МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 1999 MATHEMATICS AND EDUCATION IN MATHEMATICS, 1999 Proceedings of Twenty Eighth Spring Conference of the Union of Bulgarian Mathematicians Montana, April 5–8, 1999

CALCULATION OF SOME GENERALIZED RAMSEY NUMBERS

Boriana Datcheva Milkoeva

A generalized Ramsey number R(G1; G2) is the minimum n, such that every 2coloring of the edges of the complete graph Kn contains a monochromatic subgraph isomorphic to G1 or a monochromatic subgraph isomorphic to G2.

Consider the graphs $G1 \neq G2$ with no loops or multiply edges and no isolated points with maximum 4 and 5 vertices.

In this paper are proved with details some of the values of the generalized Ramsey numbers with 4 and 5 vertices, which proofs are not accessible or are not known.

A generalized Ramsey number R(G1; G2) is the minimum n, such that every 2coloring (for example black-white coloring) of the edges of the complete graph Kn contains a monochromatic (black) subgraph isomorphic to G1 or a monochromatic (white) subgraph isomorphic to G2.

Solid lines are used for black coloring of the edges and dashed lines for white.

The graphs with maximum 4 vertices without any isolated vertex are represented on the Figure 1:

Figure 1.

Theorem 1. R(K1, 3 + x; K4 - x) = 7: Every 2-coloring of the edges of the complete graph K7 contains a black subgraph K1, 3+x or a white subgraph K4-x. (See Figure 2.)

Figure 2.

Proof. We assume that there is a 2-coloring of K7 without black K1, 3 + x and white K4 - x. Then there is a vertex, which has at least 4 monochromatic edges. In the opposite case, every vertex has to have 3 adjacent black and 3 adjacent white edges. But there is no regular graph with an even number of odd degree vertices.

1). Let the vertex V1 be adjacent to black edges [V1, Vi], i = 2, 3, 4, 5. If any two vertices between [V2, V3, V4, V5] are connected with black edges x, then there is black graph K1, 3 + x. But if the last four vertices are connected with white edges, then there is white K4 - x.

2). Let the vertex V1 be adjacent to white edges [V1, Vi], i = 2, 3, 4, 5. This induces 2-coloring in subgraph K4, created from V2, V3, V4, V5 without white P3. But R(P3, C4) = 4 and thus in the subgraph K4 there is a black C4. Both diagonals of C4 are white. See Figure 3.

Figure 3

At least one of two edges [V6, V2], [V6, V4] or [V6, V3], [V6, V5] must be black, in which case, K1, 3 + x must also be black, and thus it is proven that:

(1) $R(K1, 3 + x; K4 - x) \le 7.$

Figure 4 shows 2-coloring of K6 without a black K1, 3 + x or white K4 - x and thus: (2) $(K1, 3 + x; K4 - x) \ge 7$.

Figure 4.

From (1) and (2) it follows that R(K1, 3 + x; K4 - x) = 7.

Theorem 2. R(C4; k4 - x) = 7. Every 2-coloring of the edges of the complete K4 graph contains a black C4 subgraph or a white K4 - x subgraph. See Figure 5:

Figure 5

Proof.

(3)

$$R(C4; K4 - x) \le 7$$

Consider an arbitrary black-white coloring of K7, and assume that there is no white K4 - x or black C4.

1). Let vertex V0 be a white neighbour of V1, V2, V3 and V4, and let the edge [V1, V2] be black. Vertex V3 is a black neighbour with at least one of the vertices being V1 or V2 (e.g. [V2, V4] is black). In the same way, V4 is a black neighbour of V1 or V3 (e.g. [V3, V4] is black), and then [V1, V2, V3, V4] will be a black C4. This is why [V1, V4] must be white. It follows that [V2, V4] and [V1, V3] must be black, and [V1, V2, V4, V3] must be a black C4. See Figure 6.

Figure 6

2). Let the vertex V0 be a black neighbour of V1, V2, V3 and V4. At least two vertices among V1, V2, V3 and V4 are neighbours with a black edge. For example, if the edge [V1, V2] is black, then the edges [V2, V3], [V2, V4], [V1, V3] and [V1, V4] must be white. The vertices V1, V2, V3 and V4 are adjacent to one black edge and to vertices V5 and V6. So a black C4 is obtained, and thus $R(C4; K4) \leq 7$. See Figure 7.

 $(4) R(C4; K4 - x) \ge 7$

follows from Figure 8 (with only black edges) which represents 2-coloring of K6 without a black C4 or a white K4 - x:

From (3) and (4) it follows that R(C4; K4 - x) = 7.

Theorem 3. R(G7) = 10: Every 2-coloring of the edges of the complete K10 graph contains a monochromatic G7 subgraph. See Figure 9:

Proof. The inequality

(5)

 $R(G7) \ge 10,$

follows from figure 10, which represents a 2-coloring of K9 without a black G7 or white G7.

Next, the inequality

 $R(G7) \le 10$

will be proven.

(6)

Consider the arbitrary black-white coloring of the edges of K10. A vertex is considered "black" if its black edges have a degree of at least 5, otherwise it is considered "white". The black neighbours of V2 are U1, U2, U3, U4 and U5. See Figure 11:

Figure 11

Since there is no black G7, vertex V1 has a maximum of two black neighbours among the vertices U1, U2, U3, U4 and U5. The same is true for V3.

Therefore, among the vertices Ui (i = 1, 2, 3, 4 or 5) there is one (e.g. U3), which is a white neighbour of V1 and V3. There are also two other vertices, W1 and W2. Vertex V1 must be a black neighbour of W1, W2, and V3. Furthermore, V1 must also be a black neighbour of exactly two of the vertices Ui (i = 1, 2, 3, 4 or 5) (e.g. U1 and U2). V3 is a black neighbour of W1, W2, U4, U5 and V1. Vertex V2 is a white neighbour of W1 and also of W2. U3 is a black neighbour of W1 and also of W2. Hence W1 and W2, together with V1, U3 and V3, create a black G7, which is a contradiction. Thus, $R(G7) \leq 10$.

From (5) and (6) it follows that R(G7) = 10.

Acknowledgement. I am grateful to Prof. Dr. Sc. Nikolay Hadjyivanov for his invaluable and dedicated help in the preparation of this paper and my doctoral dissertation.

REFERENCES

[1] S. A. BURR. Diagonal Ramsey Numbers for Small Graphs. *Journal of Graph Theory*, **7** (1983) 57-69.

[2] V. CHAVATAL, F. HARARY. Generalized Ramsey Theory for Graphs III. Small Off-diagonal Numbers. *Pacif. J. Math.* **41** (1972) 335-345.

[3] M. CLANCY. Some Small Ramsey Numbers. Journal of Graph Theory (1977) 89-91.

[4] G. HENDRY. Ramsey Numbers for Graphs with Five Vertices. Journal of Graph Theory 3, 2 (1989) 245-248.

International University 41b Burel Str. 1408 Sofia Bulgaria e-mail: intunv@ttm.bg

ИЗЧИСЛЯВАНЕ НА НЯКОИ ОБОБЩЕНИ ЧИСЛА НА РЕМЗИ

Боряна Дачева Милкоева

Обобщено число на Ремзи R(G1;G2) е минималното естествено число n, такова че при всяко две-оцветяване на ребрата на пълния граф Kn се съдържа или едноцветен подграф, изоморфен на G1 или едноцветен подграф, изоморфен на G2. Разглеждат се графи $G1 \neq G2$ без примки, без двойни ребра и без изолирани върхове.

В тази статия са доказани подробно някои от стойностите на числата на Ремзи с 4 и 5 върха, чиито доказателства не са достъпни или са неизвестни.