
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 1999

MATHEMATICS AND EDUCATION IN MATHEMATICS, 1999

Proceedings of Twenty Eighth Spring Conference of

the Union of Bulgarian Mathematicians

Montana, April 5–8, 1999

SPECIAL TRIANGLES AND COMPLEX TRIANGLE

COORDINATES

Georgy Khristov Georgiev, Radostina Petrova Encheva,

Margarita Georgieva Spirova

In the paper, the properties of equilateral, isosceles and right triangles are studied by
the use of complex analytic formalism recently introduced by June Lester.

Complex numbers are one among traditional tools for study of the Euclidean plane.
There are many books considering the application of complex number in geometry (see
[4], [5]) and [9]. Recent progress in this area is due to June Lester. Her triangle series
develops the Euclidean plane geometry by the use of complex analytic formalism based
on cross ratios (see [1], [2], [3]). Notions of shapes and complex triangle coordinates as
a part of this formalism play a main role for generalization of many famous theorems in
plane geometry.

In this paper, we apply both complex triangle coordinates and shapes for study of
some properties of equilateral, isosceles and right triangles. The following preliminarities
are known from [2]. We shall recall the basic assumptions, notations and definitions for
complex triangle coordinates. This permits us to use directly the theorems from [2].

Let the Euclidean plane be identified with the complex numbers C and let C∞ =
C ∪∞. The cross ratio of four points a,b, c,d ∈ C∞ (at least two of them are distinct)
is the number

[a,b; c,d] =
(a− c)(b− d)

(a− d)(b− c)
.

Three distinct points a,b, c ∈ C are collinear if and only if the cross ratio [∞,a;b,c] is
real. The shape of any triangle △abc is the number

△abc = [∞, a;b, c].

Then, ratios of side lengths and angles of triangle can be expressed by its shape, i.e.
|a − c| : |a − b| = |△abc|, <) bac = arg(△abc). Two triangles △abc and △pqr are

similar or antisimilar when △abc = △pqr or △abc = △pqr, respectively.
Let △abc be a fix non-degenerate triangle with the shape △ = △abc ∈ C \R. Then,

the complex triangle coordinate of any point z ∈ C∞ with respect to the base triangle
△abc is the number

z△ = [z, a;b, c] = [∞, z; c,b][∞, a;b, c].
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It is clear , that z△ ∈ C∞, a△ = 1, b△ = 0 and c△ = ∞. Let △′ = [∞,b; c, a] =
1

1−△
and △′′ = [∞, c; a,b] = 1 − 1

△ . Then z△′ = [z,b, c, a] =
1

1− z△
, z△′′ = [z, c, a,b] =

1 − 1

z△
and △△′△′′ = z△z△′z△′′ = −1. The coordinate map z → z△ preserves the

cross ratios. From here, four distinct points p,q, r, s ∈ C are collinear or concyclic if and
only if the cross ratio [p,q; r, s] = [p△,q△; r△, s△] is real.

Now, we examine three characteristic properties of equlateral triangles in terms of
shapes and complex triangle coordinates. Note that the shape of any equilateral triangle

is either w =
1

2
+

√
3

2
i or w =

1

2
−

√
3

2
i. If △ = α+βi is the shape of the triangle △abc,

then △abc is right-angled at a when α = 0, △abc is right-angled at b when α = 1, and
△abc is right-angled at c when α2 + β2 − α = 0.

Proposition 1.Let points d and e lie on the sides ac and ab of the triangle △abc

and devide them in the same ratio 2 : 1. Let o be a common point of the lines bd

and ce. Then,a necessary and sufficient condition for |a − b| = |b − c| = |c − a| is
|o− a| : |o− c| =

√
3 : 2 and <) aoc =

π

2
.

Proof. Let △ = △abc = [∞, a;b, c] ∈ C \ R. Then a△ = 1,b△ = 0, c△ = ∞.
From Theorem 2.1 in [2], it follows that d△′ = [∞,d; a, c][∞,b; c, a] = −2△′. But

d△′ =
1

1− d△

and △′ =
1

1−△ . Thus, we obtain d△ =
1

2
(3 −△). Similarly,1 − 1

e△
=

e△′′ = [∞, e;b, a][∞, c; a,b] = −2△′′ = −2(1 − 1

△ ). Hence e△ =
△

3△− 2
. By Complex

Ceva Theorem (see [2]), we have o△ = d△.e△ =
1

2
△(3−△)(3△− 2)−1. Let us calculate

the shape of the triangle △oca.

(1)
△oca = [∞,o; c, a] = [△,o△; c△, a△] = [△,o△;∞, 1]

= [1,∞;o△,△] = [∞, 1;△,o△] =
1− o△

1−△ =
△+ 4

4− 6△ .

First, we prove the necessary condition. If△abc is equilateral (see Figure 1), then △ = w

and △oca = (w + i)(4 − 6w)−1 =

√
3

2
i. Hence |o− a| : |o − c| = |△oca| =

√
3 : 2 and

<) coa = arg(△oca) =
1

2
π. Conversaly, if |o − a| : |o − c| =

√
3 : 2 and <) coa =

1

2
π,

then △oca = (△ + 4)(4 − 6△)−1 =

√
3

2
i. From here, △ = w i.e. △abc is equilateral.

The sufficient condition is proved.

Proposition 2.Any side of the triangle △abc is divided to three equal segments by

the points p,q ∈ bc, r, s ∈ ca and t,u ∈ ab. A necessary and sufficient condition for

|a− b| = |b− c| = |c− a| is the points p,q, r, s, t,u to be concyclic.

Proof. The necessary condition is obvious (see Figure 2). For the sufficient condi-
tions, we assume that the points p,q, r, s, t,u are concyclic and△ = △abc = [∞, a;b, c] ∈
C \ R. As in the proof of Proposition 1., we obtain p△ = −1

2
△, q△ = −2△, r△′ =
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−1

2
△′, s△′ = −2△′, t△′′ = −1

2
△′′, u△′′ = −2△′′. From here, r△ = 3 − 2△ and

s△ =
3−△

2
. Since p,q, r, s are concyclic, the number [p△,q△; r△, s△] =

1

2
(2−△)(△+1)

is real, i.e. (2 − △)(△ + 1) = (2 − △)(△ + 1). Then, 2 + △ − △2 = 2 + △ − △2

or
△ −△ = (△ −△)(△ +△). From △ /∈ R and △ −△ 6= 0, it follows that △ +△ = 1.

Similarly, r, s, t,u are concyclic and [r△′ , s△′ ; t△′ ,u△′ ] =
1

2
(2−△′)(△′+1) is real. This

means that △′ + △′ = 1 or
1

1−△ +
1

1−△
= 1. The last equality is equivalent to

△.△ = 1. From △+△ = △.△ = 1, △ is equal to either w or w, i.e. △abc is equilateral.
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Proposition 3. The circle inscribed in the triangle △abc touches the sides bc, ca
and ab at points p, q and r, respectively. A necessary and sufficient condition for

|a− b| = |b− c| = |c− a| is a similarity of the triangles △abc and △pqr.

Proof. Let △pqr be a base triangle and △ = △pqr(see Figure 3). Let s, t and u be
the midpoints of the segments qr, rp and pq, respectively.Then p△ = 1, q△ = 0, r△ =
∞, s△ = −△, t△ = 2 −△, u△ = △(2△− 1)−1. We observe that the images of s, t,u
under the inversion in the inscribed circle are the vertices a,b, c of the triangle. Using
Theorem 2.3 [2], we have a△ = −△, b△ = 2−△, c△ = △(2△− 1)−1. Then,

(2) △abc = [∞, a;b, c] = [△, a△;b△, c△] =
△+△− 2

2△△− (△+△)
.△2

.

The triangles △abc and △pqr are similar if and only if △abc = △, i.e.

△ =
△+△− 2

2△△− (△+△)
.△2

.

Set △ = α + βi, α ∈ R, β ∈ R \ {0}. Then, the above equality is equivalent to the
system

(3)
α = (α− 1)(α2 − β2)(α2 + β2 − α)−1

β = −2(α− 1).αβ.(α2 + β2 − α)−1.

Since △pqr is an acute triangle, α 6= 0, 1 and α2 + β2 6= α. From here, the system (3) is

equivalent to the system 2αβ2 − β2 = 0 3α2 − 3α+ β2 = 0 with solutions α =
1

2
, β =
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±
√
3

2
. Hence △abc and △pqr are similar, if and only if the shape △abc = △pqr is

either w =
1

2
+

√
3

2
i or w =

1

2
−

√
3

2
i. This completes the proof.

In terms of shapes, there are several ways for determining of an isosceles triangle.
We mention three of them. The triangle △abc with shapes △ = △abc is isosceles with
apex at a, i.e. |a − b| = |a − c| whenever it is fulfilled one of the following equivalent
conditions:

(a) |△| = 1; (b) △△ = 1; (c)
1 +△
1−△ is pure imaginary.

Proposition 4. Let o be the circumcentre of the triangle △abc. Let d be the

midpoint of the side ab and e be the centroid of triangle △adc. A necessary and sufficient

condition for |a− b| = |a− c| is −→eo ⊥ −→
dc.

Proof. Let △abc be a base triangle and △ = △abc. Then, o△ = △ (see [2],
Theorem 2.3). If m is the midpoint of the side ca, then e ∈ dm and [△, e△;d△,m△] =
[∞, e;d,m] = −2(see Figure 4). Using Theorem 2.1 in [2], we have e△ = △(5−2△)(4△−
1)−1. From Theorem 3.1 in [2], it follows that −→eo ⊥ −→

dc if and only if the number

(4) R =
[△, c△; e△,d△]

[△, e△; c△,o△]
=

3(△−△)(2△− 1)

5△− 2△2 +△− 4△△
is pure imaginary.

If △abc is isosceles with apex at a, then △△ = 1 and
1 +△
1−△ is pure imaginary.

Hence, R =
3(△−△−1)(2△− 1)

5△− 2△2 +△−1 − 4
= 3

1 +△
1−△ is pure imaginary, i.e. −→eo ⊥ −→

dc.

Conversely, if −→eo ⊥ −→
dc , then R is pure imaginary and

(2△− 1)

5△− 2△2 +△− 4△△
is

real. This means that

(2△− 1)

5△− 2△2 +△− 4△△
=

(2△− 1)

5△− 2△2

+△− 4△△
.

From here, it follows that △△ = 1, i.e. △abc is isosceles with apex at a.

The necessary condition of Proposion 1 as well as Proposions 2 and 3 are known from
[7]. The necessary condition of Proposion 4 is a problem from English mathematical
competition in 1983 (see [6, p.32].

Proposition 5. Let m be an interior point of the triangle △abc, and let △stu

be the pedal triangle of m with respect to △abc( s ∈ bc, t ∈ ca and u ∈ ab). Then,

<) bmc =<) bac+ <) tsu, <) cma =<) cba+ <) uts and <) amb =<) acb+ <) sut.

Proof. Let △abc be a base triangle and △ = △abc. The triangle △stu is a Miquel
triangle of m to respect △abc(see Figure 5). From Miquel Triangle Shape Theorem (see
section 4 in [1]), it follows that

△stu = [∞, s; t,u] = [m, a;b, c].

On the other hand m△ = [m, a;b, c] = [∞,m; c,b]△. Then, [∞,m; c,b].△ = △stu or

[∞,m;b, c] =
△

△stu
. For P =<) bmc, A =<) bac and S =<) tsu, we have |△mbc|.eiP =
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|△|.eiA
|△stu|.e−iS

. Hence, |△mbc| =
|△|

|△stu|
and P = A + S. The proofs of the remaining

equalities are similar.
Now, we cosider two applications of Proposition 5. The second one is a problem given

in mathematical competition (see [8, p.266]).
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Example 1Let △abc be an isosceles and right triangle. Find a point m inside △abc

such that the pedal triangle of m with respect to △abc is equilataral.

Solution. Assume that △abc is right-angled at a. Let G1 be the locus of all points p

which satisty <) apb =
7

12
π, p lies inside △abc. Similarly, let G2 = {q :<) cqa =

7

12
π, q

lies inside △abc}. Then by Proposition 5, m = G1 ∩G2.

Example 2. Let m be a point inside the equilateral triangle △abc and let s ∈ bc, t ∈
ca and u ∈ ab be the feet of the perpendiculars from m to the sides of △abc. Find the

locus of all points m for which △stu is right-angled.

Solution. Set G1 = {p :<) bpc =
5

6
π, p lies inside △abc}, G2 = {q :<) cqa =

5

6
π, q

lies inside △abc}, and G3 = {r :<) arb =
5

6
π, r lies inside △abc}. It is easy to see that

Gi

⋂
Gj =Ø for distinct i, j ∈ {1, 2, 3}. From Proposition 5., △stu is right-angled at s, t

and u, if and only if m lies on the chord G1, G2 and G3, respectively. Thus, the desired
locus is the union G1

⋃
G2

⋃
G3.

In conclusion, we examine special triangles, but the formulae (1), (2) and (4) occur
for an arbitrary triangle.
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