BOUNDS FOR CODES OVER SMALL ALPHABETS

Galina T. Bogdanova ${ }^{1}$, Stoian N. Kapralov ${ }^{2}$

This paper dwells on the problem of finding the values of $A_{q}(n, d)$: the maximum size of a code of length n and minimum distance d over an alphabet of q elements. All the parameters (n, d) for which $q \leq A_{q}(n, d)<2 q$ are determined. Some new bounds on $A_{3}(n, d)$ are presented.

1. Introduction. We assume that the reader is familiar with the basic notions and facts of coding theory $[6],[7]$. The codes to be considered are $(n, M, d)_{q}$-codes, i.e. codes over an alphabet of q elements, that contain M words of length n at minimum distance d. We denote by $A_{q}(n, d)$ the maximum of M, for which an $(n, M, d)_{q}$-code exists.

The first systematic research of the function $A_{3}(n, d)$ was in [12], where a table of its values was presented for $n \leq 16$. Few improvements were made in that table for the next several years. In [4] an updated table was presented. Here we reproduce only a part of the last table.

Table 1. Values of $A_{3}(n, d)$

n	$d=3$	$d=4$	$d=5$	$d=6$	$d=7$	$d=8$	$d=9$	$d=10$
4	9							
5	18	6						
6	$38-48$	18	4					
7	$99-144$	$33-46$	10	3				
8	$243-340$	$99-138$	27	9	3			
9	$729-937$	$243-340$	81	27	6	3		
10	$2187-2811$	$729-937$	243	81	$14-18$	6	3	
11	$6561-7029$	$1458-2561$	729	243	$36-50$	12	4	3

2. General bounds on $A_{q}(n, d)$.

Theorem 2.1.

$$
A_{q}(n, d) \leq A_{q}(n-1, d-1), \quad A_{q}(n, d) \leq q A_{q}(n-1, d)
$$

[^0]Theorem 2.2. [2]

$$
A_{q}(n, d)=q \quad \Longleftrightarrow \quad \frac{q^{2}+q-2}{q(q+1)} n<d \leq n
$$

Theorem 2.3. [3]

$$
A_{q}(n, d)=q+1 \quad \Longleftrightarrow \quad \frac{q^{2}+3 q-2}{(q+1)(q+2)} n<d \leq \frac{q^{2}+q-2}{q(q+1)} n .
$$

Theorem 2.4. (The Plotkin bound) [10], [6]. If C is an $(n, M, d)_{q}$-code, then $(M-$ 1) $q d \leq M(q-1) n$.

In the recent paper [1], a stronger result is proved:
Theorem 2.5. (The sharpened Plotkin bound) [1] If C is an $(n, M, d)_{q}$-code and $M=p q+r, 0 \leq r \leq q-1$, then $(M-1) M d \leq\left(M^{2}-\sigma\right) n$, where $\sigma=(q-r) p^{2}+r(p+1)^{2}$.

3. New general result.

Lemma 3.1. If an $(n, M, d)_{q}$-code exists and $q \leq M \leq 2 q$ then

$$
d \leq \frac{M^{2}-3 M+2 q}{M^{2}-M} n .
$$

Proof. Follows from Theorem 2.5.
Some definition and preliminary results are needed for the proof of the next Lemma.
Let $V=\{1,2, \ldots, m\}$. There are $\binom{m}{2}$ distinct unordered pairs of the elements of V.
Definition 3.2. A Pair Design $P D(m)$ is an arrangement of the pairs in a sequence in such a way that there are at least $\left\lfloor\frac{m-3}{2}\right\rfloor$ pairs between every two pairs with a common element.

Example 3.3. $P D(7)$
$12,34,56,71,23,45,67,13,52,74,61,35,27,46,15,73,62,41,57,36,24$.
Example 3.4. $P D(8)$
$12,34,56,78,13,52,74,86,15,73,82,64,17,85,63,42,18,67,45,23,16,48,27,35$, $14,26,38,57$.

Theorem 3.5 [11], [5]. A $P D(m)$ exists for all positive integers $m \geq 2$.

Construction.

a) for odd m the first m pairs are

$$
\{1,2\},\{3,4\}, \ldots,\{m-2, m-1\},\{m, 1\},\{2,3\}, \ldots,\{m-1, m\}
$$

Then apply $\frac{m-1}{2}-1$ times the permutation:

$$
(1)(3,5,7, \ldots, m-4, m-2, m, m-1, m-3,, \ldots, 6,4,2)
$$

b) for even m the first $\frac{m}{2}$ pairs are

$$
\{1,2\},\{3,4\}, \ldots,\{m-1, m\}
$$

Then apply $m-2$ times the permutation:

$$
(1)(3,5,7, \ldots, m-3, m-1, m, m-2, m-4,, \ldots, 6,4,2)
$$

The obtained $P D(m)$ are cyclic. Using k times reiteration of $P D(m)$, we obtain the sequence where any pair occurs k times, and with the property that there are at least $\left\lfloor\frac{m-3}{2}\right\rfloor$ pairs between two appearances of any one element. We call such a sequence $\stackrel{P}{P}$-sequence.

Lemma 3.6. If $q \leq M \leq 2 q$ and $d \leq \frac{M^{2}-3 M+2 q}{M^{2}-M} n$ then an $(n, M, d)_{q}$-code exists.
Construction. If $M=q$ the desired code may be:

If $M>q$ let $r=M-q$. First produce a $P D$-sequence of length $r \times n$.
Cut the sequence into subsequences of length r.
Every subsequence $\left\{x_{0}, y_{0},\right\},\left\{x_{1}, y_{1}\right\}, \ldots,\left\{x_{r-1}, y_{r-1}\right\}$ corresponds to a coordinate of the desired code: for $i=0,1, \ldots, r-1$ set this coordinate of the x_{i}-th and y_{i}-th codewords equal to i. If $M<2 q$ the nonfilled entries in any position fill with the unused elements of Z_{q}, i.e. $r, r+1, \ldots, q-1$.

Example 3.7. Construction of a $(28,8,25)_{5}$ code.
Take three times $P D(8)$ and cut the sequence into parts of length 3
$12,34,56 ; 78,13,52 ; 74,86,15 ; 73,82,64 ; 17,85,63 ; 42,18,67 ; 45,23,16 ;$
$48,27,35 ; 14,26,38 ; 57,12,34 ; 56,78,13 ; 52,74,86 ; 15,73,82 ; 64,17,85$;
63,42,18; 67,45,23; 16,48,27; 35,14,26; 38,57,12; 34,56,78; 13,52,74;
$86,15,73 ; 82,64,17 ; 85,63,42 ; 18,67,45 ; 23,16,48 ; 27,35,14 ; 26,38,57$.

The code is:
0123012301230123012301230123
0231301111302312222413023000
1140231222241402300002314011
1302400002413011113024122224
2224140230000231401111402312
2412222413024000024130111130
3000023140111140231222241402
4011114024122224140240000241 .

Theorem 3.8. If $q \leq M<2 q$ then $A_{q}(n, d)=M \quad$ iff

$$
\frac{(M+1)^{2}-3(M+1)+2 q}{(M+1)^{2}-(M+1)} n<d \leq \frac{M^{2}-3 M+2 q}{M^{2}-M} n .
$$

Proof. Follows from Lemma 3.1 and Lemma 3.6.
4. New specific results. In [12] a $(6,37,3)_{3}$ code has been constructed.

In [4] a $(6,38,3)_{3}$ code has been constructed.
By the Linear Programming bound $(6,49,3)_{3}$-codes do not exist.
Hence $38 \leq A_{3}(6,3) \leq 48$, as it is shown in Table 1.
In this paper we will prove that $38 \leq A_{3}(6,3) \leq 39$.
Theorem 4.1. There are no $(6,40,3)_{3}$-codes.
Proof. Our approach is similar to that one used in [8] for proving the nonexistence of a $(10,73,3)_{2}$-code.

Any $(n, M, d)_{q}$-code contains an $\left(n-1, M^{\prime}, d\right)_{q}$-code with $M^{\prime} \geq M / q$.
Suppose that C is a $(6,40,3)_{3}$-code. Then C must contain a subcode C^{\prime} which is a $\left(5, M^{\prime}, 3\right)_{3}$-code with $M^{\prime} \geq 14$. In Table 1 we see that $M^{\prime} \leq 18$. We have classified (up to equivalence) all codes with parameters $\left(5, M^{\prime}, 3\right)_{3}$ for $14 \leq M^{\prime} \leq 18$ and all codes with parameters $\left(4, M^{\prime \prime}, 3\right)_{3}$ for $5 \leq M^{\prime \prime} \leq 9$.

Definition 4.2. Two q-ary codes are called equivalent if one can be obtained from the other by a superpossition of operations of the following types:
a) permutation of the coordinates of the code;
b) permutation of the symbols appearing in a fixed position.

To find out whether two q-ary codes are equivalent the brute-force approach of checking all $n!(q!)^{n}$ possible permutations of the coordinates and coordinate values is not acceptable even for small values of q and n.

In [9] the complexity of algorithms for determining the code equivalence is studied. A polynomial-time reduction from the Graph Isomorphism problem to Code Equivalence problem was presented. Thus, if one could find an efficient (i.e., polynomial-time) algorithm for the Code Equivalence problem, then one could settle up the long-standing problem of determining whether there is an efficient algorithm for solving the Graph Isomorphism problem.

In [8] we find just the opposite approach: the Code Equivalence problem is transformed into a Graph Isomorphism one.

We use our own specially developed computer program for determining code equivalence.
The results are summarized in the following table:

Table 2. Inequivalent $(4, M, 3)_{3}$ and $(5, M, 3)_{3}$-codes

M	\# inequivalent $(4, M, 3)_{3}$-codes	M	\# inequivalent $(5, M, 3)_{3}$-codes
5	5	14	78
6	4	15	10
7	1	16	3
8	1	17	1
9	1	18	1

We checked with a computer that none of the subcodes can be extended to a $(6,40,3)_{3^{-}}$ code.

Using the same approach we prove the following theorem:

Theorem 4.3. There are no $(10,16,7)_{3}$-codes.
From Theorem 4.2, Theorem 4.3 and Theorem 2.1 we obtain the following improvements in Table 1:

Corollary 4.4.

a) $A_{3}(6,3) \leq 39, \quad A_{3}(7,3) \leq 117, \quad A_{3}(7,4) \leq 39, \quad A_{3}(8,3) \leq 117$;
b) $A_{3}(10,7) \leq 15, \quad A_{3}(11,7) \leq 45$.

REFERENCES

[1] G. Bogdanova, S. Kapralov. A recursive construction of a family nonlinear codes. Mathematics and Education in Mathematics, 28 (1999), 72-75.
[2] G. T. Bogdanova, P. R. J. Östergård. Error-correcting Codes an Alphabet of Four Elements. Intern. Symp. on Inform. Theory, 2000, Toronto, Italy, (submitted).
[3] G. T. Bogdanova, P. R. J. Östergård, S. N. Kapralov. Bounds on Codes over an Alphabet of Five Elements. Discrete Mathematics, (submitted).
[4] A. E. Brouwer, H. O. HÄmäläinen, P. R. J. ÖstergÅrd, N. J. A. Sloane, W. D. Smith. Bounds on Mixed Binary/Ternary Codes. IEEE Trans. Inform. Theory, 44 (1998), 140-161.
[5] J. H. Dinitz, E. R. Lamken, W. D. Wallis. Scheduling a Tournament, a Chapter in: The CRC Handbook of Combinatorial Designs. (Eds. C. J. Colbourn, J. H. Dinitz), CRC Press, New York, 1996, 565-578.
[6] J. H. van Lint. Introduction to Coding Theory. Springer-Verlag, New York, 1982.
[7] F. J. MacWilliams, N. J. A. Sloanem. The Theory of Error-Correcting Codes, NorthHolland. Amsterdam, 1977.
[8] P. R. J. Östergård, T. Baicheva, E. Kolev. Optimal binary one-error-correcting codes of length 10 have 72 codewords. IEEE Trans. Inform. Theory, 45 (1999), 1229-1231.
[9] E. Petrank, R. M. Roth. Is code equivalence easy to deside? IEEE Trans. Inform. Theory, 43 (1997), 1602-1604.
[10] M. Plotkin. Binary codes with specified minimum distance. IRE Trans. Inform. Theory, 6 (1960) 445-450.
[11] G. J. Simmons, J. A. Davis. Pair designs. Commun. Stat., 4 (1975), 255-272.
[12] R. J. M. Vaessens, E. H. L. Aarts, J. H. van Lint. Genetic algorithms in coding theory - a table for $A_{3}(n, d)$. Discrete Applied Mathematics, 45 (1993), 71-87.

Galina T. Bogdanova
Institute of Mathematics and Informatics Bulgarian Academy of Sciences
P.O. Box 323, 5000 V. Tarnovo, Bulgaria lpmivt@vt.bia-bg.com

Stoian N. Kapralov
Department of Mathematics
Technical University
5300 Gabrovo, Bulgaria
kapralov@tugab.bg

ГРАНИЦИ ЗА КОДОВЕ НАД МАЛКИ АЗБУКИ

Галина Т. Богданова, Стоян Н. Капралов

Статията е посветена на проблема за определяне стойностите на $A_{q}(n, d)$ - максималния обем на код с дължина n и минимално разстояние d над азбука с q елемента. Определени са всички двойки (n, d), за които $q \leq A_{q}(n, d)<2 q$. Получени са някои нови граници за $A_{3}(n, d)$.

[^0]: ${ }^{1}$ This work was partially supported by UVO-ROSTE Contract No 875.630.9.
 ${ }^{2}$ This work was partially supported by the Bulgarian National Science Fund under Grant I-618/96.

