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In the paper, the properties of equilateral, isosceles and right triangles are studied by
the use of complex analytic formalism recently introduced by June Lester.

Complex numbers are one among traditional tools for study of the Euclidean plane.
There are many books considering the application of complex number in geometry (see
[4], [5]) and [9]. Recent progress in this area is due to June Lester. Her triangle series
develops the Euclidean plane geometry by the use of complex analytic formalism based
on cross ratios (see [1], [2], [3]). Notions of shapes and complex triangle coordinates as
a part of this formalism play a main role for generalization of many famous theorems in
plane geometry.

In this paper, we apply both complex triangle coordinates and shapes for study of
some properties of equilateral, isosceles and right triangles. The following preliminarities
are known from [2]. We shall recall the basic assumptions, notations and definitions for
complex triangle coordinates. This permits us to use directly the theorems from [2].

Let the Euclidean plane be identified with the complex numbers C and let C, =
C U oo. The cross ratio of four points a, b, c,d € C, (at least two of them are distinct)
is the number
(a—c)(b—d)

(a—d)(b-c)’
Three distinct points a,b,c € C are collinear if and only if the cross ratio [co,a;b,c| is
real. The shape of any triangle Aabc is the number

[a,b;c,d] =

Agpe = [0,a;b, c].
Then, ratios of side lengths and angles of triangle can be expressed by its shape, i.e.
la —c| : |a—b| = [Agpel, I bac = arg(Agpe)- Two triangles Aabe and Apgr are

similar or antisimilar when A,y = Apqr or Ay = Apqr, respectively.

Let Aabc be a fix non-degenerate triangle with the shape A = A, . € C\R. Then,
the complex triangle coordinate of any point z € C,, with respect to the base triangle
Aabc is the number

zn = [z,a; b, c] = [00, z; ¢, b][00, a; b, c].
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1
It is clear , that zao € Co, apn =1, ba =0 and ca = 00. Let A’ = [o0, b;c,a] = ——

1-—A
1
and A" = [oo,c;a,b] =1 — —. Then zar = [z,b,c,a] = ———, za» = [z,c,a,b] =
A 1—za
1
1— — and AAN'A" = zpzpZar = —1. The coordinate map z — za preserves the
N

cross ratios. From here, four distinct points p, q,r,s € C are collinear or concyclic if and
only if the cross ratio [p,q;r,s| = [Pa,dA;TA,SA] is real.

Now, we examine three characteristic properties of equlateral triangles in terms of
shapes and complex triangle coordinates. Note that the shape of any equilateral triangle
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1
is either w = =+ —iorw = 5 —i. If A = a+ i is the shape of the triangle Aabc,
then Aabc is right-angled at a when o = 0, Aabc is right-angled at b when o = 1, and
Aabc is right-angled at ¢ when o + 32 — a = 0.

Proposition 1. Let points d and e lie on the sides ac and ab of the triangle Aabc
and devide them in the same ratio 2 : 1. Let o be a common point of the lines bd
and ce. Then,a necessary and sufficient condition for |a—b| = |b —c| = |c — a] is
lo—al:|o—c|=+3:2 and ¥ aoc = g

Proof. Let A = A pe = [00,a;b,¢] € C\R. Then ap = 1,ba = 0,ca = oo.

From Theorem 2.1 in [2], it follows that dar = [o0,d;a,c][co,b;c,a] = —2A/. But
1 1
da = —dx and A = T~ Thus, we obtain da = 5(3 — /). Similarly,1 — on =
1
eanr = [00,e;b, a][oo,c;a,b] = —2A" = —2(1 — —). Hence e = . By Complex

AN 3N -2
Ceva Theorem (see [2]), we have oo = da.ea = %A(S —A)(3A —2)71. Let us calculate
the shape of the triangle Aoca.
ANoca =[00,0;¢c,a] = [A,0n;¢cn,an] = [A,0n;00,1]
(1) =[1,00;0a,A] =[00,1;A,0n] = 11_—0AA = 4A;EZ.
First, we prove the necessary condition. If Aabc is equilateral (see Figure 1), then A = w

and Agca = (w +i)(4 — 6w)~ ! = \/752 Hence o — a| : [o — ¢| = |Aocal = V3 : 2 and

1
J coa = arg(Aoca) = 3T Conversaly, if [o —a| : o —c¢| = v/3 : 2 and J coa = 3™
then Aoca = (A +4)(4—6A)71 = ?z From here, A = w i.e. Aabc is equilateral.
The sufficient condition is proved.

Proposition 2. Any side of the triangle Aabc is divided to three equal segments by
the points p,q € bc, r,s € ca and t,u € ab. A necessary and sufficient condition for
|a—b|=|b—c| =|c—a| is the points p,q,r,s,t,u to be concyclic.

Proof. The necessary condition is obvious (see Figure 2). For the sufficient condi-
tions, we assume that the points p, q,r, s, t,u are concyclicand A = A . = [00,a; b, c] €

1
C\ R. As in the proof of Proposition 1., we obtain p, = 75A, qp = 24, ra =
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1 1
fiA’, sar = 2N tan = ng”, uar = —2A". From here, rno = 3 — 2A and

3—A
SA = —5 Since p, q, r, s are concyclic, the number [pa,ga;Ta,sa] = 5(2—&)(&—}—1)
is real, ie. (2—A)A+1) = (2—-A)(A+1). Then, 2+ A - A2 =2+ A _ 2~ or

A—A=(A=DN)(A+A). From A ¢ Rand A — A # 0, it follows that A + A = 1.

1
Similarly, r, s, t,u are concyclic and [rar, Sar;tar, uas] = 5(2 — A\')(A\"+1) is real. This
_ 1 1
means that A + A’ = 1 or T-A + 1~ = 1. The last equality is equivalent to

AN =1.From A+ A =A.A=1, A is equal to either w or @, i.e. Aabc is equilateral.

c c
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Figure 1 Figure 2 Figure 3

Proposition 3. The circle inscribed in the triangle Nabc touches the sides bc, ca
and ab at points p, q and r, respectively. A mnecessary and sufficient condition for
|a—b| = |b—c|=|c—al is a similarity of the triangles Aabc and Apqr.

Proof. Let Apqr be a base triangle and A = Apqr(see Figure 3). Let s,t and u be
the midpoints of the segments qr,rp and pq, respectively. Then pn =1, go =0, ra =
00, sSp = =\, ta =2— A, up = A(2A —1)71. We observe that the images of s,t,u
under the inversion in the inscribed circle are the vertices a, b, ¢ of the triangle. Using
Theorem 2.3 [2], we have ap = —A, ba =2~ A, ca = A(2A — 1)~ Then,

A+A—-2 A2
20N — (AN +A)

The triangles Aabc and Apqr are similar if and only if Ay, = A, ie.

A+ A —2 =2

C2AA - (A+ D)
Set A =a+ i, a€R, &R\ {0}. Then, the above equality is equivalent to the
system

2) A

abe = [00,a;b,c] = [Aan;ba,ca] =

(3) o = (a—1)(e®— )0+ —a)
B = —2a-1).ab.(a®+82—a) L

Since Apqr is an acute triangle, a # 0,1 and a? + 32 # a. From here, the system (3) is
1

equivalent to the system 203%> — 32 =0 3a? — 3a + 4% = 0 with solutions a = 2 8=
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V3

iT' Hence Aabc and Apqr are similar, if and only if the shape Ayp. = Apqr is

V3. 1 V3

1
either w = 3 + 72 or w = 3~ 72 This completes the proof.

In terms of shapes, there are several ways for determining of an isosceles triangle.
We mention three of them. The triangle Aabc with shapes A = A is isosceles with

abc
apex at a, i.e. |a — b| = |a — c| whenever it is fulfilled one of the following equivalent
conditions:
(a) |Al=1; (b) AA=1; (c) 7 i_ ~ is pure imaginary.

Proposition 4. Let o be the circumcentre of the triangle Aabc. Let d be the
midpoint of the side ab and e be the centroid of triangle Nadc. A necessary and sufficient
condition for |a—b| =|a—c| is & L dc.

Proof. Let Aabc be a base triangle and A = Aabec. Then, op = A (see [2],
Theorem 2.3). If m is the midpoint of the side ca, then e € dm and [A,ea;da, ma] =
[00, e;d, m| = —2(see Figure 4). Using Theorem 2.1 in [2], we have ea = A(5—2A)(4A—
1)~!. From Theorem 3.1 in [2], it follows that &6 L de if and only if the number
(4) R — [A,cnzen,dal _ 3(&—3)(2_&—1)_

[A,easen,0n]  BA —2A24+ A —4AA

is pure imaginary.

If Aabc is isosceles with apex at a, then AA = 1 and 1+ o
3(A—ATH(2A -1) 1+A

BA AT AT 4 = 31 N is pure imaginary, i.e. @ L de.
(24 —1)

5A —2A2 + A — 4NN

is pure imaginary.

Hence, R =

Conversely, if @6 L dé , then R is pure imaginary and

real. This means that
(2A — 1) B (2A —1)
BA =202+ A — 4NN 5K 9N 4 A —4AD

From here, it follows that AA = 1, i.e. Aabc is isosceles with apex at a.

The necessary condition of Proposion 1 as well as Proposions 2 and 3 are known from
[7]. The necessary condition of Proposion 4 is a problem from English mathematical
competition in 1983 (see [6, p.32].

Proposition 5. Let m be an interior point of the triangle Aabc, and let Astu
be the pedal triangle of m with respect to Nabc( s € be,t € ca and u € ab). Then,
< bme =< bac+ < tsu, <4 cma =< cba+ < uts and < amb =< acb+ < sut.

Proof. Let Aabc be a base triangle and A = A4y.. The triangle Astu is a Miquel
triangle of m to respect Aabc(see Figure 5). From Miquel Triangle Shape Theorem (see
section 4 in [1]), it follows that

Agty = [00,8;t,u] = [m,a; b, c|.
On the other hand ma = [m,a; b, c| = [0o, m;c,b]A. Then, [co,m;c,b].A = Agty, or
. For P =4 bmc, A =< bac and S =< tsu, we have |A

[co,m; b, c] = eiP =

mbc
stu
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|A].et4
[Bstule™
equalities are similar.

Now, we cosider two applications of Proposition 5. The second one is a problem given
in mathematical competition (see [8, p.266]).

=1
mbe |Astu|

Hence, |A and P = A+ S. The proofs of the remaining

c
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e
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Figure 4 Figure 5

Example 1 Let Aabc be an isosceles and right triangle. Find a point m inside Aabc
such that the pedal triangle of m with respect to Aabc is equilataral.

Solution. Assume that Aabc is right-angled at a. Let (G; be the locus of all points p
which satisty 4 apb = 1—727r, p lies inside Aabc. Similarly, let Gy = {q :< cqa = 1—727r, q
lies inside Aabc}. Then by Proposition 5, m = G; N Ga.

Example 2. Let m be a point inside the equilateral triangle Aabc and let s € be, t €

ca and u € ab be the feet of the perpendiculars from m to the sides of Nabc. Find the
locus of all points m for which Astu is right-angled.

) )
Solution. Set G; = {p :9 bpc = g™ P lies inside Aabc}, Go = {q :J cqa = !
5

lies inside Aabc}, and G = {r :< arb = 6™ T lies inside Aabc}. It is easy to see that
GiNG,; =9 for distinct 4, j € {1,2,3}. From Proposition 5., Astu is right-angled at s, t
and u, if and only if m lies on the chord G1, G2 and G3, respectively. Thus, the desired
locus is the union G |J G2 |J Gs.

In conclusion, we examine special triangles, but the formulae (1), (2) and (4) occur
for an arbitrary triangle.
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CHEHUAJIHI TPU'bI'bJIHUIIU 1 KOMIIJIEKCHU TPU'bI'bJIHU
KOOPIWHATU

T'eopru Xpucros I'eoprues, Pagocruna IlerpoBa Enuesna,
Maprapura I'eoprueBa CoupoBa

B paborara ce usydasar coiicTBaTa Ha paBHOCTPAHHUTE, PABHOOEIPEHNTE U TPABOb-
I'bJIHATE TPA'BIbJIHUIM UPE3 UIOJI3BAHE HA KOMIIJIEKCHO-AHAJIUTHIHIS (DOPMAJINZbM
Hackopo BbBefeH or JIxkyH JlecTbp.
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