METRICAL CHARACTERIZATION AT A BASEPOINT OF A FOUR-DIMENSIONAL EINSTEIN LORENTZIAN MANIFOLDS BY JACOBI OPERATOR

Veselin Totev Videv

In the present paper we investigate a four-dimensional Einstein Lorentzian manifolds (M, g) such that the characteristic coefficient $J_{1}(p ; X)$ of the Jacobi operator R_{X} is a pointwise constant on the manifold and $J_{3}(p ; X)=0$ on M.

An n-dimensional Riemannian manifold (M, g) is called a Lorentzian manifold if at any point $p \in M$ the tangent space M_{p} is a vector space provided with a scalar product g of signature $(-,+, \ldots,+)$ or $(+, \ldots,+,-)$. The set of all tangent vector X such that $g(X, X)=1(g(X, X)=-1)$ we denote by ${ }^{+} S_{p} M\left({ }^{-} S_{p} M\right)$. Let $n=4$ and let

$$
\begin{equation*}
e_{1}, e_{2}, e_{3}, e_{4} \quad\left(e_{4} \in^{-} S_{p} M\right) \tag{1}
\end{equation*}
$$

be an arbitrary Lorentzian basis in the tangent space M_{p} at a point $p \in M$. We denote by $\wedge^{2}\left(M_{p}\right)$ the (6-dimensional) space of 2-vectors of M_{p}. The space $\wedge^{2}\left(M_{p}\right)$ is equipped with its standard inner product whose value on decomposable elements is given by $\widehat{g}\left(v_{1} \wedge\right.$ $\left.v_{2}, w_{1} \wedge w_{2}\right)=\operatorname{det} g\left(v_{i}, w_{j}\right), i, j=1,2, \ldots, n$, where g and R are respectively the metric tensor and the curvature tensor on M. The curvature tensor \Re is defined in $\wedge^{2}\left(M_{p}\right)$ by the equality

$$
\begin{equation*}
\Re(x \wedge y, z \wedge v)=R(x, y, z, v) \tag{2}
\end{equation*}
$$

where $x, y, z, v \in M_{p}$. If (1) is an orthonormal Lorentzian basis in the tangent space M_{p} then

$$
\begin{equation*}
e_{1} \wedge e_{2}, e_{1} \wedge e_{3}, e_{1} \wedge e_{4}, e_{3} \wedge e_{4}, e_{4} \wedge e_{2}, e_{2} \wedge e_{3} \tag{3}
\end{equation*}
$$

is an orthonormal basis in the 2 -vector space $\wedge^{2}\left(M_{p}\right)$ and it is a vector space of signature $(+,+,+,-,-,-)$. This assertion has been proven in [1]:

Theorem 1 (A. Z. Petrov). Let (M, g) be a 4-dimensional Einstein Lorentzian manifold $(\rho=\lambda g)$. Then at any point $p \in M$ there exist a Lorentzian basis of type (1) in the tangent space M_{p} such that the matrix of the curvature operator in 2-vector space $\wedge^{2}\left(M_{p}\right)$ with respect to an orthonoramal basis of type (3) has the form $\left(\begin{array}{cc}M & N \\ -N & M\end{array}\right)$, where the matrix M and N are one of the following three types:

$$
\begin{array}{lll}
\text { Type I. } & M=\left(\begin{array}{ccc}
\alpha_{1} & 0 & 0 \\
0 & \alpha_{2} & 0 \\
0 & 0 & \alpha_{3}
\end{array}\right), & N=\left(\begin{array}{ccc}
\beta_{1} & 0 & 0 \\
0 & \beta_{2} & 0 \\
0 & 0 & \beta_{3}
\end{array}\right), \\
\text { Type II. } & M=\left(\begin{array}{ccc}
\alpha_{1} & 0 & 0 \\
0 & \alpha_{2}+1 & 0 \\
0 & 0 & \alpha_{2}-1
\end{array}\right), & N=\left(\begin{array}{ccc}
\beta_{1} & 0 & 0 \\
0 & \beta_{2} & 1 \\
0 & 1 & \beta_{2}
\end{array}\right), \\
\text { Type III. } & M=\left(\begin{array}{ccc}
\alpha & 1 & 0 \\
1 & \alpha & 0 \\
0 & 0 & \alpha
\end{array}\right), & N=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right) .
\end{array}
$$

According to this result and (2) the next theorem can be obtained:
Theorem 2. Let (M, g) be a 4-dimensional Einstein Lorentzian manifold. Then at any point $p \in M$ there exist an orthonormal Lorentzian basis of type (1) with respect to which the components of the curvature tensor R are defined by one of the following three types formulas:

$$
\begin{align*}
& R_{1212}=-R_{3434}=\alpha_{1}, \quad R_{1313}=-R_{2424}=\alpha_{2}, \quad R_{2323}=-R_{1414}=\alpha_{3} \tag{4}\\
& R_{1212}=-R_{3434}=\alpha_{1}, \quad R_{1313}=-R_{2424}=\alpha_{2}+1 \tag{5}\\
& R_{2323}=-R_{1414}=\alpha_{2}-1, \quad R_{3114}=-R_{3224}=1 \\
& R_{1212}=-R_{3434}=R_{1313}=-R_{2424}=R_{2323}=-R_{1414}=\alpha \tag{6}\\
& R_{3114}=-R_{3224}=1, \quad R_{2443}=-R_{2113}=1
\end{align*}
$$

Remark 1. The basis of this property further will be mentioned as Petrov basis.
The Jacobi operator R_{X} is a symmetric linear operator of the tangent space M_{p} at a point $p \in M$ defined by $R_{X}(u)=R(u, X, X)$ [7]. The matrix of R_{X} with respect to an arbitrary orthonormal Lorentzian basis in M_{p} of type (1) has the entries $a_{i j}=$ $R\left(e_{i}, X, X, e_{j}\right),(i, j=1,2, \ldots n)$. Since X is an eigenvector of R_{X} corresponding with an eigenvalue 0 , then the characteristic equation of R_{X} can be represented in the form $\sum_{k=0}^{n}(-1)^{k} J_{k} c^{n-k}=0$, where $J_{0}=1, J_{n}=0 ; J_{i}=J_{i}(p ; X),(i=1,2, \ldots, n)$. Because $J_{1}(p ; X)=\operatorname{trace} R_{X}=\rho(X)$, where ρ is the Ricci tensor on M, then trace R_{X} is a pointwise constant on the manifold (by $\operatorname{dim} M \geq 3$) if and only if (M, g) is an Einstein Lorentzian manifold [6]. The problem about a global constancy of the eigenvalues of R_{X} was created in the Riemanian geometry from Bob Osserman [7]. The manifolds which satisfy this hypothesis was called globally Oserman manifolds [4]. It was proven from Chi [5] that (M, g) is a globally Osserman manifolds iff (M, g) locally is a rank one symmetric space or (M, g) is flat by $\operatorname{dim} M=4$, if m is odd, or if $m \equiv 2(\bmod 4)$ [5]. A manifolds for which eigenvalues of R_{X} are pointwise constants on M are called pointwise Oserman and they were investigated in details in [4]. The problem about a pointwise conctancy of the eigenvalues of R_{X} was transfered from N. Blazic, N. Bokan and P. Gilkey [3] in 168
the Lorentzian geometry as a pointwise conctancy of the characteristic polynomial of Jacobi operator R_{X} for any tangent vector $X \in^{ \pm} S_{p} M$ at any point $p \in M$ because in Lorentzian geometry R_{X} is not always diagonalizable. It was proven that (M, g) is a pointwise Osserman manifold (by $n \geq 3$) iff (M, g) is a manifold of constant sectional curvature [3]. Generalizing this result we proved that (M, g) is a pointwise Osserman manifold $\left(X \in^{ \pm} S_{p} M\right)$, $\operatorname{dim} M \geq 3$ if and only if the characteristic coefficients $J_{1}(p ; X)$, $J_{2}(p ; X)$ or $J_{1}(p ; X), J_{3}(p ; X) \neq 0$ are a pointwise constants at any point $p \in M$ and for any tangent vector $X \in^{ \pm} S_{p} M$ [8]. The case when $J_{1}(p ; X)$ is a pointwise constant and $J_{3}(p ; X)=0$ we investigate in this note.

Lemma 1. A 4-dimensional Lorentzian manifold (M, g) is a manifold of pointwise constant characteristic coefficients $J_{1}(p ; X)$ and $J_{3}(p ; X)=0$ of the Jacobi operator R_{X} for any tangent vector $X \in^{ \pm} S_{p} M$ if and only if at any point $p \in M$ for the invariants of a Petrov basis in M_{p} we have:

$$
\begin{array}{r}
\text { for type (4) } \quad \alpha_{1}=\alpha_{2}=\alpha_{3}=\beta_{1}=\beta_{2}=\beta_{3}=0, \\
\text { or } \quad \alpha_{1} \neq 0, \alpha_{2}=\alpha_{3}=\beta_{1}=\beta_{2}=\beta_{3}=0 \tag{8}
\end{array}
$$

$$
\begin{equation*}
\text { for type (5) } \quad \alpha_{1}=\alpha_{2}=\beta_{1}=\beta_{2}=0 \tag{9}
\end{equation*}
$$

for type (6) $\alpha=0$.

Proof. Let p be a point of M and let $e_{1}, e_{2}, e_{3}, e_{4}\left(e_{4} \in^{-} S_{p} M\right)$ be a Petrov basis in M_{p}. If a and b are a real numbers such that $a^{2}-b^{2}=\varepsilon, \varepsilon= \pm 1$, then

$$
a e_{1}+b e_{4}, b e_{1}+a e_{4}, e_{2}, e_{3}
$$

is an orthonormal Lorentzian basis in M_{p}. If we have (4), then using the characteristic equations of $R_{a e_{1}+b e_{4}}, R_{a e_{2}+b e_{4}}, R_{a e_{3}+b e_{4}}$ with respect to an orthonormal basis of type (10) we obtain:

$$
\begin{align*}
& J_{3}\left(p, a e_{1}+b e_{4}\right)=\epsilon \alpha_{3}\left(\alpha_{1} \alpha_{2}-a^{2} b^{2}\left(\left(\alpha_{1}-\alpha_{2}\right)^{2}+\left(\beta_{1}-\beta_{2}\right)^{2}\right)\right)=0 \\
& J_{3}\left(p, a e_{2}+b e_{4}\right)=\epsilon \alpha_{1}\left(\alpha_{2} \alpha_{3}-a^{2} b^{2}\left(\left(\alpha_{2}-\alpha_{3}\right)^{2}+\left(\beta_{2}-\beta_{3}\right)^{2}\right)\right)=0 \tag{11}\\
& J_{3}\left(p, a e_{3}+b e_{4}\right)=\epsilon \alpha_{2}\left(\alpha_{3} \alpha_{1}-a^{2} b^{2}\left(\left(\alpha_{3}-\alpha_{1}\right)^{2}+\left(\beta_{3}-\beta_{1}\right)^{2}\right)\right)=0
\end{align*}
$$

and $J_{3}\left(p ; e_{1}\right)=\alpha_{1} \alpha_{2} \alpha_{3}=0$. It is evident that at least one of the invariants α_{i} is equal to zero. If $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$, then according to the results in [1] we have that (M, g) is flat. If at least one of the invariants α_{i} is different from zero, say α_{3}, then $\alpha_{1} \alpha_{2}=0$. Now from (11) we obtain $a^{2} b^{2}\left(\left(\alpha_{1}-\alpha_{2}\right)^{2}+\left(\beta_{1}-\beta_{2}\right)^{2}\right)=0$. From here it follows that $\alpha_{1}=\alpha_{2}=0, \beta_{1}=\beta_{2}$ and using the first Bianci identity we obtain $\beta_{3}=-2 \beta_{1}$. Thus we have

$$
\begin{equation*}
\alpha_{1}=\lambda, \alpha_{2}=\alpha_{3}=0, \beta_{2}=\beta_{3}, \beta_{1}=-2 \beta_{2} \tag{12}
\end{equation*}
$$

Let $\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}, \eta_{5}, \eta_{6}$ be eigenvectors of \Re and let $k_{1}, k_{2}, k_{3}, \bar{k}_{1}, \bar{k}_{2}, \bar{k}_{3}$ be the corresponding eigenvalues, where $k_{j}=\alpha_{j}+i \beta_{j}$ and $i^{2}=-1$. If (12) are satisfied the matrix
of curvature operator \Re with respect to the basis of type (3) has the form:

$$
\left(\begin{array}{cccccc}
\lambda-2 i \beta_{2} & 0 & 0 & 0 & 0 & 0 \\
0 & i \beta_{2} & 0 & 0 & 0 & 0 \\
0 & 0 & i \beta_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda+2 i \beta_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & i \beta_{2} & 0 \\
0 & 0 & 0 & 0 & 0 & i \beta_{3}
\end{array}\right)
$$

Suppose the orthonormal basis $\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}, \eta_{5}, \eta_{6}$ is decomposable, then an orthonormal basis $v_{1}, v_{2}, v_{3}, v_{4}\left(v_{4} \in{ }^{-} S_{p} M\right)$ exists in M_{p} with respect to which there are relations $R\left(v_{1}, v_{2}, v_{2}, v_{1}\right)=R\left(v_{3}, v_{4}, v_{4}, v_{3}\right)=\lambda-2 i \beta_{2}, R\left(v_{1}, v_{3}, v_{3}, v_{1}\right)=R\left(v_{2}, v_{3}, v_{3}, v_{2}\right)=$ $-R\left(v_{2}, v_{4}, v_{4}, v_{2}\right)=-R\left(v_{1}, v_{4}, v_{4}, v_{1}\right)=i \beta_{2}$. Now using the characteristic equations of Jacobi operators $R_{v_{1}}, R_{v_{2}}, R_{v_{3}}, R_{v_{4}}$ with respect to the basis $v_{1}, v_{2}, v_{3}, v_{4}$ we obtain that $R_{v_{1}}$ has eigenvalues $\frac{\lambda-2 i \beta_{2}}{g\left(v_{2}, v_{2}\right)}, \frac{2 i \beta_{2}}{g\left(v_{3}, v_{3}\right)}, \frac{2 i \beta_{2}}{g\left(v_{4}, v_{4}\right)}, R_{v_{2}}$ has eigenvalues $\frac{-2 i \beta_{2}}{g\left(v_{1}, v_{1}\right)}$, $\frac{2 i \beta_{2}}{g\left(v_{3}, v_{3}\right)}, \frac{2 i \beta_{2}}{g\left(v_{4}, v_{4}\right)}, R_{v_{3}}$ has eigenvalues $\frac{2 i \beta_{2}}{g\left(v_{1}, v_{1}\right)}, \frac{2 i \beta_{2}}{g\left(v_{3}, v_{3}\right)}, \frac{-2 i \beta_{2}}{g\left(v_{4}, v_{4}\right)}$ and $R_{v_{4}}$ has eigenvalues $\frac{\lambda+2 i \beta_{2}}{g\left(v_{1}, v_{1}\right)}, \frac{-2 i \beta_{2}}{g\left(v_{2}, v_{2}\right)}, \frac{2 i \beta_{2}}{g\left(v_{3}, v_{3}\right)}$. From the hypothesis $J_{3}\left(p ; e_{1}\right)=J_{3}\left(p ; e_{2}\right)=$ $J_{3}\left(p ; e_{3}\right)=J_{3}\left(p ; e_{4}\right)=0$ it follows that $\left(\lambda-2 i \beta_{2}\right) 2 i \beta_{2}=\left(\lambda+2 i \beta_{2}\right) 2 i \beta_{2}=0$. If $2 i \beta_{2} \neq 0$, then $\lambda-2 i \beta_{2}=\lambda+2 i \beta_{2}=0$ and hence $\lambda=\beta_{2}=0$. Hence $\alpha_{1}=\lambda=0$ and because we have also $\alpha_{2}=\alpha_{3}=0$, then according to the results in [1] we have that (M, g) is flat at a point p and it contradict with the assumption $\beta_{2} \neq 0$. If $\beta_{2}=0$, then for the curvature component of R with respect to Petrov basis of type (1) in M_{p} we have (8), eventually by $\alpha_{1}=0$ we have (7).

Suppose we have (5) and let $e_{1}, e_{2}, e_{3}, e_{4}\left(e_{4} \in{ }^{-} S_{p} M\right)$ be Petrov basis in M_{p} and a and b are a real numbers such that $a^{2}-b^{2}=\varepsilon, \varepsilon= \pm 1$. Then for the characteristic equations of the Jacobi operators $R_{a e_{1}+b e_{4}}$ and $R_{a e_{2}+b e_{4}}$ with respect to a Lorentzian basis of type (10) we have respectively

$$
\begin{gathered}
\left(c+\varepsilon K_{23}\right)\left(c^{2}-c\left(K_{12}+K_{13}\right)+K_{12} K_{13}-a^{2} b^{2}\left(\left(K_{12}-K_{13}\right)^{2}+\left(\beta_{1}-\beta_{2}\right)^{2}\right)\right. \\
\left.+a^{2}\left(\left(a^{2} K_{12}-b^{2} K_{23}\right)-c\right)\right)=0 \\
\left(d+\varepsilon K_{13}\right)\left(d^{2}-d\left(K_{12}+K_{23}\right)+K_{12} K_{23}-a^{2} b^{2}\left(\left(K_{12}-K_{23}\right)^{2}+\left(\beta_{3}-\beta_{1}\right)^{2}\right)\right. \\
\left.+a^{2}\left(\left(a^{2} K_{12}-b^{2} K_{13}\right)-d\right)\right)=0
\end{gathered}
$$

From the condition $J_{3}\left(p ; a e_{1}+b e_{4}\right)=J_{3}\left(p ; a e_{2}+b e_{4}\right)=0$ we have

$$
\left(\alpha_{2}-1\right) \alpha_{2}^{2}+\left(\alpha_{2}+1\right) 9 \beta_{2}^{2}=0, \quad\left(\alpha_{2}+1\right) \alpha_{2}^{2}+\left(\alpha_{2}-1\right) 9 \beta_{2}^{2}=0
$$

and from this system we obtain (9). If we have (6), then $J_{3}\left(p ; e_{1}\right)=\alpha^{3}=0, J_{3}\left(p ; e_{4}\right)=$ $-\alpha\left(\alpha^{2}-1\right)=0$ and from here we obtain (10).

Theorem 3. A 4-dimensional Lorentzian manifold (M, g) is a manifold of pointwise constant characteristic coefficients $J_{1}(p ; X)$ and $J_{3}(p ; X)=0$ of the Jacobi operator R_{X} for any tangent vector $X \in{ }^{ \pm} S_{p} M$ if and only if at any point $p \in M$ the metrics of M is 170
one of the following three types:

$$
\begin{equation*}
d s^{2}=0, \tag{13}
\end{equation*}
$$

a decomposable metrics which is decompose to the quadratic forms:

$$
\begin{gather*}
d s^{2}=d x_{1}^{2}+\cos ^{2}\left(\sqrt{\lambda} x_{1}\right) d x_{2}^{2}+d x_{3}^{2}-\cos ^{2}\left(\sqrt{\lambda} x_{3}\right) d x_{4}^{2} ; \lambda>0 ; \tag{14}\\
d s^{2}=d x_{1}^{2}+\operatorname{ch}^{2}\left(\sqrt{-\lambda} x_{1}\right) d x_{2}^{2}+d x_{3}^{2}-\operatorname{ch}^{2}\left(\sqrt{-\lambda} x_{3}\right) d x_{4}^{2} ; \lambda>0, \lambda=\text { const } ; \\
d s^{2}=d x_{1}^{2}+\operatorname{sh}^{2}\left(x_{1}-x_{4}\right) d x_{2}^{2}+\sin ^{2}\left(x_{1}-x_{4}\right) d x_{3}^{2}-d x_{4}^{2} ; \tag{15}
\end{gather*}
$$

Remark 2. The metrics in (14) and (15) are given in a special coordinate system [1].
Proof. The if part. If $e_{1}, e_{2}, e_{3}, e_{4}\left(e_{4} \in{ }^{-} S_{p} M\right)$ is a Petrov basis in the tangent space M_{p}, at a point $p \in M$, then for the curvature components with respect to this basis we have one of the formulas (4)-(6). From our assumption $J_{1}(p ; X)$ to be a pointwise constant and $J_{3}(p ; X)=0$, for any tangent vector $X \in{ }^{ \pm} S_{p} M$, for the invariants of a Petrov basis we have one of the possibilities (7)-(10). If (7) holds, then (M, g) is flat at p and we have (13). If (8) are satisfied, then (M, g) is a decomposable space with a metric given in a special coordinate system by the equalities (14) - these results follows from the investigations in [1]. If (9) are satisfied, then we have the following system of differential equations $\nabla_{E_{t}} R\left(E_{i}, E_{j}, E_{k}, E_{s}\right)=0$, where E_{i} are a smooth vector fields defined in a neighbourhood U_{p} around a point $p \in M$ such that $E_{i \mid p}=e_{i}, i=1,2,3,4$. Finding conditions for the integralibility of these equations we differentiate once more and alternate by index of differentiation. Then using the Ricci equality [5] we obtain

$$
\begin{equation*}
R_{s l m[a} R_{b] g d}^{s}+R_{s l m[g} R_{d] a b}^{s}=0 \tag{16}
\end{equation*}
$$

where [.] denote an alternation. Now from (5), (16) and putting $\lambda=1, \mu=4$ we receive $\alpha_{1}=\beta_{1}=0$. Hence from (5) we have $2 \alpha_{1}=\tau$ again, where τ is a scalar curvature on M. Fixing indices in (16) and using the substitution $\lambda \leftrightarrow 2, \mu \leftrightarrow 4, \alpha \leftrightarrow 1, \beta \leftrightarrow 4$, $\gamma \leftrightarrow 1, \delta \leftrightarrow 2$ we obtain $\alpha_{2}=0$ and $\tau=0$. In [1] was proven that an uniquely Einstein Lorentzian manifold (M, g) exists, such that $\alpha_{1}=\beta_{1}=\alpha_{2}=\beta_{2}=0$ and it is a Petrov space of maximal mobility of metrics given in a special coordinate system by (16). Finally we remark that if we have (10), then putting in (16) these expressions we obtain a contradiction and hence this case is impossible.

The only if part. If we have (13) for g, then (M, g) is flat at p and evidently (M, g) is an Einstien Lorentzian manifold also $J_{3}(p ; X)=0$ for any unit spacelike or timelike tangent vector $X \in M_{p}$, at any point $p \in M$. If for g we have (14), then (8) are satisfied either. Let y is an arbitrary unit spacelike or timelike tangent vector in M_{p} and let

$$
\begin{equation*}
y=\sum_{i=1}^{6} a_{i} e_{i}, \quad a_{1}^{2}+a_{2}^{2}+a_{3}^{2}-a_{4}^{2}=\varepsilon, \quad \varepsilon= \pm 1 \tag{17}
\end{equation*}
$$

where a_{i} are an arbitrary real numbers and $e_{1}, e_{2}, e_{3}, e_{4}\left(e_{4} \in^{-} S_{p} M\right)$ be a Petrov basis in M_{p}. Then the characteristic equation of the Jacobi operator R_{y} is:

$$
\mu^{2}\left(\mu^{2}-\alpha_{3} \mu+\left(\alpha_{1}^{2}-\alpha_{4}^{2}\right)\left(\alpha_{2}^{2}+\alpha_{3}^{2}\right)\left(9 \beta_{1}^{2}+\alpha_{3}^{2}\right)\right)=0 .
$$

Hence $J_{3}(p ; y)=0$ and $J_{1}(p ; y)=3$ is a pointwise constant which means (M, g) is an Einsteinium Lorentzian manifold. If for g we have (15), then we have also (9) and from (5) we obtain $K_{12}=0, K_{13}=-1, K_{23}=1, R_{3114}=-R_{3224}=1$. If y is an arbitrary unit spacelike or timelike tangent vector in M_{p} given by (17), then

$$
J_{3}(p ; y)=\left|\begin{array}{cccc}
(c+t)^{2} & 0 & -a(c+t) & -a(c+t) \\
0 & -(c+t)^{2} & -b(c+t) & b(c+t) \\
-a(c+t) & -b(c+t) & a^{2}-b^{2} & b^{2}-a^{2} \\
-a(c+t) & -b(c+t) & a^{2}-b^{2} & b^{2}-a^{2}
\end{array}\right|=0 .
$$

REFERENCES

[1] A. Z. Petrov. Einsteinian spaces. GIFML, Moskva (1961).
[2] A. Einstein. Zur allgemeinen Relativitaetstheorie, Berl. Berichte(1915).
[3] N. Blazic, N. Bokan, P. Gilkey. A Note on Osserman Lorentzian manifolds. J. Bull. London Math. Soc., 29 (1997), 227-230.
[4] P. Gilkey, A. Swann, L. van Hecke. Isoparametric geodesic spheres and a conjecture of Osserman regarding the Jacobi Operator. J. Quart. Math., 46 (1995), 299-320.
[5] Q. S. Chi. A curvature characterization of certain locally rank one symmetric spaces. J. Diff. Geom., 28 (1988), 187-202.
[6] M. Dajczer, K. Nomizu. On sectional curvature of indefinite metrics II. J. Math. Ann., 247 (1980), 279-282.
[7] R. Osserman. Curvature in the eighties. J. Amer. Math. Monthly, 97 (1990),731-756.
[8] V. Videv. Weakly conditions for a four -dimensional Lorentzian manifolds. Math. and Education in Math., 26 (1998), 178-183.
Veselin Videv
Mathematics and Physics Department
Thracian University
6000 Stara Zagora
Bulgaria

ХАРАКТРЕИЗИРАНЕ НА МЕТРИКАТА В БАЗОВА ТОЧКА НА ЧЕТИРИМЕРНИ АЙНЩАЙНОВИ ЛОРЕНЦОВИ МНОГООБРАЗИЯ ЧРЕЗ ОПЕРАТОРА НА ЯКОБИ

Веселин Тодоров Видев

В представената статия изследваме четиримерни Айнщайнови Лоренцови многообразия със свойството характеристичният коефициент $J_{1}(p ; X)$ на оператора на Якоби R_{X} да е точково постоянен, а характеристичният коефициент $J_{3}(p ; X)$ на R_{X} да е равен на нула в произволна точка $p \in M$ и за произволен единичен неизотропен вектор $X \in M_{p}$.

