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A generalized Ramsey number R(G1;G2) is the minimum n, such that every 2-
coloring of the edges of the complete graph Kn contains a monochromatic subgraph
isomorphic to G1 or a monochromatic subgraph isomorphic to G2.
Consider the graphs G1 6= G2 with no loops or multiply edges and no isolated points
with maximum 4 and 5 vertices.
In this paper are proved with details some of the values of the generalized Ramsey
numbers with 4 and 5 vertices, which proofs are not accessible or are not known.

A generalized Ramsey number R(G1;G2) is the minimum n, such that every 2-
coloring (for example black-white coloring) of the edges of the complete graph Kn con-
tains a monochromatic (black) subgraph isomorphic to G1 or a monochromatic (white)
subgraph isomorphic to G2.

Solid lines are used for black coloring of the edges and dashed lines for white.
The graphs with maximum 4 vertices without any isolated vertex are represented on

the Figure 1:

Figure 1.

Theorem 1.R(K1, 3+x;K4−x) = 7: Every 2-coloring of the edges of the complete
graph K7 contains a black subgraph K1,3+x or a white subgraph K4-x. (See Figure 2.)

Figure 2.
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Proof. We assume that there is a 2-coloring of K7 without black K1, 3 + x and
white K4− x. Then there is a vertex, which has at least 4 monochromatic edges. In the
opposite case, every vertex has to have 3 adjacent black and 3 adjacent white edges. But
there is no regular graph with an even number of odd degree vertices.

1). Let the vertex V 1 be adjacent to black edges [V 1, V i], i = 2, 3, 4, 5. If any two
vertices between [V 2, V 3, V 4, V 5] are connected with black edges x, then there is black
graph K1, 3+ x. But if the last four vertices are connected with white edges, then there
is white K4− x.

2). Let the vertex V 1 be adjacent to white edges [V 1, V i], i = 2, 3, 4, 5. This in-
duces 2-coloring in subgraph K4, created from V 2, V 3, V 4, V 5 without white P3. But
R(P3, C4) = 4 and thus in the subgraph K4 there is a black C4. Both diagonals of C4
are white. See Figure 3.

Figure 3

At least one of two edges [V 6, V 2], [V 6, V 4] or [V 6, V 3], [V 6, V 5] must be black, in
which case, K1, 3 + x must also be black, and thus it is proven that:

(1) R(K1, 3 + x;K4− x) ≤ 7.

Figure 4 shows 2-coloring of K6 without a black K1, 3+x or white K4−x and thus:

(2) (K1, 3 + x;K4− x) ≥ 7.

Figure 4.

From (1) and (2) it follows that R(K1, 3 + x;K4− x) = 7.

Theorem 2. R(C4; k4 − x) = 7. Every 2-coloring of the edges of the complete K4
graph contains a black C4 subgraph or a white K4− x subgraph. See Figure 5:

Figure 5
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Proof.

(3) R(C4;K4− x) ≤ 7.

Consider an arbitrary black-white coloring of K7, and assume that there is no white
K4− x or black C4.

1). Let vertex V 0 be a white neighbour of V 1, V 2, V 3 and V 4, and let the edge
[V 1, V 2] be black. Vertex V 3 is a black neighbour with at least one of the vertices being
V 1 or V 2 (e.g. [V 2, V 4] is black). In the same way, V 4 is a black neighbour of V 1
or V 3 (e.g. [V 3, V 4] is black), and then [V 1, V 2, V 3, V 4] will be a black C4. This is
why [V 1, V 4] must be white. It follows that [V 2, V 4] and [V 1, V 3] must be black, and
[V 1, V 2, V 4, V 3] must be a black C4. See Figure 6.

Figure 6

2). Let the vertex V 0 be a black neighbour of V 1, V 2, V 3 and V 4. At least two
vertices among V 1, V 2, V 3 and V 4 are neighbours with a black edge. For example, if the
edge [V 1, V 2] is black, then the edges [V 2, V 3], [V 2, V 4], [V 1, V 3] and [V 1, V 4] must be
white. The vertices V 1, V 2, V 3 and V 4 are adjacent to one black edge and to vertices
V 5 and V 6. So a black C4 is obtained, and thus R(C4;K4) ≤ 7. See Figure 7.

Figure 7

(4) R(C4;K4− x) ≥ 7

follows from Figure 8 (with only black edges) which represents 2-coloring of K6 without
a black C4 or a white K4− x:
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Figure 8

From (3) and (4) it follows that R(C4;K4− x) = 7.

Theorem 3.R(G7) = 10: Every 2-coloring of the edges of the complete K10 graph
contains a monochromatic G7 subgraph. See Figure 9:

Figure 9

Proof. The inequality

(5) R(G7) ≥ 10,

follows from figure 10, which represents a 2-coloring of K9 without a black G7 or white
G7.

Figure 10

Next, the inequality

(6) R(G7) ≤ 10

will be proven.
Consider the arbitrary black-white coloring of the edges ofK10. A vertex is considered

“black” if its black edges have a degree of at least 5, otherwise it is considered “white”.
The black neighbours of V 2 are U1, U2, U3, U4 and U5. See Figure 11:

Figure 11
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Since there is no black G7, vertex V 1 has a maximum of two black neighbours among
the vertices U1, U2, U3, U4 and U5. The same is true for V 3.

Therefore, among the vertices Ui (i = 1, 2, 3, 4 or 5) there is one (e.g. U3), which is a
white neighbour of V 1 and V 3. There are also two other vertices, W1 and W2. Vertex
V 1 must be a black neighbour of W1,W2, and V 3. Furthermore, V 1 must also be a
black neighbour of exactly two of the vertices Ui (i = 1, 2, 3, 4 or 5) (e.g. U1 and U2).
V 3 is a black neighbour of W1,W2, U4, U5 and V 1. Vertex V 2 is a white neighbour of
W1 and also of W2. U3 is a black neighbour of W1 and also of W2. Hence W1 and
W2, together with V 1, U3 and V 3, create a black G7, which is a contradiction. Thus,
R(G7) ≤ 10.

From (5) and (6) it follows that R(G7) = 10.
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ИЗЧИСЛЯВАНЕ НА НЯКОИ ОБОБЩЕНИ ЧИСЛА НА РЕМЗИ

Боряна Дачева Милкоева

Обобщено число на Ремзи R(G1;G2) е минималното естествено число n, такова

че при всяко две-оцветяване на ребрата на пълния граф Kn се съдържа или

едноцветен подграф, изоморфен на G1 или едноцветен подграф, изоморфен на

G2. Разглеждат се графи G1 6= G2 без примки, без двойни ребра и без изолирани

върхове.

В тази статия са доказани подробно някои от стойностите на числата на Ремзи

с 4 и 5 върха, чиито доказателства не са достъпни или са неизвестни.
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