
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 1999

MATHEMATICS AND EDUCATION IN MATHEMATICS, 1999

Proceedings of Twenty Eighth Spring Conference of

the Union of Bulgarian Mathematicians

Montana, April 5–8, 1999

VISUAL INTEGREATED SYSTEM FOR

OBJECT-ORIENTED DEVELOPMENT AND

EXPLOITATION OF A SPECIAL CLASS INFORMATIONAL

SYSTEMS
*

Lubomir Petrov Stanchev

The work introduces a tool for rapid design and development of information system
(IS) [7]. The name of the tool is Visual Object-Oriented Shell for Information Systems
(VOOSIS). The class of IS supported by the tool is limited to systems monitoring the
changing characteristics of the modeled real world objects. More precisely the system
keeps track of an object hierarchy, representing the physical containment of the real
world objects represented in the system and a class hierarchy, representing the inher-
itance between the object types. Although VOOSIS has common feature with the
object-oriented database management systems (OODBMS), it presents many unique
characteristics, related to the specific application of the system. A working hybrid
horizontal-vertical prototype of the system has been developed. It consists of four
parts: VOOSIS ADMINISTRATOR, VOOSIS DESIGNER and VOOSIS OPERA-
TOR and VOOSIS ANALYZER. The prototype is developed using Borland Delphi
3.0 [3] and runs under Windows 95 and Windows NT. If the prototype is extended,
the system that emerges can be applied for handling the informational needs of pro-
cess like monitoring the groceries in a supermarket, handling the organization in a
restaurant, etc.

1. Introduction. With the increase use of information technologies trough out
the world the need for CASE tools for fast and user friendly creation and exploitation
of IS has become more evident. This paper proposes one such tool, which has limited
application. The area of situations to which the proposed tool can be applied is narrowed
to real-world situations where the movement of objects, related to the surrounding them
objects is the process that requires computerized handling. Although the proposed tool
has many elements in common with OODBMS ([1], [4] and [6]), it differs from them in
some ways. The major characteristics of VOOSIS are:

• It has visual view for browsing the object and class hierarchy.

• Supports quantitative objects, i.e. objects that have quantitative property.

*This paper is partially supported by the Ministry of Education, Science and Technology of Bulgaria
under grant I-811/1998.

Some files associated with this paper can be found at copern.bas.bg/lubomir/voosis.zip

211

• Allows the merging of two quantitative objects into one and the split of one quan-
titative object into two objects.

• Supports an extension of SQL in order to meet the unique requirements of the class
of IS that can be created with the system. In particular there are primitives for
finding the objects that belong in a specified object or are part of a specified class.
Since the only relationship between objects that the system supports is “physical
containment”, constructions for specifying complex relationships between objects
like “joins” are absent from the extended SQL supported by the system.

• Handles strict authority of the users of the system. More precisely, the system
requires the users of the system to be part of one or more groups. VOOSIS allows
for every class of object and group the explicit definition of the rights of the users
belonging to that group. In particular they may have rights to create, move, delete,
examine or place objects in an object from the specified type.

• Supports event handling. The events in the system can be system, class or object.
An example of a system even is the login of a new user in the system. An example
of a class event is the change of the global characteristics of an object. An example
of an object event is the creation of a new object.

The goal of this work is to propose a new tool for creating a special class of IS and
describe its design. In part 2 the main theoretical concepts behind the proposed tool will
be outlined. Part 3 of the paper summarized the reached in the work results.

2. Visual Object-Oriented Shell of an Information System (VOOSIS). The
system VOOSIS is a tool for creation and use of IS. Although the system has some
characteristics in common with OODBMS it remains an IS shell, because of its limited
application. The system compensates this limited application with the unique function-
ality. For example it supports visual view of the objects and classes of an IS, possibility
for merging of two objects into one and the split of one objet into two, numerical mea-
surement of the objects, etc. Those are all features not characteristic for OODBMS.
It is also true that the system does not support basic for OODBMS features such as
reference and composite attributes. In this point we will look at the main characteristics
of VOOSIS and will compare them with this of OODBMS where appropriate.

2.1 Structure of the Objects in VOOSIS. The objects in the system model real-
world objects. The designers and operators of the system create the objects. Each object
has a type– the class from which it is created. The objects are connected in an object
hierarchy, corresponding to the physical containment of the modeled real-world objects.
Except information about the object hierarchy the system can contain information about
the relative position of each object to the object that contains it. This gives the system
characteristics close to that of a Geographical Information System.

The characteristics of an object are the class to which it belongs, the coordinates of
the object relative to the object that contains it and the values of the object’s class local
attributes. If a given local attribute value is not entered during an object’s definition the
default value for that attribute entered during the class’s definition is used.

Similar to most OODMS the objects in VOOSIS do not have a name, but a unique
for the IS identifier. The reason for this decision is that the objects themselves do not

212

have their own identity, except for the class to which they belong and their place in the
object hierarchy. If for some reason the different objects from a class should have names,
this could be accomplished by adding a textual attribute “name” to that class. VOOSIS
allows for the definition of key attributes but does not index on them because the system
does not support the need complex storage mechanisms to do so.

The users of VOOSIS, and more particularly the operators of an IS supported by
VOOSIS could be part of the object hierarchy of that IS. This makes sense because the
operators in most cases are part of the modeled space and like the rest of the object
in it, execute actions and actions are executed on them. The system lives the decision
on whether the users of the system are displayed as objects in the object hierarchy of a
particular IS to the designers of that IS.

2.2. Class Structure in VOOSIS. The classes in the system are the templates from
which objects are created. Two objects, from the same class, share the same attributes
and methods. Following the object-oriented principles ([2] and [5]) the system supports
class inheritance, but does not support multiple inheritance for reasons of simplicity. The
following tree shows a classification of the classes supported by VOOSIS.

The physical classes are the leaves of the class hierarchy tree and from them objects
can be created. The group classes are used to combine classes with similar structure
and behavior; as well objects can not be created directly from them. The group classes
have methods and event handlers, but does not have any attributes.

The physical classes in VOOSIS are divided into moveable and static. The moveable

classes are those from which objects that can be moved are created and the static

classes are those from which objects that cannot be moved are created.
The moveable classes in the system can be quantitative and not quantitative. The

static classes in the system are no quantitative. The quantitative classes are those,
whose objects have a system attribute quantity, and non-quantitative classes are those,
whose objects do not. Several objects from a quantitative class can merge into one object
that will have value for quantity the sum of the quantities of those objects. As well an
object belonging to a quantitative class can split into several objects from the same class
and the original’s object quantity will be distributed among the created objects. The
system supports the existence of objects with value for the system attribute quantity
equal to zero, but does not permit such objects to be divided.

For every class the designer of the IS could define the parameters of the class, its
methods and attributes, as well as the way those methods should handle events related
to the objects belonging to the class. The parameters of the class are its name, type and a
picture to be used in visualizing objects from the class in the graphical view of the object
hierarchy. When a class is defined the names of and the types of the global and local

213

attributes are also defined. While for the local attributes their default value is entered,
for the global attributes their initial value is specified. For every attribute restrictions
on the attribute’s domain can be stated. When a class is defined, the names of its local
and global methods are entered, as well as the names of the dynamic link libraries (DLL)
that implement those methods. The local and class events that are handled, together
with the methods that do this handling, are also parts of the class definition.

So far in this point we have looked at the users, objects and classes of an IS created
with VOOSIS. The use of methods in IS created with VOOSIS will be discussed in the
next sub-point.

2.3. Methods in VOOSIS. The methods in the system can be classified as global,
class and object methods. The global methods are those, that are not connected with
a particular class; the class methods are those connected with a particular class, without
using any of its local attributes; the object methods are those that can be executed on a
particular object and could use the local attributes of that object.

The way in which the methods in the system are implemented and connected to an IS
or a specific class is the following: (1) the methods are coded in a high-level programming
language chosen by the designers; (2) the code is compiled to a DLL; (3) in VOOSIS

DESIGNER the methods are attached to an IS or a particular class of an IS. The
questions that could arise from the lack of own programming environment in VOOSIS
are (1) how the written methods can have access to the database of a specific IS an
the extended query language implemented in VOOSIS and (2) how the written methods
can be tested. As a solution to the first problem three DLLs are made available. The
libraries contain functions that respectively support access to the extended SQL of the
system, allow object and class manipulation and allow the examination of the current
or past states of the object and class hierarchy of an IS. The three function libraries are
described in details in the file appendix1.doc, which could be found at the stated at the
first page of the paper web address. The problem with testing a written DLL could be
solved by doing all the testing in the environment where the DLL is written. For this to
be done special methods for calling the method and checking the method’s results should
be implemented in the programming environment of the DLL.

This concludes our look at the methods in VOOSIS. It remains to look at the most
important element of VOOSIS – its data query language.

2.4 Data Query Language in VOOSIS. The queries of an IS in VOOSIS are
written in the extended custom SQL of the system called VOOSIS SQL. The system
supports two types of queries: on the current state of an IS and on its past states.
This corresponds to the databases supported by VOOSIS, which are made of four parts
for every IS. These parts are: (1) a section that contains the present view of the class
and object hierarchy; (2) a section that contains the log of all events that have been
carried on an IS from its creation to present; (3) section that contains snap-shots done
at different times in the past of section 1; (4) section containing information about the
administration of the particular IS (i.e. information about the users, groups and methods
of the IS). At intervals specified by the designers of the IS its database is initialized (it
makes sense this period to be one business day or some whole fraction of it). When an
initialization occurs the information in the first part and fourth part of the DB of the IS
remain unchanged, the information in the second part is erased, and a snapshot of the
first part of the DB is added to the third part of the DB.

214

When doing queries on the present state of an IS the extended SQL supported by
the system called VOOSIS SQL is used. Since VOOSIS supports only the relationship
“physical containment” between objects, the SQL of the system is designed to handle
only this relationship. The ways VOOSIS SQL works, is that it introduces its own
functions that return tables. The SQL of the system is maid of ANSI SQL enriched with
those functions. For queries on the present state of the DB of an IS the functions that
are used have the following signature:

function CLASS(result attributes: list of attribute names and types,
name of class: string): table;

function CLASSR(result attributes: list of attribute names and types,
name of class: string, used objects: table): table;

function OBJECTS(function type: enumerative, result attributes: list of attribute
names and types, used objects: table): table.

The data types in the SQL are: number (marked with N), currency (marked with
$), string (marked with A), Boolean (Marked with B), date (marked with D) and time
(marked with T). The result of each function is a set of object represented in a table
(each row in the table corresponds to an object), where the attributes of the objects that
should be returned are given by the parameter result attributes. Except for the attributes
specified in that parameter the result tables contain also the parameters ID and class, to
represent the unique identifier of the object and the class to which the object belongs.

The function CLASS is used to find some of the objects belonging directly or indirectly
to the class with name: name of class. If that class is a physical class, some of its objects
are returned in the result table. If the class is a group class, then the objects belonging
to its physical sub-classes (direct or indirect) are returned. The way to filter out which
objects belonging to the class to be returned is by using the second parameter in the
function – result attributes. If the attributes listed in that parameter are part of the
definition of the object’s class and have the types listed in the parameter, then the
object is included in the result set. Let us look at an example to clarify things: “The
group class fruits have the physical subclasses “cherries”, which has one attribute named
quantity of type integer”. In this example the function CLASS({quantity(A)},fruits)
will return a table in which there will be no objects from the class “cherries”, because
that class does not have an attribute with name quantity and type string. The reason
VOOSIS SQL is type sensitive is to distinguish between objects having attributes with
the same name, but different types.

The function CLASSR is similar to the function CLASS, but it has one parameter
– used objects. This parameter is a table, which has an attribute named ID in it. This
table corresponds to the set of objects, from which the result set of objects will be chosen
with the constraints coming from the result attributes and name of class attributes.

The function OBJECTS is similar to the function CLASSR, but is does not select
the objects belonging to a given class, but applies the function function type on the
objects specified by the parameter used objects to get the result set. The parameter
function type can accept the following values: {LEAVES, ALL, THIS, IN}. If the value
of the parameter is LEVEVES, then for each object from used objects, all leaves of the
object are found in the object hierarchy and the result attributes parameter is used to
filter the end result of the query. If the value of the function type is ALL, IN or THIS,

215

then respectively all sub-objects including the objects themselves, only the sub-objects,
or only the objects themselves from the used objects parameter are used in calculating
the result set of objects (a sub-object of a super-object in the object hierarchy is an
object that is part of the tree with root the super-object). Let us look at this example
VOOSIS SQL query:

SELECT sum(price)
FROM CLASSR({price[$]}, fruits,

(OBJECTS(LEAVES, {price[$]},
(SELECT ID
FROM CLASS({owner[A]},basket) as T3
WHERE T3.owner = ‘Ivanka’)
) AS T2

) AS T1);

The query gives reposes to the question: “What is the total value of the sold by the
cashier with login Ivanka fruits”.

The query gives the required result by using compound queries. The innermost query
selects Ivanka’s basket, where all sales made by her are stored in the model. The next
outer query selects all objects from her basket that have the attribute price. The next
outer query selects from those objects only the fruits and the most outer query sums the
price of the fruits.

Let us now look at the ways the object of the class on which the method calling a
query is executed can be used as a parameter in a query. This is done by using the
primitives $CLASS and $OBJECT which return respectively the class or the object
on which the query is executed. This ends our review of the queries on the present state
of an IS. Let us now look examine how queries on past states of an IS can be retrieved.

The functions on past states of an IS, that can be used in VOOSIS SQL, are similar
to those of the present state, but are changed to allow for entering the time factor to be
considered. The functions are:

function TCLASS(result attributes: list of attri bute names and types,
name of class: string, from: date, to: date): table;

function TCLASSR(result attributes: list of attribute names and types,
name of class: string, used objects: table, from: date, to: date): table;

function TOBJECTS(function type: enumerative, result attributes: list of
attribute names and types, used objects: table, from: date, to: date): table.

The way the functions work is that they find all snapshots for the particular IS in
the specified by the parameters from and to period. For each snapshot the function is
executed, and to the result set an attribute with name data of snapshot is added. After
this is done for all snapshots in the period, the result sets from each snapshot are united
to give the end result.

This concludes our overview of the system VOOSIS. In the conclusion of the paper
we will analyze the reached in the work goals and the possibilities for future work on the
touched in the paper topics.

3. Conclusion. In this paper an overview of the main principles behind VOOSIS
was presented. Because of the limited space for this paper the created prototype of

216

VOOSIS was not described in it. However the source, the help files and the executable
applications of the prototype can be found at the stated at the first page of the paper
web address.

The areas for future work could be: (1) extending the prototype of VOOSIS and
making it a commercial shell for IS and (2) extending the system to OODBMS by adding
to it popular for such systems features as reference attributes, composite attributes,
concurrency control mechanisms, etc. Both directions could lead to commercialization
of the described in the paper system and to its transformation from a theoretical model
to a commercial tool.

REFERENCES

[1] Building an Object-Oriented Database System. (Eds. B. Francois, C. Delobel, P. Kanellakis)
The Story of O2, Mortgan Kaufmann Publishers, 1992.
[2] . Booch. Object-Oriented Analysis and Design with Applications, The Benjamin/Cummings
Publishing Company, Inc., 1994.
[3] DELPHI USER’S GUIDE, BORLAND Publishing, 1997.
[4] R. G. G. Cattell. Object Data Management, Revised Edition. Object-Oriented and
Extended Relational Database Systems, Addison-Wesley Publishing Company, 1994.
[5] M. Ellis, B. Stroustrup. The Annotated C++ Reference Manual, Addison-Wesley Pub-
lishing, 1990.
[6] W. Kim. Introduction to Object Oriented Databases, The MIT Press, 1990.
[7] R. M. Stair. Principles of Informational Systems. A Managerial Approach, Boyd & Fraser
publishing company, 1992.

Central Laboratory for Parallel Processing
Bulgarian Academy of Science

ВИЗУАЛНА ИНТЕГРИРАНА СРЕДА (ШЕЛ) ЗА ОБЕКТНО
ОРИЕНТИРАНО СЪЗДАВАНЕ И ИЗПОЛЗВАНЕ НА ОПРЕДЕЛЕН

КЛАС ИНФОРМАЦИОННИ СИСТЕМИ

Любомир Станчев

Статията е свързана с проектирането и частичната реализация на софтуерния
продукт “Визуален Обектно Ориентиран Шел на Информационна Система” (ВО-
ОШИС), който позволява създаването и експлоатацията на определен клас ин-
формационни системи (ИС). Кръгът на разглежданите ИС е ограничен до ИС
следящи променящите се характеристики на обекти в системата, както и тяхното
местоположение спрямо съдържащите ги обекти. Интерфейсът към ВООШИС е
графичен, като въвеждането на обекти в системата може да става чрез тяхното
изчертаване, а преместването им с помощта на мишката и механизма “влачене и
пускане” (drag and drop).

217

