is a globally Osserman manifolds iff (M, g) locally is a rank one symmetric

space or (M, g) is flat by dimM = 4, if m is odd, or if m ≡ 2(mod 4) [5]. A manifolds

for which eigenvalues of RX are pointwise constants on M are called pointwise Oserman

and they were investigated in details in [4]. The problem about a pointwise conctancy

of the eigenvalues of RX was transfered from N. Blazic, N. Bokan and P. Gilkey [3] in
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the Lorentzian geometry as a pointwise conctancy of the characteristic polynomial of

Jacobi operator RX for any tangent vector X ∈± SpM at any point p ∈ M because in

Lorentzian geometry RX is not always diagonalizable. It was proven that (M, g) is a

pointwise Osserman manifold (by n ≥ 3) iff (M, g) is a manifold of constant sectional

curvature [3]. Generalizing this result we proved that (M, g) is a pointwise Osserman

manifold (X ∈± SpM), dimM ≥ 3 if and only if the characteristic coefficients J1(p;X),

J2(p;X) or J1(p;X), J3(p;X) 6= 0 are a pointwise constants at any point p ∈ M and for

any tangent vector X ∈± SpM [8]. The case when J1(p;X) is a pointwise constant and

J3(p;X) = 0 we investigate in this note.

Lemma 1.A 4-dimensional Lorentzian manifold (M, g) is a manifold of pointwise

constant characteristic coefficients J1(p;X) and J3(p;X) = 0 of the Jacobi operator RX

for any tangent vector X ∈± SpM if and only if at any point p ∈ M for the invariants

of a Petrov basis in Mp we have:

for type (4) α1 = α2 = α3 = β1 = β2 = β3 = 0,(7)

or α1 6= 0, α2 = α3 = β1 = β2 = β3 = 0;(8)

for type (5) α1 = α2 = β1 = β2 = 0;(9)

for type (6) α = 0.(10)

Proof. Let p be a point of M and let e1, e2, e3, e4 (e4 ∈− SpM) be a Petrov basis in

Mp. If a and b are a real numbers such that a2 − b2 = ε, ε = ±1, then

ae1 + be4, be1 + ae4, e2, e3

is an orthonormal Lorentzian basis in Mp. If we have (4), then using the characteristic

equations of Rae1+be4 , Rae2+be4 , Rae3+be4 with respect to an orthonormal basis of type

(10) we obtain:

J3 (p, ae1 + be4) = ǫα3

(
α1α2 − a2b2

(
(α1 − α2)

2
+ (β1 − β2)

2
))

= 0.

(11) J3 (p, ae2 + be4) = ǫα1

(
α2α3 − a2b2

(
(α2 − α3)

2 + (β2 − β3)
2
))

= 0,

J3 (p, ae3 + be4) = ǫα2

(
α3α1 − a2b2

(
(α3 − α1)

2
+ (β3 − β1)

2
))

= 0

and J3(p; e1) = α1α2α3 = 0. It is evident that at least one of the invariants αi is equal

to zero. If α1 = α2 = α3 = 0, then according to the results in [1] we have that (M, g)

is flat. If at least one of the invariants αi is different from zero, say α3, then α1α2 = 0.

Now from (11) we obtain a2b2((α1 − α2)
2 + (β1 − β2)

2) = 0. From here it follows that

α1 = α2 = 0, β1 = β2 and using the first Bianci identity we obtain β3 = −2β1. Thus we

have

(12) α1 = λ, α2 = α3 = 0, β2 = β3, β1 = −2β2.

Let η1, η2, η3, η4, η5, η6 be eigenvectors of ℜ and let k1, k2, k3, k̄1, k̄2, k̄3 be the corre-

sponding eigenvalues, where kj = αj + iβj and i2 = −1. If (12) are satisfied the matrix
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of curvature operator ℜ with respect to the basis of type (3) has the form:




λ− 2iβ2 0 0 0 0 0
0 iβ2 0 0 0 0
0 0 iβ3 0 0 0
0 0 0 λ+ 2iβ2 0 0
0 0 0 0 iβ2 0
0 0 0 0 0 iβ3




.

Suppose the orthonormal basis η1, η2, η3, η4, η5, η6 is decomposable, then an orthonor-

mal basis v1, v2, v3, v4 (v4 ∈ −SpM) exists in Mp with respect to which there are rela-

tions R(v1, v2, v2, v1) = R(v3, v4, v4, v3) = λ − 2iβ2, R(v1, v3, v3, v1) = R(v2, v3, v3, v2) =

−R(v2, v4, v4, v2) = −R(v1, v4, v4, v1) = iβ2. Now using the characteristic equations

of Jacobi operators Rv1 , Rv2 , Rv3 , Rv4 with respect to the basis v1, v2, v3, v4 we obtain

that Rv1 has eigenvalues
λ− 2iβ2

g (v2, v2)
,

2iβ2

g (v3, v3)
,

2iβ2

g (v4, v4)
, Rv2 has eigenvalues

−2iβ2

g (v1, v1)
,

2iβ2

g (v3, v3)
,

2iβ2

g (v4, v4)
, Rv3 has eigenvalues

2iβ2

g (v1, v1)
,

2iβ2

g (v3, v3)
,

−2iβ2

g (v4, v4)
and Rv4 has

eigenvalues
λ+ 2iβ2

g (v1, v1)
,

−2iβ2

g (v2, v2)
,

2iβ2

g (v3, v3)
. From the hypothesis J3(p; e1) = J3(p; e2) =

J3(p; e3) = J3(p; e4) = 0 it follows that (λ− 2iβ2)2iβ2 = (λ+2iβ2)2iβ2 = 0. If 2iβ2 6= 0,

then λ− 2iβ2 = λ + 2iβ2 = 0 and hence λ = β2 = 0. Hence α1 = λ = 0 and because we

have also α2 = α3 = 0, then according to the results in [1] we have that (M, g) is flat at

a point p and it contradict with the assumption β2 6= 0. If β2 = 0, then for the curvature

component of R with respect to Petrov basis of type (1) in Mp we have (8), eventually

by α1 = 0 we have (7).

Suppose we have (5) and let e1, e2, e3, e4 (e4 ∈ −SpM) be Petrov basis in Mp and a

and b are a real numbers such that a2 − b2 = ε, ε = ±1. Then for the characteristic

equations of the Jacobi operators Rae1+be4 and Rae2+be4 with respect to a Lorentzian

basis of type (10) we have respectively

(c+ εK23)(c
2 − c(K12 +K13) +K12K13 − a2b2((K12 −K13)

2 + (β1 − β2)
2)

+a2((a2K12 − b2K23)− c)) = 0,

(d+ εK13)(d
2 − d(K12 +K23) +K12K23 − a2b2((K12 −K23)

2 + (β3 − β1)
2)

+a2((a2K12 − b2K13)− d)) = 0.

From the condition J3(p; ae1 + be4) = J3(p; ae2 + be4) = 0 we have

(α2 − 1)α2
2 + (α2 + 1)9β2

2 = 0, (α2 + 1)α2
2 + (α2 − 1)9β2

2 = 0,

and from this system we obtain (9). If we have (6), then J3(p; e1) = α3 = 0, J3(p; e4) =

−α(α2 − 1) = 0 and from here we obtain (10).

Theorem 3.A 4-dimensional Lorentzian manifold (M, g) is a manifold of pointwise

constant characteristic coefficients J1(p;X) and J3(p;X) = 0 of the Jacobi operator RX

for any tangent vector X ∈ ±SpM if and only if at any point p ∈ M the metrics of M is
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one of the following three types:

(13) ds2 = 0,

(14) a decomposable metrics which is decompose to the quadratic forms:

ds2 = dx2
1 + cos2(

√
λx1)dx

2
2 + dx2

3 − cos2(
√
λx3)dx

2
4;λ > 0;

ds2 = dx2
1 + ch2(

√
−λx1)dx

2
2 + dx2

3 − ch2(
√
−λx3)dx

2
4;λ > 0, λ = const;

(15) ds2 = dx2
1 + sh2(x1 − x4)dx

2
2 + sin2(x1 − x4)dx

2
3 − dx2

4;

Remark 2. The metrics in (14) and (15) are given in a special coordinate system [1].

Proof. The if part. If e1, e2, e3, e4 (e4 ∈ −SpM) is a Petrov basis in the tangent

space Mp, at a point p ∈ M , then for the curvature components with respect to this

basis we have one of the formulas (4)-(6). From our assumption J1(p;X) to be a point-

wise constant and J3(p;X) = 0, for any tangent vector X ∈ ±SpM , for the invariants of

a Petrov basis we have one of the possibilities (7)-(10). If (7) holds, then (M, g) is flat

at p and we have (13). If (8) are satisfied, then (M, g) is a decomposable space with a

metric given in a special coordinate system by the equalities (14) – these results follows

from the investigations in [1]. If (9) are satisfied, then we have the following system

of differential equations ∇Et
R(Ei, Ej , Ek, Es) = 0, where Ei are a smooth vector fields

defined in a neighbourhood Up around a point p ∈ M such that Ei|p = ei, i = 1, 2, 3, 4.

Finding conditions for the integralibility of these equations we differentiate once more

and alternate by index of differentiation. Then using the Ricci equality [5] we obtain

(16) Rslm[aR
s
b]gd +Rslm[gR

s
d]ab = 0.

where [.] denote an alternation. Now from (5), (16) and putting λ = 1, µ = 4 we receive

α1 = β1 = 0. Hence from (5) we have 2α1 = τ again, where τ is a scalar curvature on

M . Fixing indices in (16) and using the substitution λ ↔ 2, µ ↔ 4, α ↔ 1, β ↔ 4,

γ ↔ 1, δ ↔ 2 we obtain α2 = 0 and τ = 0. In [1] was proven that an uniquely

Einstein Lorentzian manifold (M, g) exists, such that α1 = β1 = α2 = β2 = 0 and it is

a Petrov space of maximal mobility of metrics given in a special coordinate system by

(16). Finally we remark that if we have (10), then putting in (16) these expressions we

obtain a contradiction and hence this case is impossible.

The only if part. If we have (13) for g, then (M, g) is flat at p and evidently (M, g)

is an Einstien Lorentzian manifold also J3(p;X) = 0 for any unit spacelike or timelike

tangent vector X ∈ Mp, at any point p ∈ M . If for g we have (14), then (8) are satisfied

either. Let y is an arbitrary unit spacelike or timelike tangent vector in Mp and let

(17) y =
6∑

i=1

aiei, a21 + a22 + a23 − a24 = ε, ε = ±1,

where ai are an arbitrary real numbers and e1, e2, e3, e4 (e4 ∈ −SpM) be a Petrov basis

in Mp. Then the characteristic equation of the Jacobi operator Ry is:

µ2(µ2 − α3µ+ (α2
1 − α2

4)(α
2
2 + α2

3)(9β
2
1 + α2

3)) = 0.

171



Hence J3(p; y) = 0 and J1(p; y) = 3 is a pointwise constant which means (M, g) is an

Einsteinium Lorentzian manifold. If for g we have (15), then we have also (9) and from

(5) we obtain K12 = 0, K13 = −1, K23 = 1, R3114 = −R3224 = 1. If y is an arbitrary

unit spacelike or timelike tangent vector in Mp given by (17), then

J3(p; y) =

∣∣∣∣∣∣∣∣

(c+ t)2 0 −a(c+ t) −a(c+ t)
0 −(c+ t)2 −b(c+ t) b(c+ t)

−a(c+ t) −b(c+ t) a2 − b2 b2 − a2

−a(c+ t) −b(c+ t) a2 − b2 b2 − a2

∣∣∣∣∣∣∣∣
= 0.
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ХАРАКТРЕИЗИРАНЕ НА МЕТРИКАТА В БАЗОВА ТОЧКА НА
ЧЕТИРИМЕРНИ АЙНЩАЙНОВИ ЛОРЕНЦОВИ МНОГООБРАЗИЯ

ЧРЕЗ ОПЕРАТОРА НА ЯКОБИ

Веселин Тодоров Видев

В представената статия изследваме четиримерни Айнщайнови Лоренцови мно-

гообразия със свойството характеристичният коефициент J1(p;X) на оператора

на Якоби RX да е точково постоянен, а характеристичният коефициент J3(p;X)
на RX да е равен на нула в произволна точка p ∈ M и за произволен единичен

неизотропен вектор X ∈ Mp.
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