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*

Mikhail Krastanov, Neli Dimitrova

A model of continuous methane fermentation process, described by a two-dimensional
control system, is studied. We compute the static optimal point according to a given
criterion and design a feedback control stabilizing the process around this point.
Numerical results are also reported.

1. Introduction. We consider the following mathematical model of the continuous

methane fermentation process [2, 6]:

dx

dt
=

k1s

k2 + s
x− ux(1)

ds

dt
= −k3

k1s

k2 + s
x+ u(sin − s);(2)

Q = k4
k1s

k2 + s
x,(3)

where x = x(t) and s = s(t) are state variables,

x is biomass concentration,
s is substrate concentration (i. e. output pollution level),
u is dilution rate (i. e. flow rate),
sin is influent substrate concentration (i. e. input pollution level),
Q is methane gas flow rate,
k1, k2, k3 are kinetic coefficients,
k4 is a proportional coefficient.

The control input is the dilution rate u and the output is methane gas flow rateQ = Q(u).

The above biological interpretation of x, s, u, sin and ki, i = 1, 2, 3, 4, implies the

following bounds for them:

x > 0, 0 < s < sin, 0 < u <
k1sin

k2 + sin
, Q > 0, ki > 0, i = 1, . . . , 4.(4)

The aim of this note is to show how to synthesize a bounded control function u (with

admissible values) which stabilizes the control system (1)–(2) in a suitable neighbourhood
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of the static optimal point of this process. The static optimal point is defined and

computed in Section 2. Section 3 presents a procedure for constructing a stabilizing

feedback control. Numerical results are reported in Section 4.

2. The Static Optimal Point. The static model of the methane fermentation

process is delivered from (1)–(2) by setting [2, 6]

dx

dt
= 0,

ds

dt
= 0.

Thus the static model is presented by the following system of nonlinear equations

k1s

k2 + s
− u = 0(5)

−k3
k1s

k2 + s
x+ u(sin − s) = 0.(6)

According to (4) denote

U =

(

0,
k1sin

k2 + sin

)

.

For each u ∈ U the nonlinear system (5)–(6) possesses an unique solution (x∗(u), s∗(u)),

which can be found explicitly:

x∗(u) =
sink1 − (k2 + sin)u

k3(k1 − u)
, s∗(u) =

k2u

k1 − u
.

From 0 <
k1sin

k2 + sin
< k1 it follows that x∗(u) > 0 and 0 < s∗(u) < sin are satisfied. The

set of all points

{(x∗(u), s∗(u)) : u ∈ U}

is called steady states of the dynamics (1)–(2). It is straightforward to check that if

(x∗(u), s∗(u)) is a steady state point then the following relation holds true:

s∗(u) + k3x
∗(u) = sin.

By substituting x = x∗(u) and s = s∗(u) in the expression for Q in (3) we obtain the

following representation of Q(u):

Q(u) =
k4(sink1 − (k2 + sin)u)u

k3(k1 − u)
.

Obviously Q(u) > 0 is fulfilled for u ∈ U . The function Q(u) is called static characteristic

of the dynamic process (1)–(2).

We have further

dQ(u)

du
=

k4
k3

k21sin − 2k1(k2 + sin)u+ (k2 + sin)u
2

(k1 − u)2
.

Finding the solutions of
dQ(u)

du
= 0 reduces to solving the quadratic equation k21sin −

2k1(k2 + sin)u+ (k2 + sin)u
2 = 0, which possesses an unique real root u0 ∈ U ,

u0 =
k1(k2 + sin)− k1

√

k2(k2 + sin)

k2 + sin
.(7)
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Thus u0 ∈ U is the unique point where Q(u) takes its maximum, that is Qmax = Q(u0).

The point (x0, s0) = (x∗(u0), s
∗(u0)) is called static optimal point of (1)–(3).

3. Feedback Control Design. Let Ω be a compact neighbourhood of the static

optimal point (x0, s0). Following [1] and [5] we shall introduce some notions. A bounded

function k : Ω → U will be called feedback. Any infinite sequence π = {ti}
∞
i=0 consisting

of numbers

0 = t0 < t1 < t2 < ...

with limi→∞ ti = ∞ is called a partition of [0,+∞] and the number

d(π) := sup
i≥0

(ti+1 − ti)

is its diameter. The trajectory associated to a feedback k(x, s) and any given partition

π is defined as the solution of (1)–(2) obtained by means of the following procedure (this

procedure is borrowed from the theory of positional differential games and is systemat-

ically studied by Krasovskii and Subbotin in [4]): on every interval [ti, ti+1] the initial

state is measured, ui = k(x(ti), s(ti)) is computed and then the constant control u ≡ ui

is applied until time ti+1 is achieved, when a new measurement is taken.

Definition.The feedback k : Ω → U is said to stabilize asymptotically the system

(1)–(2) at the point (x0, s0) if for every ε > 0 there exist T > 0, δ > 0, a partition π

with diameter not greater than δ such that for every point (x, s) ∈ Ω the corresponding

trajectory of (1)–(2) is well defined on [0,+∞) and satisfies the following conditions:

(a) (x(t), s(t)) ∈ Ω for every t ≥ 0;

(b) ‖(x(t) − x0, s(t) − s0)‖ < ε for every t ≥ T (here ‖(x, s)‖ denotes the standard

Euclidean norm in R2).

After the coordinate change

ξ =
x− x0 − k3(s− s0)

1 + k23

η =
s− s0 + k3(x− x0)

1 + k23

the control system (1)–(2) can be written as follows:

dξ

dt
= f(ξ, η;u)(8)

dη

dt
= −uη,(9)

where

f(ξ, η;u) =
k1(x0 + ξ + k3η)(s0 − k3ξ + η)

k2 + y0 − k3ξ + η
− u(x0 + ξ).(10)

Clearly, the point (x0, s0) is mapped into (0, 0) in the new coordinate system.

Since the property asymptotic stability does not depend on the choice of the coor-

dinate axes, we can study this property in some neighbourhood of the origin (using the

new coordinates ξ and η).

Let be B = {(ξ, η) : |ξ| ≤ r1, |η| ≤ r2} within ri > 0, i = 1, 2. Let us assume that for
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any (ξ, η) ∈ B the equation f(ξ, η;u) = 0 has an unique solution u∗(ξ, η) > 0. Define

umin = min
(ξ,η)∈B

u∗(ξ, η), umax = max
(ξ,η)∈B

u∗(ξ, η).

Proposition 1.Let us assume that:

(i) for some δ > 0 the elements of the interval I := [umin − δ, umax + δ] are admissible

values of the control, i. e. I ⊂ U ;

(ii) max{
∂f

∂u
(ξ, η;u) : (ξ, η) ∈ B, u ∈ I} < 0.

Then the control system (8)–(9) is asymptotically stabilizable at the origin (0, 0).

Remark. Proposition 1 holds true not only for systems for which f is determined

from (10), but for every smooth f satisfying (i) and (ii).

Proof. Let us fix an arbitrary ε such that 0 < ε < min{r1, r2}. Since I and B are

compact, there exists a real h > 0 such that for every integrable function u : [0, h] → I

and every point (ξ, η) ∈ B the solution of (8)–(9) starting from the point (ξ, η) is well

defined. Let

m := −max{
∂f

∂u
(ξ, η;u) : (ξ, η) ∈ B, u ∈ I}.

Assumption (ii) implies m > 0. We set

M = max{|f(ξ, η;u)| : (ξ, η) ∈ B, u ∈ I}.

Without loss of generality we may assume that 0 < h ≤ ε/max{M,mδ}. We define

the partition π and the feedback k = k(ξ, η) as follows: π = {ih}∞i=0 and

k(ξ, η) =







umax + δ, if ξ > 0,
umin − δ, if ξ < 0,
u∗(ξ, η), if ξ = 0.

Let (ξ0, η0) ∈ B be an arbitrary point and (ξ(·), η(·)) be the corresponding trajectory

of the system (8)–(9). Taking into account the choice of h, this trajectory is well defined

on [0, h].

Consider first the case ξ0 > 0. According to the definition of trajectory corresponding

to the feedback k = k(ξ, η), we have

f(ξ(τ), η(τ), k(ξ0 , η0)) = f(ξ(τ), η(τ); k(ξ0 , η0))− f(ξ(τ), η(τ);u∗(ξ(τ), η(τ)))

=
∂f

∂u
(ξ(τ), η(τ); ζ)(k(ξ0 , η0)− u∗(ξ(τ), η(τ)))

=
∂f

∂u
(ξ(τ), η(τ); ζ)(umax + δ − u∗(ξ(τ), η(τ))) ≤ −mδ

for each τ ∈ [0, h]. This presentation implies

ξ(h) = ξ0 +

∫ t+h

t

f(ξ(τ), η(τ); k(ξ0 , η0))dτ ≤ ξ0 −mδh ≤ ξ0 ≤ r1;

ξ(h) = ξ0 +

∫ t+h

t

f(ξ(τ), η(τ); k(ξ0 , η0))dτ(11)
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≥

∫ t+h

t

f(ξ(τ), η(τ); k(ξ0 , η0))dτ ≥ −Mh ≥ −ε ≥ −r1.

Similarly, for ξ0 < 0 we obtain

ξ(h) = ξ0 +

∫ t+h

t

f(ξ(τ), η(τ); k(ξ0 , η0))dτ ≥ ξ0 +mδh ≥ ξ0 ≥ −r1;

ξ(h) = ξ0 +

∫ t+h

t

f(ξ(τ), η(τ); k(ξ0 , η0))dτ(12)

≤

∫ t+h

t

f(ξ(τ), η(τ); k(ξ0 , η0))dτ ≤ Mh ≤ ε ≤ r1.

For ξ0 = 0 we have

ξ(h) = ξ0 +

∫ t+h

t

f(ξ(τ), η(τ);u∗(ξ0, η0))dτ = ξ0.(13)

From (11), (12) and (13) it follows that |ξ(h)| ≤ r1. For η(h) we have

|η(t)| ≤ e−(umin−δ)h|η(0)| ≤ e−(umin−δ)hr2 < r2.

Hence (ξ(h), η(h)) ∈ B. But then the trajectory of (8)–(9) will also be well defined on

the interval [h, 2h] and will remain in B. Continuing in the same manner we shall obtain

that the trajectory of (8)–(9) is defined on [0,+∞) and does not leave B. Moreover the

inequalities (11)–(13) imply that |ξ(t)| < ε for t ≥ T1 := |ξ(0)|/(mδh) is valid. Since

k(ξ, η) ≥ umin − δ > 0 for every (ξ, η) ∈ B holds true, we obtain that

|η(t)| ≤ e−(umin−δ)t|η(0)| < ε is also fulfilled for t ≥ T2 :=
ln r2 − ln ε

umin − δ
> 0.

Hence, for t ≥ max{T1, T2} we shall have that ‖(ξ(t), η(t))‖ ≤ ε is satisfied. This

completes the proof.

4. Numerical experiments. From the literature [3] and from practical experi-

ments the following values for the the coefficients in the model (1)–(3) are known:

k1 = 0.4; k2 = 0.4; k3 = 27.4; k4 = 75; sin = 3.

To demonstrate the theoretical results from the previous sections we use the computer

algebra system Maple V Release 3 for Windows to perform the calculations and graphic

visualizations.

Solving numerically the equation
dQ

du
(u) = 0 we obtain

u0 = 0.262811318 and Qmax = Q(u0) = 1.606882382.

The static optimal point (x0, s0) is given by the approximate values

x0 = x∗(u0) = 0.08152589862, s0 = s∗(u0) = 0.7661903781;

obviously, s0 + k3x0 = sin is fulfilled. According to Proposition 1 we have to determine

a compact neighbourhood B of the origin (0, 0) such that u∗(ξ, η) > 0 holds for all

(ξ, η) ∈ B. We define

B = {(ξ, η) : −0.002 ≤ ξ ≤ 0.024, −0.0022 ≤ η ≤ 0.0009}.
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and find

umin = 0.03603272084, umax = 0.3524861030.

For m = 0.07 it follows −
∂f

∂u
= x0 + ξ ≥ m > 0 (see Proposition 1). Further we choose

δ = 0.0004, ε = 0.0007 and h = 0.046. We consider ti = ih, i = 0, 1, . . . , n, and initial

conditions ξ(0) = −0.001, η(0) = −0.000001 from B. The substitution

x = x0 + ξ + k3η, s = s0 − k3ξ + η(14)

delivers

x(0) = 0.08139849862, s(0) = 0.768929378.

According to Proposition 1 we use an appropriate control u = umax + δ to compute

(ξ(t1), η(t1)) and therefore (x(t1), s(t1)) according to (14); this process is being repeated

changing the control u in the correct way. A worksheet in Maple was prepared to solve

numerically the system (8)–(9) on each step ti, i = 1, 2, . . . , n. Thereby we used the

procedure dsolve from the Maple library. Finally we computed (x(ti), s(ti)) according

to (14) and Q(ti) by means of (3).

Fig. 1. Qmax and Q(ti), i = 0, 1, 2, . . . , 500

The following Figure 1 visualizes 500 steps of the computations in the plane (t, Q(t)).

The horizontal line goes through Qmax and all points {(ti, Q(ti))}, i = 1, 2, . . . , 500, are

connected by lines.
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ВЪРХУ КОНСТРУИРАНЕТО НА СТАБИЛИЗИРАЩА ОБРАТНА

ВРЪЗКА ЗА ЕДИН ПРОЦЕС НА МЕТАНОВА ФЕРМЕНТАЦИЯ

Михаил Иванов Кръстанов, Нели Стоянова Димитрова

Изследван е един модел на метанов ферментационен процес, описан чрез двумер-

на управляема система. Пресметната е статична оптимална точка по отношение

на даден критерий и е конструрирана обратна връзка, стабилизираща процеса в

околност на тази статична точка. Представени са също и числени резултати от

системата за компютърна алгебра Maple.
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