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SEPARATE VERSUS JOINT CONTINUITY — AN UPDATE
*

Zbigniew Piotrowski

This survey is an update of selected, major results in the rapidly growing field of
separate and joint continuity, compare [Pt1]. The empharis here is placed on the new
findings, including historical ones, since the mid-80’s.

The genesis of separate versus joint continuity. Way back in the year 1821, it

was Augustin-Louis Cauchy who wrote incorrectly in his famous “Cours d’Analyse” [Ca]

that a function of several variables which is continuous in each one separately, is continu-

ous as a function of all the variables. Further studies of continuity were conducted by K.

Weierstrass; his lectures at the University of Berlin (1858–59) were written down, only in

1861 by A. Schwarz [Kl], p. 177 and 952. The first written account of a counterexample

to Cauchy’s statement can be traced however to 1873 edition of J. Thomae “Abriss einer

Theorie der complexen Funktionen”, [Th∗]. Here is what he states:

“. . . One can easily commit the error (as Mr. E. Heine has pointed out) of considering

a function of two variables to be continuous if for every point, abs[ω(y± ζδ, z)− ω(y, z)]

and abs[ω(y, z ± ζ′δ) − ω(y, z)] converge toward zero with decreasing δ. However, that

would mean, for example, that the function ω(y, z) = sin 4arctg
y

z
, which we define for

z = 0 by assuming that it is equal to zero along the entire y axis (in the y, z plane),

would be continuous within the circle y2 + z2 = 1. . . ”

The above Heine’s example has the following form in cylindrical coordinates:

F (r, θ) = − sin 4θ.

It can be easily noticed that the following simplification:

f(r, θ) = sin 2θ

is also a counterexample to Cauchy’s statement.

Going back to rectangular system the just written function has the following repre-

sentation:

f(x, y) =

{

2xy
x2 + y2

, if x2 + y2 6= 0,

0, if x2 + y2 = 0.

*This paper was written while the author was visiting A. Mickiewicz University in Poznań (Poland)
as a recipient of 1999–2000 YSU Sabbatical Leave Award; he would like to express his gratitude to the
Faculty of Mathematics for its hospitality.
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But this is the well-known example provided for the first time in 1884 by G. Peano

[Ge∗]! The real breakthrough came in 1899 with the appearance of the classical work of

R. Baire [Ba∗], who pioneered the method of category and put an end to the privilleged

status of continuity. For more information on the genesis of separate versus joint continu-

ity an interested reader is directed to [Pt2]. Also, in what follows, separately continuous

function will be denoted by SC function.

2. Findings of R. Baire and the main problems of separate and joint

continuity. Baire made significant progress in this field; he was the first to show that:

(∗) For an arbitrary SC function f : [0, 1]× [0, 1]→ R, there is a residual set S of [0, 1]

such that S × [0, 1] is made entirely of points of continuity of f .

Another property of all SC functions f : R×R → R can be found in [Ba∗], p. 75 and

was given by V. Voltera:

(∗∗) For every point (x0, y0) ∈ R × R, for every disk K centered at (x0, y0) and for

every ε > 0, there is a disk K1 contained in K such that |f(x, y) − f(x0, y0)| < ε, for

every (x, y) from K1.

This property was later termed quasi-continuity.

Yet another property of all real-valued SC functions from the plane that was found

by R. Baire is:

(∗ ∗ ∗) Every SC function f : R× R → R is of the first class (of Baire).

Based on Baire’s (∗), (∗∗) and (∗ ∗ ∗) and their refinements (more to come!) we are

ready to formulate the main three problems of, what is called, separate versus joint

continuity.

Let X and Y be “nice” spaces (e.g. Polish, or second countable Baire), let M be

metric and let f : X × Y → M be SC.

I. Existence Problem. Find the set C(f) of point of continuity of f ; this set is

usually a dense Gδ subset of X × Y .

“Fiber version” — it is similar to the above, except for now we look for C(f) in

{x} × Y , for every fixed x in X .

II. Characterization Problem. Characterize C(f) as a subset of X × Y . Usually,

it is the complement of an Fσ set contained in the product of two sets of first category.

III. Uniformization Problem. Find a “uniform”, “thick” subset A of X such that

A× Y is contained in C(f). Again, usually, the set A is a dense Gδ subset of X .

These Problems originally came out of real analysis, have topological formulations

and can be solved using usually methods of functional analysis.

Let us now outline some answers to the above three major problems.

3. Separate continuity and Baire classification of functions. Let us start,

by showing, following Lebesgue, that all real-valued SC functions from the plane are of
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the first class of Baire. In fact, let f be such a SC function. For each natural number

n, draw vertical lines in the plane, each at distance
1

n
from its left and right neighbours.

Define fn(x, y) to be f(x, y) on the union of these lines and determine fn(x, y) on the

rest of the plane by linear interpolation in the variable x. Since f is continuous of y, for

each fixed x, each fn is a continuous function on R
2. Since f is continuous function of

x, for each fixed y, lim
n→∞

fn(x, y) = f(x, y), for all (x, y) ∈ R
2. So, we have obtained the

function f as the limit of a sequence of continuous functions.

A much more abstract version of the above theorem, for real-valued SC functions

defined on products of any two metric spaces is known as Baire-Kuratowski-Montgomery

theorem. By yet another theorem of R. Baire, every Baire 1 function is pointwise dis-

continuous, i.e. its set of points of discontinuity is of the first category. Now, since

the domain (the plane) is a Baire space, the set C(f), being the complement of a first

category is dense, in fact Gδ subset, of the plane. So, as a dense Gδ subset of R2, the set

C(f) of points of continuity of any real-valued SC function from the plane is uncountable

(!) The same conclusion holds for all real-valued SC functions defined on a Baire space

X ×Y , where X and Y are metric. Observe that the above result answers our Existence

Problem — see Section 2.

Coming back to the question of when are real-valued SC functions of 1st class, let us

mention only W. Rudin’s [Ru] theorem which says that it is so, if the pointwise compact

subsets of C(X) are metrizable and Y is compact, see also W. Moran’s [Mo∗], G. Vera

[Ve] and the just published result of M. Henriksen and R.G. Woods [HW].

Let us now derive yet another corollary from the classical Baire’s result that all real-

valued SC functions are of 1st class. Namely, an estimate of the cardinality of the class

of SC functions. Since there are cω = c many sequences having terms from a set of

cardinality c, there are c many real-valued SC functions from the plane. Other estimates

of the cardinality of the class of SC functions will be given in Section 7.

There are, however, a few shortcomings of Baire classification when dealing with C(f)

of SC functions. Since Baire 1 functions are defined as limits of sequences of real-valued

continuous functions, this condition alone severly restricts possible applications. Perhaps

we could use Lebesgue-Hausdorff theorem on the equivalence of Borel 1 and Baire 1 classes

and ask which SC functions are Fσ measurable, for recent results on Lebesgue-Hausdorff

theorem see [Ha] and [Fo]. Also, there is an easy example of a separately Baire 1 function

f : [0, 1]× [0, 1] → R such that C(f) = ∅. This example shows a major weakness of Baire

classification while searching for C(f) of SC functions.

Concluding this section let us mention that quasi-continuity is a better tool when

studying continuity points of SC functions with non-metrizable ranges; it will be exam-

ined next.

4. Quasi-continuity of separate continuity. Observe that one really does not

need two dimensions in the domain of f in the condition (∗∗) of Baire; further replacing

disks with open sets, appropriately, we obtain the following topological version of (∗∗):
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(QC) Given f : X → Y ; we say that f is quasi-continuous if for every x from X , for

every open set U containg x and every open set V containing f(x), there is a nonempty

open set U ′, with U ′ ⊂ U and such that f(U ′) ⊂ V .

In the 60’s, quasi-continuity was re-invented by Z. Froĺık [Fr] while studying the

invariance of Baire spaces under functions, in the 90’s, quasi-continuity was defined once

again, this time when dealing with some generalizations of Michael’s selection theorem

[BG].

Baire findings on quasi-continuity of separately continuous functions were refined by

S. Kempisty [Kp∗], N.F.G. Martin [Mt∗], T. Neubrun [Ne] and Z. Piotrowski [Pt3∗];

apparently if X is Baire, Y is second countable and Z is regular, then separate quasi-

continuity (hence: separate continuity) implies quasi-continuity of f : X × Y → Z. Since

metrizability or countability of basis of either X,Y or Z severly restricts applications

of separate versus joint quasi-continuity into functional analysis or topological algebra,

the following result is of interest: [PS1]. Let X and Y be Čech-complete and let Z be

completely regular, then separate continuity of f : X × Y → Z implies quasi-continuity,

see also [Tr].

Also, for a long time it was known that every quasi-continuous function defined on a

Baire space X and having values in either a metric space or a second countable space,

has a dense Gδ subset of the set C(f) of points of continuity [Ne].

For a couple of years I knew that the class of all spaces Y that have a countable

pseudo-base (even open-hereditary) and are simultaneously hereditarily Lindelöf is “too

large”; take X to be the reals with the usual topology and Y to be the reals with the

Sorgenfrey topology. Then the identity function f : X → Y , i.e. f(x) = x, is quasi-

continuous which is continuous at no point. This is why I asked [Pt3] for which large

class of spaces Y , every quasi-continuous function f : X → Y , defined on a Baire space

X has at least one point of continuity.

Recently [KKM], P. S. Kenderov, I. S. Kortezov and W. B. Moors answered my

question providing a nice characterization which uses the notion of a fragmentable space.

The latter notion, defined by [JR], was intensively studied by N. K. Ribarska [Rb1] and

[Rb2], who gave a necessary and sufficient condition for a space to be a fragmentable

one and proved that a fragmentable compact Hausdorff space is fragmented by some

complete metric, see also [Rb3] and [Ng2].

5. Characterization of the set C(f). We shall start describing C(f) by exhibiting

results on how “large” (in various senses) can the set of Discontinuity D(f) be, given a

SC function.

It is an easy exercise that D(f) can be countably dense in [0, 1] × [0, 1]. In fact, let

D = {(xi, yi): i ∈ N} be any dense and countable subset of [0, 1]× [0, 1], then f defined

by:

f(x, y) =

∞
∑

n=1

fn(x, y)

2n
, for each n,
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fn(x, y) =











2(x− xn)(y − yn)

(x− xn)2 + (y − yn)2
, if (x, y) 6= (xn, yn)

0, otherwise,

is an SC function with D = D(f).

Using a family of Cantor sets in an interesting and clever process of densifying

the set D(f), G.C. Young and W.H. Young [YY∗] showed that there is a function

f : [0, 1] × [0, 1] → R which is continuous with respect to every straight line whose

D(f) is uncountably dense, i.e., it has uncountably many points of discontinuity in every

nonempty open set contained in the unit square. T. Tolstoff [To∗] showed that there is

an SC function f : R2 → R whose set D(f) has a positive Lebesgue measure. Let as note

that H. Lebesgue [Lb∗] knew already that a function f : [0, 1]× [0, 1] → R can be contin-

uous along every analytic curve (hence, SC) through (x0, y0) and still discontinuous at

(x0, y0), e.g., define f as follows:

f(x, y) =

{

1, if y = e−
1
x2 , except for x = 0,

0, otherwise.

T. Körner in yet unpublished paper [Kö], constructed a function f : R×R → R which

is continuous along every analytic curve whose set D(f) has Hausdorff measure 1 densely,

i.e., D(f) has Hausdorff measure 1, when intersected with every non-empty open subset

of the plane.

It follows from Baire’s (∗), Section 2 that the set D(f), the set of discontinuity of

a SC function f : [0, 1] × [0, 1] → R is an Fσ (as the complement of C(f), being a Gδ)

that is contained in the product of two sets of first category. What was missing was the

converse to the above result. It came, in 1944, done by R. Kersher [Kr∗].

Namely: Let S ⊂ R
2. Then S is D(f) of a certain SC function f : R2 → R iff S is

an Fσ contained in the product of two sets of first category. This characterization holds

also for domains being products of compact metric spaces [BN∗]. Answering one of my

earlier questions, V. K. Maslyuchenko, V. V. Mykhaylyuk and O. V. Sobchuk proved in

1992, see [MMS] that the above characterization of D(f) for SC functions is no longer

true if X and Y are arbitrary compact Hausdorff spaces.

The following spectacular question of M. Talagrand [Ta2∗] is, however, still open:

Let X be Baire, Y be compact (Hausdorff) and let f : X×Y → R be any SC function.

Is C(f) 6= ∅?

Carefull reader has surely noticed that separate continuity was replaced, at times,

in this section, by some other conditions, e.g., Young-Young linear continuity. More

precisely, function f : R2 → R is called linearly continuous if it is continuous with respect

to every straight line in the plane. In the past linear continuity received much less

attention than separate continuity. Still, following M. Slobodnik [Sl∗], the set D(f) for

an arbitrary linearly continuous function f : R2 → R is always of measure 0, so, as an

Fσ it is of first category. A complete characterization of D(f) for an arbitrary linearly

continuous function is still unknown.
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6. Namioka–type theorems. This section is devoted to various answers to our

Uniformization Problem of Section 2. This is, by far, the most celebrated part of the

topic of separate versus joint continuity.

Observe that the first result of this type is due to R. Baire himself [Ba∗], see (∗) of

Section 2. The set A mentioned in the formulation of the Uniformization Problem is

a dense Gδ; Baire showed that this set is residual. However, if X is a Baire space, it

follows from the Baire Category Theorem that every dense Gδ subset of X is residual

and every residual subset of X contains a dense Gδ set. By the way, it was shown

(J. Saint Raymond [SR2∗]) that if X is completely regular, Y is compact Hausdorff, M

is metric and if for every SC function f : X × Y → M there is a dense Gδ subset A with

A× Y ⊂ C(f), then X is, in fact, Baire.

Following H. Hahn [Hh2∗] a space S is called an absolute Gδ or a Young space, if it

is a Gδ subspace in every metric space X that contains S. In view of the remetrization

theorem of Alexandroff, Young spaces coincide with topologically complete and are la-

beled now Čech–complete. Hahn, who devoted to separate vs. joint continuity fourteen

pages of §39 of his “Reelle Funktionen” showed the following result [Hh2∗], §39:

Let X be a metric Young space, Y be compact metric, and let f : X × Y → R be SC,

then there is a residual subset A of X such that A× Y ⊂ C(f).

The very first answer to our Uniformization Problem where no assumptions of either

metrizability or countability of basis are made upon either X or Y came in 1971 in a

paper by S. L. Troyanski [Ty∗] on renorming a Banach space that is generated by a

weak-compact set. Troyanski’s renorming theorem implies the following result: Let X

and Y be compact Hausdorff spaces and let f : X×Y → R be a bounded SC function, then

there are dense Gδ sets A and B ofX and Y , respectively such that A×Y ∪X×B ⊂ C(f).

Finally, in 1974, I. Namioka showed [Na∗]:

Let X be regular, strongly countably complete, Y be locally compact and σ-compact

and let Z be pseudo-metric. Then for any SC function f : X × Y → Z there is a dense

Gδ subset A ⊂ X , such that A× Y ⊂ C(f).

Notice that Namioka’s theorem obviously generalizes the result of Troyanski, whereas

Hahn’s theorem can be viewed as a metric version of Namioka theorem.

The original proof of Namioka theorem starts with an interesting reduction to the case

when Y is compact. Next, using purely topological methods, such as, e.g. Arhangel’skii-

Froĺık covering theorem, or Kuratowski’s theorem on closed projections, Namioka shows

that, given the set Oε being the union of all open subsets O of X × Y such that diam

f(O) ≤ ε, the set Aε = {x: {x} × Y ⊂ Oε} is dense in X . Generalizations of Namioka

theorem e.g. [Cr1∗], or [Ta2∗] use, as X , various spaces defined by an appropriate version

of Banach-Mazur game; also methods of functional analysis, especially function spaces

(Mazur and Eberlein theorems [To]) are frequently applied.

Result of I. Namioka initiated, no doubt, the renaissance of the topic of separate

versus joint continuity. The problem was: How “far” can we go, i.e. what types of spaces

can be assumed as X or Y ? In particular, the questions were:

(a) [AO∗], [Cr1∗]: Does the conclusion of Namioka theorem hold if both X and Y are
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arbitrary complete metric spaces?

(b) [Na∗]: Does the conclusion of Namioka theorem hold if X is assumed to be a Baire

space?

The answer to both (a) and (b) is “no”, and was shown by J. B. Brown [Pt1] and

M. Talagrand [Ta2∗], respectively.

So, “the candidates” for X in Namioka theorem are various “almost” Baire, game-

defined spaces, while “the candidates” for Y are various compact–like spaces.

Following J. P. R. Christensen we say that a Hausdorff space X is Namioka or that

X has the Namioka property N, if for any compact space Y , any metric space Z, and any

SC function f : X×Y → Z the conclusion of Namioka theorem holds. J. Saint Raymond

[SR2∗] shows the following important results:

(i) Separable Baire spaces are Namioka

(ii) Completely regular Namioka spaces are Baire

(iii) In the class of metric spaces:

X is Namioka if and only if it is Baire.

Although M. Talagrand exhibited an α-favorable space X (hence, Baire) which does

not have the Namioka property N, still there are many natural game-defined spaces that

are Namioka.

Clearly, by Namioka theorem, Čech–complete spaces are Namioka, as well as, σ-well

α-favorable [Cr1∗], σ-β defavorable [SR2∗], τ -β defavorable [Ta2∗] and [Db1].

Following G. Debs [Db1] we say that a compact space Y is co-Namioka or has the

Namioka property N
∗, if for every Baire space X and for every SC function f : X × Y →

R, the conclusion of Namioka theorem holds. It was shown that N
∗ contains many

compact-like spaces appearing in functional analysis; among them are Eberlein compact

[Dv], Corson compact [Db2], Valdivia compact [DG], and, more generally, all compact

spaces Y such that Cp(Y ) is σ-fragmentable [JNR]. As it was shown by R. Deville [Dv],

βN 6∈ N
∗. Recently A. Bouziad [Bo1] showed that N

∗ contains all scattered compact

spaces which are hereditarily submetacompact. Many interesting results in this field have

been obtained by I. Namioka and R. Pol, see Section 8.

Also permanence properties of both Namioka and co-Namioka spaces have been stud-

ied; it is known that the class N∗ is closed under continuous images, arbitrary products

[Bo2] and countable unions [Hd1]. In view of Saint Raymond’s characterization of met-

ric Namioka spaces as Baire spaces, we conclude that perfect, continuous functions, in

general, do not preserve Namioka spaces; also the product of two, even metric, Namioka

space need not be Namioka. The reals with the Sorgenfrey topology plays a very inter-

esting role in this topic. Despite the fact that it is an α-favorable space, it is Namioka

(see [Pt1]); recall that Talagrand’s Baire space which is not Namioka is α-favorable. On

the other hand, if X is Baire, Y is the Sorgenfrey line and f : X ×Y → R is an arbitrary

SC function, then the conclusion of Namioka-type theorem fails (V.K. Maslyuchenko,

private communication).
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There is yet another group of results related to Namioka theorem. It has been shown

that if Y is second countable, then the conclusion of Namioka theorem is true, if X is an

arbitrary Baire space. This result was obtained independently by P.S. Kenderov [Ke2∗]

who used Fort’s category theorem and properties of multifunctions, J. Calbrix and J.P.

Troallic [CT∗] who used method of function spaces, and J.B. Brown [Pt4], who used

only Baire Category Theorem and the properties of metric. The just mentioned result

of Maslyuchenko shows the necessity of second countability of Y in the above results of

Kenderov, Calbrix-Troallic and Brown; countable pseudo-base for Y does not suffice.

Also multi-valued versions of Namioka theorem have been studied, see [La] and [Ch].

7. Other related topics.

7.1. Sierpiński’s theorem on the determination of SC functions. In 1932, W.

Sierpiński [Si] showed that any real-valued, SC function on R
n is uniquely determined

by its values on any dense subset of the domain space; in other words, if two continuous

functions agree on a dense subset of X , then they agree throughout X .

Sierpiński’s result has been proven again in R. A. McCoy and [To∗] and generalized

by C. Goffman, C. J. Neugebauer, W. W. Comfort, and quite recently by E. J. Wingler

and myself [PW1]. In fact, [PW1], Structural Lemma, p. 17 we have: Assume that every

SC function from the product X = X1 ×X2 × · · · ×Xn into a completely regular space

Z has the following property:

(FC) ∀ V
open

⊂ Z: f−1(V ) 6= ∅ ⇒ Int f−1(V ) 6= ∅.

Then any SC from X into Z is determined by its values on any dense subset of the

domain space.

It is so, e.g., if X1 = X2 = · · · = Xn are Baire, second countable spaces, the resulting

f is then quasi-continuous and, as such, satisfies the condition (FC) of feeble continuity,

compare also Section 4.

7.2. Conditions implying continuity of a SC function.

a) Young’s monotonicity theorem

W.H. Young [Yo∗] gave one of the first result of this type, namely:

SC function f : R2 → R that are monotone (i.e. increasing or decreasing) in one

variable are continuous.

This result has been re-discovered (e.g., [DK∗]) or is not being given credit to

anybody (folklore) in real analysis textbooks.

b) Lusin’s restriction and Rosenthal’s convexity theorems

N. Lusin [Lu∗] proved that a function f : [a, b] × [c, d] → R is continuous if and

only if its restriction to the graph of each continuous function g: [a, b] → [c, d] and

h: [c, d] → [a, b] is continuous.
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What follows is one of two generalizations of Lusin’s result that can be found in J.

P. Dalbec’s ([Da]; p. 671):

Let X be completely regular. Let Y be first countable and locally path-connected

let Z be topological space. Suppose that X × Y is sequential, that the function

g: X × Y → Z has continuous x-sections, and that for any continuous function

f : X → Y , the function gf , defined by gf (x) = g(x, f(x)), is continuous. Then g

is also continuous.

Recall (Section 5) that H. Lebesgue showed that a function f : R2 → R can be

discontinuous at (x0, y0) even though f is continuous along every analytic curve

through (x0, y0). However, A. Rosenthal [Rs
∗] showed that if f is continuous along

every convex curve which is at least once differentable, then f is continuous. Yet,

[Rs∗], f can be continuous along every curve through (x0, y0) which is twice dif-

ferentable without being continuous at (x0, y0).

c) Closed Graph Property

Is a closed graph SC f : R × R → R continuous? The answer to this question is

“yes” (see [PW2]) and it came only in 1990. So, what specific conditions upon

spaces X,Y and Z guarantee that a closed graph SC function f : X × Y → Z is

continuous? Here is the answer; [PW2], Theorem 1:

Let X and Y be topological spaces with Y locally connected. Let Z be locally

compact and suppose f : X × Y → Z has continuous y-sections and connected

x-sections. if f has a closed graph, then f is continuous.

d) Pettis’ near continuity

As it was shown by B. J. Pettis the lack of linearity of an operator in Closed

Graph Theorem may be compensated, in general topological case (the considered

spaces are not necessarily assumed to the linear) by the following conditon of near

continuity of f at every x:

(NC) ∀ V
open

: f(x) ∈ V ⇒ x ∈ Int f−1(V ),

that is, e.g. every closed graph, nearly continuous function f : X → Y between

any two complete metric spaces X and Y is continuous, see also [PS] for further

generalizations.

Since quasi-continuity and near continuity constitute a decomposition of continuity

([Ne]) i.e. a function that is simultaneously nearly continuous and quasi-continuous,

is continuous, so that for significantly large class of spaces, separate continuity implies

quasi-continuity we have the following result; compare Section 4:

Assume Z is completely regular. If

(i) X is Baire and Y is second countable or

(ii) both X and Y are Čech-complete.

101



Then every nearly continuous SC function f : X × Y → Z is continuous.

7.3. Cluster sets techniques answer the Uniformization Problem. For defini-

tions and earlier results, the authors is refered to [Pt1]. The new result since the mid-80’s

that is very interesting is Nagamizu theorem [Ng1]:

Let Y be second countable, Z be compact metrizable, let f : X × Y → Z has all

x-sections continuous, x ∈ X , and has all y-sections quasi-continuous, y ∈ E, where E is

dense in Y . Then there is a residual subset A ⊂ X , such that A× Y ⊂ C(f).

Observe that y-sections here are assumed to be quasi-continuous; recall [Ne] that

there are quasi-continuous functions f : R → R which are even not Lebesgue measurable.

7.4. Invariants of separate continuity. As we noticed (Section 4) for “nice” classes of

spaces (e.g., X-Baire, Y -second countable or both X and Y -Čech-complete with Z being

completely regular, in both cases) separate continuity implies quasi-continuity. Now,

quasi-continuous functions as feebly continuous preserve e.g. separability, see [Ne] for

more properties.

It is easy to see that separately continuous functions do not preserve, in general, con-

nected sets — take the set {(x, y): y = x} and use the standard example of a separately

continuous function which is not continuous at (0, 0). However, R.A. Mimna [Mi] showed

that if f : X × Y → Z is a function with connected x-sections and connected y-sections,

where X and Y are locally connected Hausdorff spaces, and Z is Hausdorff, then the

image of every connected open set in X × Y is connected in Z.

7.5. Cardinality of SC function. As mentioned in Section 3 there are c many real-

valued SC functions from the plane. It has been shown [PRS], that if d(X), d(Y ) ≤ κ

for some infinite cardinal κ, then there are at most 2κ SC functions f : X × Y → R,

as usual, d(X) denotes the density of X . If there are cellular families (i.e. families of

pairwise disjoint nonempty open subsets of a space) in X and Y of cardinality c(X), then

M. Henriksen and R.G. Woods [HW] showed that the cardinality of all SC functions is

greater or equal to 2c(X), whereX and Y are completely regular spaces with c(X) ≤ c(Y ).

There are spaces X and Y such that the cardinality of the class of all SC functions

f : X × Y → R is strictly greater than the cardinality of the class of all continuous

functions from X × Y into R; in fact take X to be any T1 space with κ ≥ ω isolated

points. Then the cardinality of all real-valued SC functions f : X × X → R is at least

2κ, see also [HW] for a corresponding result in terms of cellular families.

7.6. Topology of separate continuity. Following works of J. Novak; C. J. Knight,

W. Moran, J. S. Pym; A. V. Arhangel’skii; and S. Popvassilev, the recent work [HW]

(look there for the references of just mentioned articles) brings many deep results on

the relations between the product topology τ , the cross topology γ (where a subset of

X × Y is open in the cross topology if its intersection with each vertical fiber and each

horizontal fiber is open in the subspace topology induced on the fibers by τ), and the

topology σ of separate continuity, which is the weak topology on X × Y generated by
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the family of all SC functions, e.g., it is shown that if X is a compact metrizable space

without isolated point, then the topology σ of separate continuity for all SC functions

f : X ×X → R is not normal.

8. Applications. As in previous sections the reader is asked to consult the

corresponding part of author’s 1985 “Separate and joint continuity” [Pt1], first.

There is a natural link between Namioka or co-Namioka spaces and special maps into

function spaces. In order to exhibit this connection let us give appropriate definitions

first. For a compact space K, let C(K) denote the Banach space of all real-valued

continuous functions on K with the supremum norm. Besides the usual norm-topology

τn on C(K), we also consider the topology τp of pointwise convergence on K. Following

G. Debs, a space X is Namioka, if for every τp-continuous function f : X → C(K), the

set of τn-continuity points is dense in X . Notice that the set of continuity points of

any mapping from a topological space into a metrizable space is always Gδ, so the word

“dense” can be replaced by “dense Gδ”. Further, a compact space K has the property

N
∗ of co-Namioka, if for each τp-continuous function f from a Baire space B into C(K),

the set of τn-continuity points is dense in B.

Many results obtained in the 90’s pertain to detailed studies of τp-continuous functions

f : X → C(K), especially with regard to fragmentability or σ-fragmentability of subsets

of C(K), compare P. S. Kenderov and W. B. Moors [KM] or I. Namioka and R. Pol [NP1],

where a lot of research has been done in the area of property Σ (K is said to have property

Σ if (C(K), τp) is σ-fragmented by the metric of the norm). In [NP2], assuming that

there exists in the unit interval [0, 1] a coanalytic set of cardinality continuum without

any perfect subsets Namioka and Pol, constructed a scattered co-Namioka space such

that C(K) does not admit a Kadeč norm that is equivalent to the supremum norm; this

result answered some important questions by Deville, Godefroy [DG] and R. Haydon

[Hd2].

Let us now turn our interest to topological groups. A semitopological (resp. partopo-

logical) group is a group endowed with a topology for which the product is separately

(resp. jointly) continuous. In 1957, R. Ellis [El1∗], [El2∗] showed that every locally com-

pact, semi-topological group is topological. This answered a question posed by A. D.

Wallace. In 1982 N. Brand proved that every Čech-complete paratopological group is

topological.

The final question whether every Čech-complete (even Čech-analytic) semitopological

group is topological was answered affirmatively in 1996, by A. Bouzaid [Bo2]; quasi-

continuity is widely used there. Observe that this is a quite sharp estimate, since taking

the inverse in the Sorgenfrey line, an α-favorable space, is not continuous. Also E. A.

Reznichenko [Re1] announced without proof the above result of Bouziad. In [Re2], it is

shown that every completely regular pseudocompact paratopological group is topological

and every completely regular countably compact semitopological group is topological.

Finishing, let us mention that it was Troyanski’s renorming theorem [Ty∗] that let R.

Deville and G. Godefroy [DG] prove that Valdivia compact spaces are co-Namioka. In
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return Lemma II.3 of their result implies the following renorming result of G. Alexandrov

[Al]:

Let G be a compact topological group. There exists an equivalent norm on C(G)

which is locally uniformly rotund and translation invariant.

This phenomenon illustrates more and more frequent situation when a new result in

separate versus joint continuity is obtained via “deep” new result in functional analysis.
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ЧАСТИЧНА НЕПРЕКЪСНАТОСТ И СЪВМЕСТНА НЕПРЕКЪСНАТОСТ

Збигнев Пиотровски

Този обзор е продължение на обзора от статията [Pt1] и съдържа по-важните ре-
зултати относно съвместна непрекъснатост на частично непрекъснати функции.
Ударението е поставено върху новите находки (включително и относно историята
на изследванията) след средата на 80-те години.
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