МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 1999 MATHEMATICS AND EDUCATION IN MATHEMATICS, 1999 Proceedings of Twenty Eighth Spring Conference of the Union of Bulgarian Mathematicians Montana, April 5–8, 1999

METRICAL CHARACTERIZATION AT A BASEPOINT OF A FOUR-DIMENSIONAL EINSTEIN LORENTZIAN MANIFOLDS BY JACOBI OPERATOR

Veselin Totev Videv

In the present paper we investigate a four-dimensional Einstein Lorentzian manifolds (M, g) such that the characteristic coefficient $J_1(p; X)$ of the Jacobi operator R_X is a pointwise constant on the manifold and $J_3(p; X) = 0$ on M.

An *n*-dimensional Riemannian manifold (M, g) is called a Lorentzian manifold if at any point $p \in M$ the tangent space M_p is a vector space provided with a scalar product g of signature (-, +, ..., +) or (+, ..., +, -). The set of all tangent vector X such that g(X, X) = 1 (g(X, X) = -1) we denote by ${}^+S_pM$ $({}^-S_pM)$. Let n = 4 and let (1) e_1, e_2, e_3, e_4 $(e_4 \in {}^-S_pM)$

be an arbitrary Lorentzian basis in the tangent space M_p at a point $p \in M$. We denote by $\wedge^2(M_p)$ the (6-dimensional) space of 2-vectors of M_p . The space $\wedge^2(M_p)$ is equipped with its standard inner product whose value on decomposable elements is given by $\hat{g}(v_1 \wedge v_2, w_1 \wedge w_2) = \det g(v_i, w_j), i, j = 1, 2, ..., n$, where g and R are respectively the metric tensor and the curvature tensor on M. The curvature tensor \Re is defined in $\wedge^2(M_p)$ by the equality

(2)
$$\Re(x \wedge y, z \wedge v) = R(x, y, z, v)$$

where $x, y, z, v \in M_p$. If (1) is an orthonormal Lorentzian basis in the tangent space M_p then

$$(3) e_1 \wedge e_2, e_1 \wedge e_3, e_1 \wedge e_4, e_3 \wedge e_4, e_4 \wedge e_2, e_2 \wedge e_3$$

is an orthonormal basis in the 2-vector space $\wedge^2(M_p)$ and it is a vector space of signature (+, +, +, -, -, -). This assertion has been proven in [1]:

Theorem 1 (A. Z. Petrov). Let (M, g) be a 4-dimensional Einstein Lorentzian manifold $(\rho = \lambda g)$. Then at any point $p \in M$ there exist a Lorentzian basis of type (1) in the tangent space M_p such that the matrix of the curvature operator in 2-vector space $\wedge^2(M_p)$ with respect to an orthonoramal basis of type (3) has the form $\begin{pmatrix} M & N \\ -N & M \end{pmatrix}$, where the matrix M and N are one of the following three types:

167

$$\begin{split} Type \ I. & M = \left(\begin{array}{ccc} \alpha_1 & 0 & 0 \\ 0 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \end{array}\right), & N = \left(\begin{array}{ccc} \beta_1 & 0 & 0 \\ 0 & \beta_2 & 0 \\ 0 & 0 & \beta_3 \end{array}\right), \\ Type \ II. & M = \left(\begin{array}{ccc} \alpha_1 & 0 & 0 \\ 0 & \alpha_2 + 1 & 0 \\ 0 & 0 & \alpha_2 - 1 \end{array}\right), & N = \left(\begin{array}{ccc} \beta_1 & 0 & 0 \\ 0 & \beta_2 & 1 \\ 0 & 1 & \beta_2 \end{array}\right), \\ Type \ III. & M = \left(\begin{array}{ccc} \alpha & 1 & 0 \\ 1 & \alpha & 0 \\ 0 & 0 & \alpha \end{array}\right), & N = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{array}\right). \end{split}$$

According to this result and (2) the next theorem can be obtained:

Theorem 2. Let (M, g) be a 4-dimensional Einstein Lorentzian manifold. Then at any point $p \in M$ there exist an orthonormal Lorentzian basis of type (1) with respect to which the components of the curvature tensor R are defined by one of the following three types formulas:

(4) $R_{1212} = -R_{3434} = \alpha_1, \quad R_{1313} = -R_{2424} = \alpha_2, \quad R_{2323} = -R_{1414} = \alpha_3;$

(5)
$$R_{1212} = -R_{3434} = \alpha_1, \quad R_{1313} = -R_{2424} = \alpha_2 + 1,$$

$$R_{2323} = -R_{1414} = \alpha_2 - 1, \quad R_{3114} = -R_{3224} = 1;$$

(6)
$$R_{1212} = -R_{3434} = R_{1313} = -R_{2424} = R_{2323} = -R_{1414} = \alpha,$$

 $R_{3114} = -R_{3224} = 1, \quad R_{2443} = -R_{2113} = 1.$

Remark 1. The basis of this property further will be mentioned as Petrov basis.

The Jacobi operator R_X is a symmetric linear operator of the tangent space M_p at a point $p \in M$ defined by $R_X(u) = R(u, X, X)$ [7]. The matrix of R_X with respect to an arbitrary orthonormal Lorentzian basis in M_p of type (1) has the entries a_{ij} $R(e_i, X, X, e_j), (i, j = 1, 2, ...n)$. Since X is an eigenvector of R_X corresponding with an eigenvalue 0, then the characteristic equation of R_X can be represented in the form $\sum_{k=0}^{n} (-1)^{k} J_{k} c^{n-k} = 0, \text{ where } J_{0} = 1, J_{n} = 0; J_{i} = J_{i}(p; X), (i = 1, 2, ..., n). \text{ Because}$ $J_1(p;X) = \operatorname{trace} R_X = \rho(X)$, where ρ is the Ricci tensor on M, then trace R_X is a pointwise constant on the manifold (by dim $M \ge 3$) if and only if (M, g) is an Einstein Lorentzian manifold [6]. The problem about a global constancy of the eigenvalues of R_X was created in the Riemanian geometry from Bob Osserman [7]. The manifolds which satisfy this hypothesis was called *globally Oserman manifolds* [4]. It was proven from Chi [5] that (M,g) is a globally Osserman manifolds iff (M,g) locally is a rank one symmetric space or (M, g) is flat by dim M = 4, if m is odd, or if $m \equiv 2 \pmod{4}$ [5]. A manifolds for which eigenvalues of R_X are pointwise constants on M are called *pointwise Oserman* and they were investigated in details in [4]. The problem about a pointwise conctancy of the eigenvalues of R_X was transferred from N. Blazic, N. Bokan and P. Gilkey [3] in 168

the Lorentzian geometry as a pointwise conctancy of the characteristic polynomial of Jacobi operator R_X for any tangent vector $X \in^{\pm} S_p M$ at any point $p \in M$ because in Lorentzian geometry R_X is not always diagonalizable. It was proven that (M,g) is a pointwise Osserman manifold (by $n \geq 3$) iff (M,g) is a manifold of constant sectional curvature [3]. Generalizing this result we proved that (M,g) is a pointwise Osserman manifold ($X \in^{\pm} S_p M$), dim $M \geq 3$ if and only if the characteristic coefficients $J_1(p; X)$, $J_2(p; X)$ or $J_1(p; X)$, $J_3(p; X) \neq 0$ are a pointwise constants at any point $p \in M$ and for any tangent vector $X \in^{\pm} S_p M$ [8]. The case when $J_1(p; X)$ is a pointwise constant and $J_3(p; X) = 0$ we investigate in this note.

Lemma 1. A 4-dimensional Lorentzian manifold (M,g) is a manifold of pointwise constant characteristic coefficients $J_1(p;X)$ and $J_3(p;X) = 0$ of the Jacobi operator R_X for any tangent vector $X \in {}^{\pm} S_pM$ if and only if at any point $p \in M$ for the invariants of a Petrov basis in M_p we have:

- (7) for type (4) $\alpha_1 = \alpha_2 = \alpha_3 = \beta_1 = \beta_2 = \beta_3 = 0$,
- (8) $or \quad \alpha_1 \neq 0, \alpha_2 = \alpha_3 = \beta_1 = \beta_2 = \beta_3 = 0;$
- (9) for type (5) $\alpha_1 = \alpha_2 = \beta_1 = \beta_2 = 0;$
- (10) for type (6) $\alpha = 0$.

Proof. Let p be a point of M and let e_1, e_2, e_3, e_4 ($e_4 \in S_p M$) be a Petrov basis in M_p . If a and b are a real numbers such that $a^2 - b^2 = \varepsilon$, $\varepsilon = \pm 1$, then

$$ae_1 + be_4, be_1 + ae_4, e_2, e_3$$

is an orthonormal Lorentzian basis in M_p . If we have (4), then using the characteristic equations of $R_{ae_1+be_4}$, $R_{ae_2+be_4}$, $R_{ae_3+be_4}$ with respect to an orthonormal basis of type (10) we obtain:

$$J_{3}(p, ae_{1} + be_{4}) = \epsilon \alpha_{3} \left(\alpha_{1}\alpha_{2} - a^{2}b^{2} \left((\alpha_{1} - \alpha_{2})^{2} + (\beta_{1} - \beta_{2})^{2} \right) \right) = 0.$$
(11)
$$J_{3}(p, ae_{2} + be_{4}) = \epsilon \alpha_{1} \left(\alpha_{2}\alpha_{3} - a^{2}b^{2} \left((\alpha_{2} - \alpha_{3})^{2} + (\beta_{2} - \beta_{3})^{2} \right) \right) = 0,$$

$$J_{3}(p, ae_{3} + be_{4}) = \epsilon \alpha_{2} \left(\alpha_{3}\alpha_{1} - a^{2}b^{2} \left((\alpha_{3} - \alpha_{1})^{2} + (\beta_{3} - \beta_{1})^{2} \right) \right) = 0$$

and $J_3(p; e_1) = \alpha_1 \alpha_2 \alpha_3 = 0$. It is evident that at least one of the invariants α_i is equal to zero. If $\alpha_1 = \alpha_2 = \alpha_3 = 0$, then according to the results in [1] we have that (M, g)is flat. If at least one of the invariants α_i is different from zero, say α_3 , then $\alpha_1 \alpha_2 = 0$. Now from (11) we obtain $a^2b^2((\alpha_1 - \alpha_2)^2 + (\beta_1 - \beta_2)^2) = 0$. From here it follows that $\alpha_1 = \alpha_2 = 0, \beta_1 = \beta_2$ and using the first Bianci identity we obtain $\beta_3 = -2\beta_1$. Thus we have

(12)
$$\alpha_1 = \lambda, \ \alpha_2 = \alpha_3 = 0, \ \beta_2 = \beta_3, \ \beta_1 = -2\beta_2.$$

Let $\eta_1, \eta_2, \eta_3, \eta_4, \eta_5, \eta_6$ be eigenvectors of \Re and let $k_1, k_2, k_3, \bar{k}_1, \bar{k}_2, \bar{k}_3$ be the corresponding eigenvalues, where $k_j = \alpha_j + i\beta_j$ and $i^2 = -1$. If (12) are satisfied the matrix 169

of curvature operator \Re with respect to the basis of type (3) has the form:

1	$\lambda - 2i\beta_2$	0	0	0	0	0	
1	0	$i\beta_2$	0	0	0	0	
	0	0	$i\beta_3$	0	0	0	
	0	0	0	$\lambda + 2i\beta_2$	0	0	·
	0	0	0	0	$i\beta_2$	0	
l	0	0	0	0	0	$i\beta_3$]

Suppose the orthonormal basis $\eta_1, \eta_2, \eta_3, \eta_4, \eta_5, \eta_6$ is decomposable, then an orthonormal basis v_1, v_2, v_3, v_4 ($v_4 \in {}^-S_pM$) exists in M_p with respect to which there are relations $R(v_1, v_2, v_2, v_1) = R(v_3, v_4, v_4, v_3) = \lambda - 2i\beta_2, R(v_1, v_3, v_3, v_1) = R(v_2, v_3, v_3, v_2) = -R(v_2, v_4, v_4, v_2) = -R(v_1, v_4, v_4, v_1) = i\beta_2$. Now using the characteristic equations of Jacobi operators $R_{v_1}, R_{v_2}, R_{v_3}, R_{v_4}$ with respect to the basis v_1, v_2, v_3, v_4 we obtain that R_{v_1} has eigenvalues $\frac{\lambda - 2i\beta_2}{g(v_2, v_2)}, \frac{2i\beta_2}{g(v_3, v_3)}, \frac{2i\beta_2}{g(v_4, v_4)}, R_{v_2}$ has eigenvalues $\frac{-2i\beta_2}{g(v_1, v_1)}, \frac{2i\beta_2}{g(v_3, v_3)}, \frac{2i\beta_2}{g(v_4, v_4)}, R_{v_3}$ has eigenvalues $\frac{2i\beta_2}{g(v_1, v_1)}, \frac{2i\beta_2}{g(v_3, v_3)}, \frac{-2i\beta_2}{g(v_4, v_4)}$ and R_{v_4} has eigenvalues $\frac{\lambda + 2i\beta_2}{g(v_1, v_1)}, \frac{-2i\beta_2}{g(v_2, v_2)}, \frac{2i\beta_2}{g(v_3, v_3)}$. From the hypothesis $J_3(p; e_1) = J_3(p; e_2) = J_3(p; e_3) = J_3(p; e_4) = 0$ it follows that $(\lambda - 2i\beta_2)2i\beta_2 = (\lambda + 2i\beta_2)2i\beta_2 = 0$. If $2i\beta_2 \neq 0$, then $\lambda - 2i\beta_2 = \lambda + 2i\beta_2 = 0$ and hence $\lambda = \beta_2 = 0$. Hence $\alpha_1 = \lambda = 0$ and because we have also $\alpha_2 = \alpha_3 = 0$, then according to the results in [1] we have that (M, g) is flat at a point p and it contradict with the assumption $\beta_2 \neq 0$. If $\beta_2 = 0$, then for the curvature component of R with respect to Petrov basis of type (1) in M_p we have (8), eventually by $\alpha_1 = 0$ we have (7).

Suppose we have (5) and let e_1, e_2, e_3, e_4 ($e_4 \in {}^-S_pM$) be Petrov basis in M_p and a and b are a real numbers such that $a^2 - b^2 = \varepsilon$, $\varepsilon = \pm 1$. Then for the characteristic equations of the Jacobi operators $R_{ae_1+be_4}$ and $R_{ae_2+be_4}$ with respect to a Lorentzian basis of type (10) we have respectively

$$(c + \varepsilon K_{23})(c^2 - c(K_{12} + K_{13}) + K_{12}K_{13} - a^2b^2((K_{12} - K_{13})^2 + (\beta_1 - \beta_2)^2) + a^2((a^2K_{12} - b^2K_{23}) - c)) = 0,$$

$$(d + \varepsilon K_{13})(d^2 - d(K_{12} + K_{23}) + K_{12}K_{23} - a^2b^2((K_{12} - K_{23})^2 + (\beta_3 - \beta_1)^2) + a^2((a^2K_{12} - b^2K_{13}) - d)) = 0.$$

From the condition $J_3(p; ae_1 + be_4) = J_3(p; ae_2 + be_4) = 0$ we have

$$(\alpha_2 - 1)\alpha_2^2 + (\alpha_2 + 1)9\beta_2^2 = 0, \quad (\alpha_2 + 1)\alpha_2^2 + (\alpha_2 - 1)9\beta_2^2 = 0,$$

and from this system we obtain (9). If we have (6), then $J_3(p; e_1) = \alpha^3 = 0$, $J_3(p; e_4) = -\alpha(\alpha^2 - 1) = 0$ and from here we obtain (10).

Theorem 3. A 4-dimensional Lorentzian manifold (M,g) is a manifold of pointwise constant characteristic coefficients $J_1(p; X)$ and $J_3(p; X) = 0$ of the Jacobi operator R_X for any tangent vector $X \in {}^{\pm}S_pM$ if and only if at any point $p \in M$ the metrics of M is 170 one of the following three types:

 $ds^2 = 0,$

$$ds^{2} = dx_{1}^{2} + \cos^{2}(\sqrt{\lambda}x_{1})dx_{2}^{2} + dx_{3}^{2} - \cos^{2}(\sqrt{\lambda}x_{3})dx_{4}^{2}; \lambda > 0;$$

$$ds^{2} = dx_{1}^{2} + \operatorname{ch}^{2}(\sqrt{-\lambda}x_{1})dx_{2}^{2} + dx_{3}^{2} - \operatorname{ch}^{2}(\sqrt{-\lambda}x_{3})dx_{4}^{2}; \lambda > 0, \lambda = \operatorname{const};$$

(15)

$$ds^{2} = dx_{1}^{2} + \operatorname{sh}^{2}(x_{1} - x_{4})dx_{2}^{2} + \sin^{2}(x_{1} - x_{4})dx_{3}^{2} - dx_{4}^{2};$$

Remark 2. The metrics in (14) and (15) are given in a special coordinate system [1].

Proof. The if part. If e_1, e_2, e_3, e_4 ($e_4 \in {}^{-}S_pM$) is a Petrov basis in the tangent space M_p , at a point $p \in M$, then for the curvature components with respect to this basis we have one of the formulas (4)-(6). From our assumption $J_1(p; X)$ to be a pointwise constant and $J_3(p; X) = 0$, for any tangent vector $X \in {}^{\pm}S_pM$, for the invariants of a Petrov basis we have one of the possibilities (7)-(10). If (7) holds, then (M, g) is flat at p and we have (13). If (8) are satisfied, then (M, g) is a decomposable space with a metric given in a special coordinate system by the equalities (14) – these results follows from the investigations in [1]. If (9) are satisfied, then we have the following system of differential equations $\nabla_{E_t} R(E_i, E_j, E_k, E_s) = 0$, where E_i are a smooth vector fields defined in a neighbourhood U_p around a point $p \in M$ such that $E_{i|p} = e_i, i = 1, 2, 3, 4$. Finding conditions for the integralibility of these equations we differentiate once more and alternate by index of differentiation. Then using the Ricci equality [5] we obtain

(16)
$$R_{slm[a}R^{s}_{b]gd} + R_{slm[g}R^{s}_{d]ab} = 0.$$

where [.] denote an alternation. Now from (5), (16) and putting $\lambda = 1$, $\mu = 4$ we receive $\alpha_1 = \beta_1 = 0$. Hence from (5) we have $2\alpha_1 = \tau$ again, where τ is a scalar curvature on M. Fixing indices in (16) and using the substitution $\lambda \leftrightarrow 2$, $\mu \leftrightarrow 4$, $\alpha \leftrightarrow 1$, $\beta \leftrightarrow 4$, $\gamma \leftrightarrow 1$, $\delta \leftrightarrow 2$ we obtain $\alpha_2 = 0$ and $\tau = 0$. In [1] was proven that an uniquely Einstein Lorentzian manifold (M, g) exists, such that $\alpha_1 = \beta_1 = \alpha_2 = \beta_2 = 0$ and it is a Petrov space of maximal mobility of metrics given in a special coordinate system by (16). Finally we remark that if we have (10), then putting in (16) these expressions we obtain a contradiction and hence this case is impossible.

The only if part. If we have (13) for g, then (M, g) is flat at p and evidently (M, g) is an Einstein Lorentzian manifold also $J_3(p; X) = 0$ for any unit spacelike or timelike tangent vector $X \in M_p$, at any point $p \in M$. If for g we have (14), then (8) are satisfied either. Let y is an arbitrary unit spacelike or timelike tangent vector in M_p and let

(17)
$$y = \sum_{i=1}^{6} a_i e_i, \quad a_1^2 + a_2^2 + a_3^2 - a_4^2 = \varepsilon, \quad \varepsilon = \pm 1,$$

where a_i are an arbitrary real numbers and e_1, e_2, e_3, e_4 ($e_4 \in {}^-S_pM$) be a Petrov basis in M_p . Then the characteristic equation of the Jacobi operator R_y is:

$$\mu^{2}(\mu^{2} - \alpha_{3}\mu + (\alpha_{1}^{2} - \alpha_{4}^{2})(\alpha_{2}^{2} + \alpha_{3}^{2})(9\beta_{1}^{2} + \alpha_{3}^{2})) = 0.$$
171

Hence $J_3(p; y) = 0$ and $J_1(p; y) = 3$ is a pointwise constant which means (M, g) is an Einsteinium Lorentzian manifold. If for g we have (15), then we have also (9) and from (5) we obtain $K_{12} = 0$, $K_{13} = -1$, $K_{23} = 1$, $R_{3114} = -R_{3224} = 1$. If y is an arbitrary unit spacelike or timelike tangent vector in M_p given by (17), then

$$J_{3}(p;y) = \begin{vmatrix} (c+t)^{2} & 0 & -a(c+t) & -a(c+t) \\ 0 & -(c+t)^{2} & -b(c+t) & b(c+t) \\ -a(c+t) & -b(c+t) & a^{2}-b^{2} & b^{2}-a^{2} \\ -a(c+t) & -b(c+t) & a^{2}-b^{2} & b^{2}-a^{2} \end{vmatrix} = 0.$$

REFERENCES

[1] A. Z. PETROV. Einsteinian spaces. GIFML, Moskva (1961).

[2] A. EINSTEIN. Zur allgemeinen Relativitaetstheorie, Berl. Berichte(1915).

[3] N. BLAZIC, N. BOKAN, P. GILKEY. A Note on Osserman Lorentzian manifolds. J. Bull. London Math. Soc., **29** (1997), 227-230.

[4] P. GILKEY, A. SWANN, L. VAN HECKE. Isoparametric geodesic spheres and a conjecture of Osserman regarding the Jacobi Operator. J. Quart. Math., 46 (1995), 299-320.

[5] Q. S. CHI. A curvature characterization of certain locally rank one symmetric spaces. J. Diff. Geom., 28 (1988), 187-202.

[6] M. DAJCZER, K. NOMIZU. On sectional curvature of indefinite metrics II. J. Math. Ann., 247 (1980), 279-282.

[7] R. OSSERMAN. Curvature in the eighties. J. Amer. Math. Monthly, 97 (1990),731-756.

[8] V. VIDEV. Weakly conditions for a four -dimensional Lorentzian manifolds. *Math. and Education in Math.*, **26** (1998), 178-183.

Veselin Videv

Mathematics and Physics Department Thracian University 6000 Stara Zagora Bulgaria

ХАРАКТРЕИЗИРАНЕ НА МЕТРИКАТА В БАЗОВА ТОЧКА НА ЧЕТИРИМЕРНИ АЙНЩАЙНОВИ ЛОРЕНЦОВИ МНОГООБРАЗИЯ ЧРЕЗ ОПЕРАТОРА НА ЯКОБИ

Веселин Тодоров Видев

В представената статия изследваме четиримерни Айнщайнови Лоренцови многообразия със свойството характеристичният коефициент $J_1(p;X)$ на оператора на Якоби R_X да е точково постоянен, а характеристичният коефициент $J_3(p;X)$ на R_X да е равен на нула в произволна точка $p \in M$ и за произволен единичен неизотропен вектор $X \in M_p$.