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ON A STABILIZING CONTROL DESIGN FOR A METHANE
FERMENTATION PROCESS *

Mikhail Krastanov, Neli Dimitrova

A model of continuous methane fermentation process, described by a two-dimensional
control system, is studied. We compute the static optimal point according to a given
criterion and design a feedback control stabilizing the process around this point.
Numerical results are also reported.

1. Introduction. We consider the following mathematical model of the continuous
methane fermentation process [2, 6]:

dx kis
1 - = _
(1) dt o+ s
ds kis
2 -z = _
(2) o k3k2+sm+u(sm s);
kzls
3 —
( ) Q 4k’2+5 ’

where x = z(t) and s = s(t) are state variables,

x is biomass concentration,

s is substrate concentration (i. e. output pollution level),

w is dilution rate (i. e. flow rate),

Sin is influent substrate concentration (i. e. input pollution level),
Q@ is methane gas flow rate,

ki1, ko, k3 are kinetic coefficients,

k4 is a proportional coefficient.

The control input is the dilution rate v and the output is methane gas flow rate @ = Q(u).
The above biological interpretation of x, s, u, s;, and k;, ¢ = 1,2,3,4, implies the
following bounds for them:

k1s;
(4) >0, 0<8<8m, 0<u< ——"  Q>0, k;>0,i=1,...,4
kQ + Sin
The aim of this note is to show how to synthesize a bounded control function u (with

admissible values) which stabilizes the control system (1)—(2) in a suitable neighbourhood
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of the static optimal point of this process. The static optimal point is defined and
computed in Section 2. Section 3 presents a procedure for constructing a stabilizing
feedback control. Numerical results are reported in Section 4.

2. The Static Optimal Point. The static model of the methane fermentation
process is delivered from (1)—(2) by setting [2, 6]

dz ds
— =0, —=0.
a7 dt
Thus the static model is presented by the following system of nonlinear equations
kls
5 —u=0
() s U
(6) kg ( )=0
— x4+ u(sin —8) =
3k‘2 + in
According to (4) denote
k in
U=(0,— >
k2 + sin

For each u € U the nonlinear system (5)—(6) possesses an unique solution (z*(u), s*(u)),
which can be found explicitly:

% - Sinkl — (kQ —+ sm)u % o kgu
v (U)i k’3(k‘1—u) » 8 (U)ikl—’u,.
ks
From 0 < % < ky it follows that 2*(u) > 0 and 0 < s*(u) < s;,, are satisfied. The
2 in

set of all points

{(z"(u),s%(u)) s u € U}
is called steady states of the dynamics (1)—(2). It is straightforward to check that if
(z*(u), s*(u)) is a steady state point then the following relation holds true:

s (u) + ks (u) = sin.

By substituting = z*(u) and s = s*(u) in the expression for @ in (3) we obtain the
following representation of Q(u):
ka(sink1 — (k2 + Sin)u)u

Qu) = ks (k1 — )
Obviously Q(u) > 0 is fulfilled for v € U. The function Q(u) is called static characteristic
of the dynamic process (1)—(2).
We have further
dQ(u) k4 k3sin — 2k1(ka + sin)u + (k2 + 8in )u?
du ks (k1 —u)? '
dQ(w)
d

Finding the solutions of = 0 reduces to solving the quadratic equation k?s;, —

u
2k1 (k2 + sin)u + (k2 + sin)u? = 0, which possesses an unique real root ug € U,

M) wp = k1(ka + sin) — k1y/ka(ke + sin)

k2 + Sin
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Thus ug € U is the unique point where Q(u) takes its maximum, that is Qmax = Q(ug).
The point (zg, s0) = (x*(ug), s*(up)) is called static optimal point of (1)—(3).

3. Feedback Control Design. Let {2 be a compact neighbourhood of the static
optimal point (zg, sg). Following [1] and [5] we shall introduce some notions. A bounded
function k : 2 — U will be called feedback. Any infinite sequence m = {¢;}$2, consisting
of numbers

0=ty <t <t <..
with lim; o t; = 00 is called a partition of [0, +00] and the number

d(Tr) = sup(tHl — tz)
>0

is its diameter. The trajectory associated to a feedback k(zx, s) and any given partition
7 is defined as the solution of (1)—(2) obtained by means of the following procedure (this
procedure is borrowed from the theory of positional differential games and is systemat-
ically studied by Krasovskii and Subbotin in [4]): on every interval [t;,¢;+1] the initial
state is measured, u; = k(z(t;), s(t;)) is computed and then the constant control u = u;
is applied until time ¢;;; is achieved, when a new measurement is taken.

Definition. The feedback k : Q — U 1is said to stabilize asymptotically the system
(1)-(2) at the point (xg,so) if for every e > 0 there exist T > 0, § > 0, a partition =
with diameter not greater than § such that for every point (xz,s) € Q the corresponding
trajectory of (1)—(2) is well defined on [0,400) and satisfies the following conditions:
(a) (z(t),s(t)) € Q for every t > 0;

(®) [(x(t) — xo, s(t) — so)|| < € for every t > T (here ||(z,s)| denotes the standard
Euclidean norm in R?).

After the coordinate change

x—xo — ks(s — so)

¢ = 1442
s — 8o + ks(z — x9)
n 2
1+ k3
the control system (1)—(2) can be written as follows:
dg
) L= fenw
dn
where
ky(zo + €+ k — k3t +
(10) (e mi) = TZ0 T E L R0 “RE X 1) g g,

k2 +yo — ks& +n
Clearly, the point (zg, so) is mapped into (0,0) in the new coordinate system.

Since the property asymptotic stability does not depend on the choice of the coor-
dinate axes, we can study this property in some neighbourhood of the origin (using the
new coordinates £ and 7).

Let be B={(¢,n): |&| < r1,|n| < re} within r; > 0,4 = 1,2. Let us assume that for
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any (£,m) € B the equation f(&,n;u) =0 has an unique solution u*(&,n) > 0. Define

Umin = min u*(&,7), Umax = max u* (&, 7).
min = i, v (Gm), e = mox, w(Cm)
Proposition 1. Let us assume that:
(i) for some § > 0 the elements of the interval I := [umin — 0, Umax + 0] are admissible
values of the control, i. e. I CU;

0
) max{a—z(g,n;u) : (&n)eB,uel} <.
Then the control system (8)—(9) is asymptotically stabilizable at the origin (0,0).

Remark. Proposition 1 holds true not only for systems for which f is determined
from (10), but for every smooth f satisfying (¢) and (i).

Proof. Let us fix an arbitrary € such that 0 < ¢ < min{ry,r2}. Since I and B are
compact, there exists a real h > 0 such that for every integrable function u : [0,h] — I
and every point (£,7) € B the solution of (8)—(9) starting from the point (£,7) is well
defined. Let

0
m = —max{a—i(«f,n;u) : (&,n) € B, uel}.
Assumption (i7) implies m > 0. We set
M = max{|f(§,n;u)| - (§,n) € B, u € I}.
Without loss of generality we may assume that 0 < h < &/ max{M, md}. We define
the partition 7 and the feedback k = k(§,n) as follows: m = {ih}$2, and
Umax + 67 lf § > 07
k(ga 77) = Umin — 5; 1f£ < 07
Let (£0,7m0) € B be an arbitrary point and (£(+),n(-)) be the corresponding trajectory
of the system (8)—(9). Taking into account the choice of h, this trajectory is well defined
on [0, hl.
Consider first the case £ > 0. According to the definition of trajectory corresponding
to the feedback k = k(&,n), we have

FE&(T),n(7), k(&0 m)) = FE(T),n(T); k(&o,m0)) — F(E(T), n(7); u” (§(7), n(T)))
of

= I et ) e o) — ), )
= e 0 Otma +5 (€ m(r) < —mo

for each 7 € [0, h]. This presentation implies

t+h
Eh) = §0+/t FE(T),n(7); k(o,m0))dT < §o —méh < &o <15

t+h
(1) &n) = @+L‘ FEE)n(r): E(Eo. 10))dr
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t+h
> /‘ FEE) (7 k(Eosno))dr > —Mh > —& > —ry.
t

Similarly, for £y < 0 we obtain

t+h
€h) = G+ / FE)n(r): k(€osm0))dr > & +mh > & > —ru;
t

t+h
(12)  &h) = @+L‘ FE)1(r): k(o 1m0))dr

IN

t+h
/t FE)n(r); k(Eo,mo))dr < Mh < & <.

For & = 0 we have

t+h
(13) «mzewy[ FE) n(r); " (€0, m0))dr = o,

From (11), (12) and (13) it follows that |£(h)| < 1. For n(h) we have
[n(t)] < e mn= D |p(0)] < e (min=iy <y,

Hence (¢(h),n(h)) € B. But then the trajectory of (8)—(9) will also be well defined on
the interval [h, 2h] and will remain in B. Continuing in the same manner we shall obtain
that the trajectory of (8)—(9) is defined on [0, +00) and does not leave B. Moreover the
inequalities (11)—(13) imply that |{(¢)| < € for t > Ty := |£(0)|/(mdh) is valid. Since
kE(&,n) > tumin — d > 0 for every (£,m) € B holds true, we obtain that
Inrg —1
In(t)] < e~ min=0|5(0)| < & is also fulfilled for t > Ty := % > 0.

Hence, for t > max{T1,T2} we shall have that [|(£(¢),n(t))|| < e is satisfied. This
completes the proof.

4. Numerical experiments. From the literature [3] and from practical experi-
ments the following values for the the coefficients in the model (1)—(3) are known:

k1=04; ko=0.4; k3 =274; ky=75; si, = 3.

To demonstrate the theoretical results from the previous sections we use the computer
algebra system Maple V Release 3 for Windows to perform the calculations and graphic
visualizations.

d
Solving numerically the equation d—Q(u) = 0 we obtain
u

ug = 0.262811318 and Qmax = Q(ug) = 1.606882382.
The static optimal point (zg, o) is given by the approximate values
xo = x*(up) = 0.08152589862, s9 = s*(ug) = 0.7661903781;

obviously, sg + ksxg = S, is fulfilled. According to Proposition 1 we have to determine
a compact neighbourhood B of the origin (0,0) such that «*(¢,7) > 0 holds for all
(&,n) € B. We define

B ={(&n):—0.002 < ¢ <0.024, —0.0022 < n < 0.0009}.
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and find
Umin = 0.03603272084,  umax = 0.3524861030.

0
For m = 0.07 it follows ——z =129+ & > m > 0 (see Proposition 1). Further we choose
6 = 0.0004, € = 0.0007 and h = 0.046. We consider t; = ih, i = 0,1,...,n, and initial
conditions £(0) = —0.001, n(0) = —0.000001 from B. The substitution

(14) x=xzo+&+ksn, s=s9—k&+n
delivers
2(0) = 0.08139849862, s(0) = 0.768929378.

According to Proposition 1 we use an appropriate control u = umax + 6 to compute
(&(t1),m(t1)) and therefore (z(t1), s(t1)) according to (14); this process is being repeated
changing the control u in the correct way. A worksheet in Maple was prepared to solve
numerically the system (8)—(9) on each step t;, i = 1,2,...,n. Thereby we used the
procedure dsolve from the Maple library. Finally we computed (z(t;), s(t;)) according
to (14) and Q(t;) by means of (3).

1.6066

1.60627

1.6061

Fig. 1. Qumax and Q(t:), i =0,1,2,...,500

The following Figure 1 visualizes 500 steps of the computations in the plane (¢, Q(t)).
The horizontal line goes through Qmax and all points {(¢;, Q(¢:))}, i = 1,2,...,500, are
connected by lines.
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BBbPXY KOHCTPYUPAHETO HA CTABUJIN3UNPAIIIA OBPATHA
BPBb3KA 3A EJIVH ITPOIIEC HA METAHOBA ®EPMEHTAIINA

Muxana UBanoB Kpbcranos, Henu CrosimoBa JdumurpoBa

Wscnensan e e MoJies1 Ha METAHOB (DePMEHTAIMOHEH IIPOIIEC, OIMCAH YPEe3 JIBYMep-
Ha ympasJisieMa cucreMa. [IpecMerHaTa e cTaTUYHA ONTHMAJIHA TOYKA 1O OTHOIIEHUE
Ha JaJIeH KPUTepUil 1 e KOHCTPYpHUpaHa oOpaTHa Bpb3Ka, CTAOM/IM3NpAIa IPoIeca B
OKOJTHOCT Ha Ta3W CTaTUYHA TOYKA. lIpe/icTaBeHM ca CBINO W YUCIEHU PE3YJITATH OT
crcTeMara 3a KOMITIOTbpHa ajrebpa Maple.
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