МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 1999 MATHEMATICS AND EDUCATION IN MATHEMATICS, 1999
 Proceedings of Twenty Eighth Spring Conference of the Union of Bulgarian Mathematicians
 Montana, April 5-8, 1999

CALCULATION OF SOME GENERALIZED RAMSEY NUMBERS

Boriana Datcheva Milkoeva

Abstract

A generalized Ramsey number $R(G 1 ; G 2)$ is the minimum n, such that every 2 coloring of the edges of the complete graph $K n$ contains a monochromatic subgraph isomorphic to G1 or a monochromatic subgraph isomorphic to $G 2$. Consider the graphs $G 1 \neq G 2$ with no loops or multiply edges and no isolated points with maximum 4 and 5 vertices. In this paper are proved with details some of the values of the generalized Ramsey numbers with 4 and 5 vertices, which proofs are not accessible or are not known.

A generalized Ramsey number $R(G 1 ; G 2)$ is the minimum n, such that every 2coloring (for example black-white coloring) of the edges of the complete graph Kn contains a monochromatic (black) subgraph isomorphic to $G 1$ or a monochromatic (white) subgraph isomorphic to $G 2$.

Solid lines are used for black coloring of the edges and dashed lines for white.
The graphs with maximum 4 vertices without any isolated vertex are represented on the Figure 1:

Figure 1.

Theorem 1. $R(K 1,3+x ; K 4-x)=7$: Every 2-coloring of the edges of the complete graph K^{7} contains a black subgraph $K 1,3+x$ or a white subgraph K4-x. (See Figure 2.)
$\mathrm{HO}_{1}{ }^{3}+$

Figure 2.

Proof. We assume that there is a 2 -coloring of $K 7$ without black $K 1,3+x$ and white $K 4-x$. Then there is a vertex, which has at least 4 monochromatic edges. In the opposite case, every vertex has to have 3 adjacent black and 3 adjacent white edges. But there is no regular graph with an even number of odd degree vertices.
1). Let the vertex $V 1$ be adjacent to black edges $[V 1, V i], i=2,3,4,5$. If any two vertices between $[V 2, V 3, V 4, V 5]$ are connected with black edges x, then there is black graph $K 1,3+x$. But if the last four vertices are connected with white edges, then there is white $K 4-x$.
2). Let the vertex $V 1$ be adjacent to white edges $[V 1, V i], i=2,3,4,5$. This induces 2-coloring in subgraph $K 4$, created from $V 2, V 3, V 4, V 5$ without white $P 3$. But $R(P 3, C 4)=4$ and thus in the subgraph $K 4$ there is a black $C 4$. Both diagonals of $C 4$ are white. See Figure 3.

Figure 3

At least one of two edges $[V 6, V 2],[V 6, V 4]$ or $[V 6, V 3],[V 6, V 5]$ must be black, in which case, $K 1,3+x$ must also be black, and thus it is proven that:

$$
\begin{equation*}
R(K 1,3+x ; K 4-x) \leq 7 \tag{1}
\end{equation*}
$$

Figure 4 shows 2-coloring of $K 6$ without a black $K 1,3+x$ or white $K 4-x$ and thus:

$$
\begin{equation*}
(K 1,3+x ; K 4-x) \geq 7 \tag{2}
\end{equation*}
$$

Figure 4.

From (1) and (2) it follows that $R(K 1,3+x ; K 4-x)=7$.
Theorem 2. $R(C 4 ; k 4-x)=7$. Every 2-coloring of the edges of the complete K_{4} graph contains a black C4 subgraph or a white $K 4-x$ subgraph. See Figure 5:

Figure 5

Proof.

(3)

$$
R(C 4 ; K 4-x) \leq 7 .
$$

Consider an arbitrary black-white coloring of $K 7$, and assume that there is no white $K 4-x$ or black $C 4$.
1). Let vertex $V 0$ be a white neighbour of $V 1, V 2, V 3$ and $V 4$, and let the edge [$V 1, V 2$] be black. Vertex $V 3$ is a black neighbour with at least one of the vertices being $V 1$ or $V 2$ (e.g. $[V 2, V 4]$ is black). In the same way, $V 4$ is a black neighbour of $V 1$ or $V 3$ (e.g. $[V 3, V 4]$ is black), and then $[V 1, V 2, V 3, V 4]$ will be a black $C 4$. This is why $[V 1, V 4]$ must be white. It follows that $[V 2, V 4]$ and $[V 1, V 3]$ must be black, and $[V 1, V 2, V 4, V 3]$ must be a black $C 4$. See Figure 6 .

Figure 6
2). Let the vertex $V 0$ be a black neighbour of $V 1, V 2, V 3$ and $V 4$. At least two vertices among $V 1, V 2, V 3$ and $V 4$ are neighbours with a black edge. For example, if the edge $[V 1, V 2$] is black, then the edges $[V 2, V 3],[V 2, V 4],[V 1, V 3]$ and $[V 1, V 4]$ must be white. The vertices $V 1, V 2, V 3$ and $V 4$ are adjacent to one black edge and to vertices $V 5$ and $V 6$. So a black $C 4$ is obtained, and thus $R(C 4 ; K 4) \leq 7$. See Figure 7 .

Figure 7

$$
R(C 4 ; K 4-x) \geq 7
$$

follows from Figure 8 (with only black edges) which represents 2-coloring of $K 6$ without a black $C 4$ or a white $K 4-x$:

Figure 8
From (3) and (4) it follows that $R(C 4 ; K 4-x)=7$.
Theorem 3. $R(G 7)=10$: Every 2-coloring of the edges of the complete K10 graph contains a monochromatic G7 subgraph. See Figure 9:

Figure 9
Proof. The inequality
(5)

$$
R(G 7) \geq 10
$$

follows from figure 10, which represents a 2-coloring of $K 9$ without a black $G 7$ or white G7.

Figure 10
Next, the inequality
(6)

$$
R(G 7) \leq 10
$$

will be proven.
Consider the arbitrary black-white coloring of the edges of $K 10$. A vertex is considered "black" if its black edges have a degree of at least 5 , otherwise it is considered "white". The black neighbours of $V 2$ are $U 1, U 2, U 3, U 4$ and $U 5$. See Figure 11:

Figure 11

Since there is no black $G 7$, vertex $V 1$ has a maximum of two black neighbours among the vertices $U 1, U 2, U 3, U 4$ and $U 5$. The same is true for $V 3$.

Therefore, among the vertices $U i(i=1,2,3,4$ or 5$)$ there is one (e.g. $U 3)$, which is a white neighbour of $V 1$ and $V 3$. There are also two other vertices, $W 1$ and $W 2$. Vertex $V 1$ must be a black neighbour of $W 1, W 2$, and $V 3$. Furthermore, $V 1$ must also be a black neighbour of exactly two of the vertices $U i(i=1,2,3,4$ or 5) (e.g. $U 1$ and $U 2$). $V 3$ is a black neighbour of $W 1, W 2, U 4, U 5$ and $V 1$. Vertex $V 2$ is a white neighbour of $W 1$ and also of $W 2 . U 3$ is a black neighbour of $W 1$ and also of $W 2$. Hence $W 1$ and $W 2$, together with $V 1, U 3$ and $V 3$, create a black $G 7$, which is a contradiction. Thus, $R(G 7) \leq 10$.

From (5) and (6) it follows that $R(G 7)=10$.
Acknowledgement. I am grateful to Prof. Dr. Sc. Nikolay Hadjyivanov for his invaluable and dedicated help in the preparation of this paper and my doctoral dissertation.

REFERENCES

[1] S. A. Burr. Diagonal Ramsey Numbers for Small Graphs. Journal of Graph Theory, 7 (1983) 57-69.
[2] V. Chavatal, F. Harary. Generalized Ramsey Theory for Graphs III. Small Off-diagonal Numbers. Pacif. J. Math. 41 (1972) 335-345.
[3] M. Clancy. Some Small Ramsey Numbers. Journal of Graph Theory (1977) 89-91.
[4] G. Hendry. Ramsey Numbers for Graphs with Five Vertices. Journal of Graph Theory 3, 2 (1989) 245-248.

International University
41b Burel Str.
1408 Sofia
Bulgaria
e-mail: intunv@ttm.bg

ИЗЧИСЛЯВАНЕ НА НЯКОИ ОБОБЩЕНИ ЧИСЛА НА РЕМЗИ

Боряна Дачева Милкоева

Обобщено число на Ремзи $R(G 1 ; G 2)$ е минималното естествено число n, такова че при всяко две-оцветяване на ребрата на пълния граф $K n$ се съдържа или едноцветен подграф, изоморфен на $G 1$ или едноцветен подграф, изоморфен на $G 2$. Разглеждат се графи $G 1 \neq G 2$ без примки, без двойни ребра и без изолирани върхове.
В тази статия са доказани подробно някои от стойностите на числата на Ремзи с 4 и 5 върха, чиито доказателства не са достъпни или са неизвестни.

