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The paper considers some most recent results on a class of solutions of the now fa-
mous Yang-Baxter equation, the so-called set-theoretic solutions. Our approach is
algebraic. We discuss also our conjecture on the close relation between the nonde-
generate involutive solutions of the set-theoretic Yang-Baxter equation and a class of
standard finitely presented semigroups called binomial skew-polynomial semigroups.

1. Introduction. The Yang-Baxter equation appeared in 1967 [17] in Statistical

Mechanics and turned out to be one of the basic equations in Mathematical Physics, and

more precisely for introducing the Theory of Quantum Groups. At present the study of

Quantum Groups, and, in particular, the solutions of the Yang-Baxter equation attracts

the attention of a broad circle of scientists and mathematicians. For example, only on the

web site xxx.lanl.gov.math.QA, more than 60 mathematical preprints dealing explicitly

with the Yang-Baxter equation appeared during the last few years.

Let V be a vector space over a field k. A linear automorphism R of V ⊗V is a solution

of the Yang-Baxter equation if

(R⊗ idV )(idV ⊗R)(R⊗ idV ) = (idV ⊗R)(R⊗ idV )(idV ⊗R)(1.1)

which holds in the automorphism group of V ⊗ V ⊗ V. R is a solution of the quantum

Yang-Baxter equation (QYBE) if

R12R13R23 = R23R13R12(1.2)

where Rij means R acting on the i-th and j-th component.

Finding all solutions of the Yang-Baxter equation is a difficult task far from its final

resolution. Nevertheless many solutions of these equations have been found during the

last 16 years and the related algebraic structures (Hopf algebras) have been studied (for

example see [11]). Most of these solutions were “deformations” of the identity solution. In

1990 V. Drinfeld [2] posed the question of studying a class of solutions that are obtained

in a different way – the so called set-theoretic solutions.
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Definition 1.1.Let X be a nonempty set. Let r : X ×X −→ X ×X be a one-to-one

map of the Cartesian product X × X onto itself. The map r is called a set-theoretic

solution of the Yang-Baxter equation if

r1r2r1 = r2r1r2,(1.3)

where r1 and r2 are maps on X × X × X defined as r1(x, y, z) = (r(x, y), z) and

r2(x, y, z) = (x, r(y, z)).

Each set-theoretic solution r of the Yang-Baxter equation induces an operator R on

V ⊗ V for the vector space V spanned by X , which is, clearly, a solution of 1.1. Several

works dealing with set-theoretic solutions appeared recently, cf. [16, 9, 7, 3, 15, 13].

In [3] P. Etingof, T. Schedler and A. Soloviev study the class of nondegenerate invo-

lutive set-theoretic solutions of the Yang-Baxter equation. To each set-theoretic solution

r of the Yang-Baxter equation they associate a group GX called its structure group, gen-

erated by X and defined by a set of relations induced by r. They study its natural action

on X , proving that the group GX is solvable. The authors present different methods

for constructing nondegenerate symmetric solutions such as affine, multipermutational,

twisted unions, etc., discuss the geometric and algebraic interpretations of such solutions,

and give their classification in terms of group theory.

Soloviev [15], continues the study of the structure groups GX and AX associated with

set-theoretic solutions r of the Yang-Baxter equation. Also linear and affine solutions of

the Yang-Baxter equation are studied.

Lu, Yan and Zhu [13], propose a general construction of set-theoretic solutions of

the Yang-Baxter equation and study its properties. It is shown that their construction

includes the earlier ones given by Weinstein-Xu and Etingof-Schedler-Soloviev.

In the joint paper of Michel Van den Bergh and the author of this paper [7], are studied

the close relations between different mathematical objects such as set-theoretic solutions

of Yang-Baxter equations, semigroups of I-type (which appeared recently in the study

of Sklyanin algebras) and the semigroups S0 associated with certain skew-polynomial

rings with binomial relations introduced and studied in [4] and [5]. The semigroups S0,

called skew-polynomial semigroups are standard finitely presented, more precisely, they

are defined in terms of a finite number of generators and quadratic square-free relations,

which form a Groebner basis, cf. Definition 2.10. It is proved in [7] that each skew-

polynomial semigroup S0 defines a nondegenerate set-theoretic solution r = r(S0) of

the Yang-Baxter equation. In connection with this result T. Gateva-Ivanova made the

conjecture that under the restriction that X is finite and r acts trivialy on diag(X×X),

all nondegenerate involutive solutions can be obtained in this way, cf. Conjecture 2.12.

2. Braided and symmetric sets. In this section we discuss some results of [3]

and [15].

For convinience we shall often identify the setsX×X andX2, the set of all monomials

of length two in the free semigroup 〈X〉.

Definition 2.1 [3].Let X be a finite non-empty set, and let r : X ×X → X ×X be

a bijective map. The components of r are the maps g : X → X and f : X → X defined
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by the equation

r(x, y) = (gx(y), fy(x)).

(i) (X, r) is nondegenerate if gx(y) is a bijective function of y, for each x ∈ X, and

fy(x) is a bijective function of x, for each y ∈ X.

(ii) The pair (X, r) is a braided set if r satisfies the braid relation:

r1r2r1 = r2r1r2,(2.1)

(iii) (X,r) is involutive if

r2 = idX×X(2.2)

A set (X, r) is symmetric if it is braided and involutive.

Clearly, every braided set presents a set-theoretic solution of the Yang-Baxter equa-

tion. Nondegenerate symmetric sets are studied in [3]. We shall use the terminology

of [3] and shall often call the nondegenerate symmetric sets simply “solutions” meaning

nondegenerate solutions of (2.2). The binomial skew-polynomial semigroups, see [4, 5, 7,

10], are also associated with nondegenerate involutive solution of (2.1) and (2.2).

Example 2.2. Let X be a nonempty set and let r(x, y) = (y, x). Then (X, r) is a

nondegenerate symmetric set, which is called “the trivial solution”

Example 2.3. Lyubashenko, [2]. Let X be a non-empty set, let f, g be maps X → X

and let r(x, y) = (g(y), f(x)). Then (X, r) is nondegenerate if and only if f and g are

bijective; (X, r) is braided if and only if fg = gf ; (X, r) is involutive if and only if

f = g−1. Clearly, an involutive solution of this type is always braided. In the last case,

(X, r) is called a permutational solution.

Example 2.4. Let X = {x1, x2, x3, x4} and let r be defined as:

r(x1, x3) = (x4, x2), r(x4, x2) = (x1, x3), r(x1, x4) = (x3, x2), r(x3, x2) = (x1, x4),

r(x2, x3) = (x4, x1), r(x4, x1) = (x2, x3), r(x2, x4) = (x3, x1), r(x3, x1) = (x2, x4),

r(x1, x2) = (x2, x1), r(x2, x1) = (x1, x2), r(x3, x4) = (x4, x3), r(x4, x3) = (x3, x4),

r(xi, xi) = (xi, xi), i = 1, · · · , 4.

Then the set (X, r) is symmetric.

Definition 2.5.The braid group Bn is the group generated by n generators b1, · · · bn
and defining relations

bibj = bjbi, | i− j |> 1; bibi+1bi = bi+1bibi+1.(2.3)

Recall that the symmetric group Sn is isomrphic to the quotient of Bn by the relations

b2i = 1.

The following proposition is obvious.

Proposition 2.6 [3]. (i) The assignmet bi → rii+1 extends to an action of Bn on Xn

if and only if (X, r) is a braided set.
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(ii) The assignmet bi → rii+1 extends to an action of Sn on Xn if and only if (X, r)

is a symmetric set.

Another obvious proposition gives the relation between the braided sets (i.e. the set-

theoretic solutions of the Yang-Baxter equation) and the set-theoretic solutions of the

quantum Yang-Baxter equation.

Proposition 2.7.Let σ : X × X → X × X be the permutation map defined by

σ(x, y) = (y, x). Let R = σ ◦ r. (i.e. R is the so called R-matrix corresponding to r).

Then (X, r) is a braided set if and only R satisfies the quantum Yang-Baxter equation:

R12R13R23 = R23R13R12.(2.4)

Furthermore, (X, r) is symmetric if and only if R satisfies (2.4) and the unitarity condi-

tion

R21R = 1.(2.5)

There are three basic constructions associated naturally with a braided set (X, r).

These are the semigroup S(r), associated with (X, r) (it is defined only when r is invo-

lutive, see Definition 2.8), the structure group GX , see Definition 2.14, and the derived

structure group AX , see [15]. In the case when the set (X, r) is symmetric, the two

groups GX and AX coincide, so since our attention will be concentrated on symmetric

sets, we omit the definition of AX .

Definition 2.8.Given a symmetric set (X, r) we consider the semigroup S = S(r) =

〈X ;R〉 with a set of generators X and a set of defining relations

R = {u = r(u) | u ∈ X2, u 6= r(u)}

We call the semigroup S(r) the semigroup associated with r.

Let us assume now that S = 〈X ;R〉 is a semigroup with a set of generators X and a

set of quadratic binomial defining relations R = {xy = zt | x, y, z, t ∈ X}, such that each

monomial u ∈ X2, occurs in atmost one relation of R.

Define r = r(S) : X×X → X×X as follows: (i) r(x, y) = (x, y) if xy is a monomial

of length 2 which does not occur in any relation of R; and (ii) if (xy = zt) ∈ R, then

r(x, y) = (z, t) and r(z, t) = (x, y). We call r the map associated with the semigroup S.

We say that S is a Yang-Baxter semigroup, or abbreviated Y-B semigroup, if the

associated map r = r(S) is a set-theoretic solution of the Yang-Baxter equation.

Note that if r is the map defined by the set of relations of a Y-B semigroup S = 〈X ;R〉,

then, clearly, r2 = idX2 , so the set (X, r) is always symmetric.

We give now an example of a Y-B semigroup with 11 generators.

Example 2.9. Let S = 〈X ;R〉, with a set of generators X = {1, 2, · · · , 8, a, b, c} and

the set of defining relations:

1a = a2, 2a = a1, 2b = b3, 3b = b2, 3a = a4, 4a = a3, 4c = c1, 1c = c4,

5a = a6, 6a = a5, 6b = b7, 7b = b6, 7a = a8, 8a = a7, 8c = c5, 5c = c8,
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1b = b5, 5b = b1, 2c = c6, 6c = c2, 3c = c7, 7c = c3, 4b = b8, 8b = b4,

ab = ca, ac = ba, bc = cb, ij = ji, 1 ≤ i, j ≤ 8.

The binomial semigroups of skew-polynomial type were introduced and studied in [4,

5, 7]. These semigroups give a class of nondegenerate symmetric set-theoretic solutions

of the Yang-Baxter equation.

Definition 2.10.We say that the semigroup S0 is of skew-polynomial type if it has

a standard finite presentation as S0 = 〈X ;R0〉, where the set of generators X is ordered

x1 < x2 < · · · < xn, and the set R0 = {xy = zt | x, y, z, t ∈ X}, contains precisely

n(n− 1)/2 quadratic square-free binomial defining relations such that:

i) for every relation xy = zt ∈ R0, one has x 6= y, and z 6= t;

ii) each monomial xy, with x 6= y occurs in exactly one relation of R0

iii) if xy = zt ∈ R0, then x > y implies x > z, and z < t (or equivalently, z < t

implies x > y and x > z);

iv) the monomials xyz with x > y > z, x, y, z ∈ X, do not give rise to new relations

in S0, or equivalently, R0 is a Groebner basis with respect to the deg-lex ordering of the

free semigroup 〈X〉.

It is shown in [7], see the Theorem 3.5, that for each binomial skew-polynomial semi-

group S0 the associated map r = r(S0) is a nondegenerate involutive solution of the

set-theoretic Yang-Baxter equation.

As a corollary many “good” algebraic and homological properties of the correspond-

ing semigroup ring kS0 (over an arbitrary field k) are obtained like being a domain,

Koszul, Cohen-Macaulay, regular in the sense of Artin-Schelter, etc. In particular S0 is

cancellative . Hence it is naturally embedded in its group of quotient gr(S0). A natural

question arises.

Question 2.11.Let r : X ×X −→ X ×X be an involutive set-theoretic solution of

the Yang-Baxter equation, let S = S(r) be the associated semigroup. What can be said

about the set of defining relations R of S?

In 1996 Tatiana Ivanova made the following conjecrure reported in her talk at the

International Conference in Ring Theory, Miscolc 1996.

Conjecture 2.12.Let r : X×X −→ X×X be an involutive set-theoretic solution of

the Yang-Baxter equation. Assume that r(x, x) = (x, x) for all x ∈ X. and r(x, y) 6= (x, y)

for all x, y ∈ X, x 6= y. Then the set X can be ordered so, that the associated semigroup

S = S(r) is of skew-polynomial type.

Another conjectures related to question 2.11 were made by Pavel Etingof and Thomas

Schedler. In 1999 T. Ivanova proved that each of the three conjectures is equivalent to

2.12. We only formulate the conjectures in this section, and give a sketch of the proof of

their equivalence and some results related to them in section 3.

Conjecture 2.13.Let r : X×X −→ X×X be a nondegenerate involutive set-theoretic

solution of the Yang-Baxter equation. Assume that

(∗∗) r(x, x) = (x, x) for all x ∈ X.
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Then:

1) (T. Gateva-Ivanova) The set X can be ordered so that:

(r(x, y) = (z, t), x > y) =⇒ (x > z, z < t, y < t).

2) (P. Etingof) There is an ordering on X such that:

(r(x, y) = (z, t), x > y) =⇒ (z < t).

3) (T. Schedler) The set X is r-decomposable, i.e. can be presented as a union of two

disjoint nonempty subsets X1 and X2, which are r-invariant, i.e.

(r(x, y) = (z, t), x, y ∈ Xi) =⇒ ((z, t) ∈ Xi).

Definition 2.14 [3].Given a braided set (X, r) the structure group GX of (X, r) is

defined as the group generated by the elements of X, with a set of defining relations:

R = {u = r(u) | u ∈ X2, u 6= r(u)}.

Example 2.15 [3]. If (X, r) is the trivial pair (r(x, y) = yx) then GX = ZX the free

abelian group generated by X .

Example 2.16. Let S0 be a binomial skew polynomial semigroup. Let r = r(S0) be

the map defined by the relations of S0. Then the set (X, r) is symmetric. Furthermore,

since S0 is a cancellative semigroup, it has a group of quotient gr(S0), which is a central

localization of S0, see [10]. It is clear, that the groups gr(S0) and the structure group

GX are isomorphic. In this case the set X is embedded in GX .

Proposition 2.17 [3].Let (X, r) be nondegenerate. Then (X, r) is braided, if and

only if the following three conditions hold:

(i) the assignment x → fx is a right action of GX on X;

(ii) the assignment x → gx is a left action of GX on X;

(iii) the linking relation

fgfy(x)(z)(gx(y)) = gfgy(z)(x)(fz(y))

holds.

We give now a modification of Theorem 1.6 of [15].

Theorem 2.18 [15].Let (X, r) be a nondegenerate braided finite set. Let Γ be the

intersection of the kernels of the left and right actions from Proposition 2.17. Then Γ is

a normal abelian subgroup of GX of finite index.

Analogous statement is given in [13], cf. Prop. 6.

Using a different argument based on what she calls “cyclic condition” T. Gateva-

Ivanova also proves that in the case whenX = {x1, · · · , xn}, and (X, r) is a nondegenerate

symmetric set, with r acting trivialy on diag(X×X) , the structure groupGX contains as

a normal subgroup of finite index the free abelian group [xP
1 , · · · , x

P
n ], where P = (n−1)!,

see [6].

Definition 2.19 [3].Let (X, r) be a nondegenerate symmetric set.
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(a) A subset Y of X is r-invariant (or abbreviated invariant) if r(Y, Y ) ⊂ (Y, Y ).

(b) The set X is decomposable if it is a union of two nonempty disjoint nondegenerate

invariant subsets.

Example 2.20. Let X be a finite set, and let (X, r) be a “permutational solution”

(see Example 2.3). That is, r(x, y) = (p(y), p−1(x)), where p is a permutation of X .

Then X is indecomposable if and only if p is a cyclic permutation.

Proposition 2.21.Let S0 be a binomial skew-polynomial semigroup generated by X,

let r = r(S0) be the associated solution of the Yang-Baxter equation. Then the set (X, r)

is decomposable.

The proposition follows straightforward from Theorem 3.6 given in the next section.

Proposition 2.22 [3].A nondegenerate symmetric set (X, r) is indecomposable if and

only if GX acts transitively on X.

The following theorem describes the nondecomposable symmetric sets in the case

when X is a finite set of a prime order.

Theorem 2.23 [3].Let p be a prime number, let X be a finite set of order p. Suppose

(X, r) is an indecomposable nondegenerate symmetric set. Then (X, r) is isomorphic to

the cyclic permutation solution (X, r0), where r0(xi, xj) = (xj−1, xi+1). (The notation

j − 1, and i+ 1 is taken modulo n, i.e. xj−1 = xn, for j = 1, and xn+1 = x1.)

The following corollary shows that the Conjecture is true in the case when X is of

prime order.

Corollary 2.24.Let (X, r) be a nondegenerate symmetric set. Let | X |= p, where p

is a prime. Suppose r(x, x) = (x, x), for each x ∈ X. Then (X, r) is decomposable.

Theorem 2.25 [3].The structure group GX of a finite nondegenerate symmetric set

is solvable.

In [3] are also studied the quantum algebras associated to a nondegenerate symmet-

ric set by the Faddeev-Reshetikin-Takhtajan-Sklyanin construction, see [14]. The au-

thors present methods for constructing of nondegenerate symmetric sets: linear, affine,

multipermutation solutions, twisted unions, and generalized twisted unions, study the

properties and present a classification of such solutions.

A. Solovyev [15] continues the study of braided sets. He introduces the rank of a

finite nondegenerate braided set (X, r) as the rank of its structure group GX . It is shown

in [15], cf. Corollary 1, that if X is a set of order n then the rank of (X, r) is atmost

n. Furthermore the rank is precisely n if and only if (X, r) is symmetric. He introdices

injective solutions and studies injective linear and affine solutions.

3. Yang-Baxter semigroups with square free relations. We keep the notation

from the previous sections. The set X = {x1, · · · , xn} will be always finite. Given a

symmetric set (X, r) by S(r) we denote the associated Yang-Baxter semigroup defined

in Definition 2.8. For convinience we shall often identify the sets X ×X and X2. Recall

that S(r) = 〈X ;R〉, where for the set of defining relations R one has (xy = y′x′) ∈ R if
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and only if r(xy) = (y′x′). Throughout the section we shall assume that r acts trivially

on diag(X ×X), i.e. for each x ∈ X one has:

r(xx) = xx.(3.1)

Lemma 3.1 [6].Let (X, r) be a nondegenerate set. Suppose that r(xx) = xx for all

x ∈ X. Then for every payr (x, y), with x 6= y, x, y ∈ X, one has r(xy) = y′x′, where

y′ 6= x, and x′ 6= y.

Proof. It follows from the hypothesis of the lemma that for the function gx, defined

in Definition 2.1 one has gx(x) = x, thus, since (X, r) is nondegenerate y 6= x implyes

gx(y) 6= gx(x) = x. This gives y′ 6= x. Analogous argument shows that x′ 6= y. �

Lemma 3.2 [6].For a symmetric set (X, r) with r acting trivialy on diag(X × X)

the following three conditions are equivalent:

1. (X, r) is nondegenerate;

2. r(xy) 6= xy for all x, y ∈ X, with x 6= y;

3. For every pair x 6= y, x, y ∈ X one has r(xy) = y′x′, with y′ 6= x, and x′ 6= y.

Theorem 3.3 [6].Let (X, r) be a symmetric set, let P = (n− 1)!, let S = S(r) be the

associated Yang-Baxter semigroup. Suppose:

(i) r(xx) = xx for all x ∈ X ;

(ii) r(xy) 6= xy for all x, y ∈ X, x 6= y.

Then S satisfies the following conditions:

1. x 6= y implies (xy = y′x′) ∈ R, with x 6= y′, y 6= x′.

2. For every pair t, y ∈ X, t 6= y, there exists a pair z, u ∈ X, z 6= u, such that

tty = zuu is an equality in S.

3. For every pair t, y ∈ X, t 6= y, there exists a pair z, u ∈ X, z 6= u, such that

tyy = zzu is an equality in S.

4. (The Cyclic conditions.) For any pair t, y ∈ X, t 6= y, there exist two finite

sequences σ′

t,y = {t = t1, · · · , tp} ⊂ X ; σ′′

t,y = {y = y1, · · · , yq} ⊂ X, such that p+ q ≤ n,

σ′

t,y

⋂

σ′′

t,y = ∅, and the following equalities hold in S:

tiyj = yj+1ti+1, 1 ≤ i < p, 1 ≤ j < q,

tpyj = yj+1t1, 1 ≤ j < q, tiyq = y1ti+1, 1 ≤ i < p, tpyq = y1t1.

The number p+ q is called the length of the cycle determined by t and y.

5. Given t, y ∈ X, there exist unique a, b ∈ X such that ta = yb. Furthermore, t = y

implies t = a = b.

6. The set (X, r) is nondegenerate.

7. For x, y ∈ X there exists a z ∈ X such that xyP = zPx.

8. The equality xP yP = yPxP holds for every x, y ∈ X. Furthermore, S con-

tains the free abelian semigroup generated by xP
1 , · · · , x

P
n , and the free abelian group

A = gr[xP
1 , · · · , x

P
n ] generated by xP

1 , · · · , x
P
n is a normal subgroup of finite index in

the structure group GX .
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Proof. We give here a sketch of the proof. Let t 6= y and let r(ty) = au. It follows

from (ii) that ty 6= au (as monomials). Let r(ta) = zv. Consider the “Yang-Baxter

diagram”

tty
r1−−−−→ tty

r2





y





y

r2

tau tau

r1





y





y

r1

zvu
r2−−−−→ zvu

It follows then that r(vu) = vu, which by (ii) and (i) is possible only if v = u. This proves

tty = zuu, so condition 2 holds. We also claim that in the equality r(ty) = au one has

a 6= t, and u 6= y. Indeed, if we assume that r(ty) = tu, then the Yang-Baxter diagram

tty
r1−−−−→ tty

r2





y





y

r2

ttu ttu

r1





y





y

r1

ttu
r2−−−−→ ttu

gives that r(tu) = tu, which is possible only for t = u, thus the assumption r(ty) = tu

implies t = u, which contradicts (i). The inequality u 6= y can be proved analogously.

Condition 1 has been proved. Analogous argument proves 3. It follows from Condition

2 that if ty = y′t′, one has ty′ = y′′t′, so if we fix t, in finitely many steps we obtain a

sequence y1 = y, y2 = y′, · · · , yq, q < n, such that tyj = yj+1t
′, for j < q and tyq = y1t

′.

Analogous argument proves the existence of the sequence t1 = t, t2 = t′, · · · , tp, p < n,

such that the cyclic conditions 4 are satisfied. It follows from (i) that ti 6= yj for all i, j.,

thus p+ q ≤ n. The cyclic conditions imply 5. Indeed, in the notation of 4. take a = yq,

and b = t2. All remaining conditions of the theorem follow from the cyclic conditions. �

The following theorem can be extracted from [7], Theorems 1.3, 1.4.

Theorem 3.4 [7].Let S = 〈X ;R〉 be a Yang-Baxter semigroup, let r = r(R) be the

map associated with the set of relations R. Suppose for each x, y ∈ X there exist unique

a, b ∈ X, such that r(xa) = yb. Let A = kS be the semigroup algebra over a field k. Then

1. S is of I-type.

2. A has finite global dimension.

3. A is Koszul.

4. A is Noetherian.

5. A satisfies the Auslander condition.

6. A is regular in the sense of Artin-Schelter.

7. A is Cohen-Macaulay.
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8. A is a domain, in particular S is cancellative.

The semigroups of I-type are defined in [7]. For the definition of “Cohen-Macaulay”

and the “Auslander condition” see [12]. Regular rings are defined in [1].

If S0 is a binomial skew-polynomial semigroup, then it is proved in [5] that all the

conditions 1, 2, 3, 4, 5, 7, 8 of Theorem 3.3 are satisfied. Furthermore, S0 is a Yang-

Baxter semigroup, as shows the following theorem.

Theorem 3.5 [7].Let S0 be a semigroup of skew-polynomial type. Then the associated

map r = r(S0) is a (nondegenerate involutive) solution of the set-theoretic Yang-Baxter

equation, that is S0 is a Yang-Baxter semigroup.

The following observations are made in [10]. It follows from the condition xyp = zpx,

for each x, y ∈ X that the group G = gr(S) acts by conjugation on the set {xP
1 , · · · , x

P
n }.

Then this set is a disjoint union of distinct conjugacy classes, say C1, · · · , Cr. For each

i, 1 ≤ i ≤ r, let zi = Πc∈Ci
c. Then zi is a central element of S. For an element

z = xpki

1 · · ·xpkn
n ∈ A, (with each ki ≥ 0 denote by c(z) = {i | ki > 0}, the content of z.

For each i, 1 ≤ i ≤ r, let Si = 〈xj | j ∈ c(zi)〉. The monoids S1, · · · , Sr are called the

components of S0.

Theorem 3.6 [10].Let S0 be a binomial skew-polynomial semigroup. Let the sub-

monoids S1, S2, · · · , Sr be the components of S0. Then the following conditions hold.

1. SjSi = SiSj, for each i, j. In particular, each Si is a binomial skew polynomial

semigroup.

2. Every element s ∈ S0 has a unique representation of the form s = s1 · · · sr, with

si ∈ Si. So S0 = S1 · · ·Sr.

3. gr(S0) = G1 · · ·Gr, where Gi = gr(Si).

4. S0 is cyclic (i.e. n = 1) if and only if it has only one component.

Condition 4 of Theorem 3.6 says that if n > 1, then for the number of components r

of S0, one has r > 1. It follows then from 1 that the set (X, r) is decomposable which

proves proposition 2.21.

We now give a sketch of the proof of the equivalence of the conjectures 2.12 and 2.13.

Proof. Clearly Conjecture 2.12 implies 1 of Conjecture 2.13. Assume now 1 of

Conjecture 2.13 is true. By Theorem 3.5 S is of I-type, thus the semigroup algebra kS,

over an arbitrary field k, has the same Hilbert series as the commutative polynomial ring

k[x1, · · · , xn]. This implies that the set of relations R is a Groebner basis with respect to

the chosen order on X , hence S is a binomial skew-polynomial semigroup wich gives the

equivalence 2.12 ⇐⇒ 2.13.1. The implication 2.12 =⇒ 2.13.3. follows from Proposition

2.21. The implication 2.13.3. =⇒ 2.13.1. can be proved by induction on n. The

equivalence 2.13.1. ⇐⇒ 2.13.2. follows from the Cyclic conditions 4 of Theorem 3.3. �

It has been proved (cf. [6] for 1), 2), 3), and [3] for 4) that the Conjecture is true in

the following cases:

1) The number of generators n is atmost 9;

2) The number of generators n is a) at most 23, or b) n arbitrary, with n 6= 2m, and

the relations satisfy the condition:
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(∗ ∗ ∗) for each x 6= y, x, y ∈ X , either xy = yx, or there exists a z ∈ X such that

xy = zx, or xy = yz. (In other words the maximal length of a cycle is 3.)

3) The number n is arbitrary, and the monomial W, generating the socle of the Koszul

dual A! of the semigroup algebra A = kS can be presented as a product of all generators

x1, · · · , xn, (i.e. W = xi1 · · ·xin , where i1, · · · , in is a permutation of 1, · · · , n.)

4) The number n is prime.
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ТЕОРЕТИКО-МНОЖЕСТВЕНИ РЕШЕНИЯ НА

УРАВНЕНИЕТО НА ЯНГ-БАКСТЕР

Татяна Гатева-Иванова

В статията се разглеждат някои най-нови резултати върху един клас реше-

ния, т.н. “теоретико-множествени решения” на вече прочутото уравнение на Янг-

Бакстер. Подходът ни е алгебричен. Обсъждаме и една наша хипотеза относно

тясната връзка между неизродените решения на теоретика-множественото урав-

нение на Янг-Бакстер и един клас от стандартно крайно представими полугрупи,

наречени “биномни подгрупи от косо-полиномен тип”.
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