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BOUNDS FOR CODES OVER SMALL ALPHABETS

Galina T. Bogdanova1, Stoian N. Kapralov2

This paper dwells on the problem of finding the values of Aq(n, d): the maximum size
of a code of length n and minimum distance d over an alphabet of q elements. All the
parameters (n, d) for which q ≤ Aq(n, d) < 2q are determined. Some new bounds on
A3(n, d) are presented.

1. Introduction. We assume that the reader is familiar with the basic notions and

facts of coding theory [6],[7]. The codes to be considered are (n,M, d)q-codes, i.e. codes

over an alphabet of q elements, that contain M words of length n at minimum distance

d. We denote by Aq(n, d) the maximum of M , for which an (n,M, d)q-code exists.

The first systematic research of the function A3(n, d) was in [12], where a table of its

values was presented for n ≤ 16. Few improvements were made in that table for the next

several years. In [4] an updated table was presented. Here we reproduce only a part of

the last table.

Table 1. Values of A3(n, d)

n d =3 d =4 d =5 d =6 d =7 d =8 d =9 d =10
4 9
5 18 6
6 38–48 18 4
7 99–144 33–46 10 3
8 243–340 99–138 27 9 3
9 729–937 243–340 81 27 6 3
10 2187–2811 729–937 243 81 14–18 6 3
11 6561–7029 1458–2561 729 243 36–50 12 4 3

2. General bounds on Aq(n, d).

Theorem 2.1.

Aq(n, d) ≤ Aq(n− 1, d− 1), Aq(n, d) ≤ qAq(n− 1, d).

1This work was partially supported by UVO-ROSTE Contract No 875.630.9.
2This work was partially supported by the Bulgarian National Science Fund under Grant I–618/96.

149



Theorem 2.2. [2]

Aq(n, d) = q ⇐⇒
q2 + q − 2

q(q + 1)
n < d ≤ n.

Theorem 2.3. [3]

Aq(n, d) = q + 1 ⇐⇒
q2 + 3q − 2

(q + 1)(q + 2)
n < d ≤

q2 + q − 2

q(q + 1)
n.

Theorem 2.4. (The Plotkin bound) [10], [6]. If C is an (n,M, d)q-code, then (M −

1)qd ≤ M(q − 1)n.

In the recent paper [1], a stronger result is proved:

Theorem 2.5. (The sharpened Plotkin bound) [1] If C is an (n,M, d)q-code and

M = pq+r, 0 ≤ r ≤ q−1, then (M−1)Md ≤ (M2−σ)n, where σ = (q−r)p2+r(p+1)2.

3. New general result.

Lemma 3.1. If an (n,M, d)q-code exists and q ≤ M ≤ 2q then

d ≤
M2 − 3M + 2q

M2 −M
n.

Proof. Follows from Theorem 2.5.

Some definition and preliminary results are needed for the proof of the next Lemma.

Let V = {1, 2, . . . ,m}. There are
(
m

2

)
distinct unordered pairs of the elements of V .

Definition 3.2.A Pair Design PD(m) is an arrangement of the pairs in a sequence

in such a way that there are at least

⌊
m− 3

2

⌋

pairs between every two pairs with a

common element.

Example 3.3. PD(7)

12, 34, 56, 71, 23, 45, 67, 13, 52, 74, 61, 35, 27, 46, 15, 73, 62, 41, 57, 36, 24.

Example 3.4. PD(8)

12, 34, 56, 78, 13, 52, 74, 86, 15, 73, 82, 64, 17, 85, 63, 42, 18, 67, 45, 23, 16, 48, 27, 35,

14, 26, 38, 57.

Theorem 3.5 [11], [5]. A PD(m) exists for all positive integers m ≥ 2.

Construction.

a) for odd m the first m pairs are

{1, 2}, {3, 4}, . . . , {m− 2,m− 1}, {m, 1}, {2, 3}, . . . , {m− 1,m}.

Then apply
m− 1

2
− 1 times the permutation:

(1)(3, 5, 7, . . . ,m− 4,m− 2,m,m− 1,m− 3, , . . . , 6, 4, 2)
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b) for even m the first
m

2
pairs are

{1, 2}, {3, 4}, . . . , {m− 1,m};

Then apply m− 2 times the permutation:

(1)(3, 5, 7, . . . ,m− 3,m− 1,m,m− 2,m− 4, , . . . , 6, 4, 2).

The obtained PD(m) are cyclic. Using k times reiteration of PD(m), we obtain the

sequence where any pair occurs k times, and with the property that there are at least⌊
m− 3

2

⌋

pairs between two appearances of any one element. We call such a sequence

PD-sequence.

Lemma 3.6. If q ≤ M ≤ 2q and d ≤
M2 − 3M + 2q

M2 −M
n then an (n,M, d)q-code exists.

Construction. If M = q the desired code may be:

d n− d
︷ ︸︸ ︷

0 0 . . . 0
1 1 . . . 1
2 2 . . . 2
. . .

q − 1 q − 1 . . . q − 1

︷ ︸︸ ︷

0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
. . .
0 0 . . . 0

If M > q let r = M − q. First produce a PD-sequence of length r × n.

Cut the sequence into subsequences of length r.

Every subsequence {x0, y0, }, {x1, y1}, . . . , {xr−1, yr−1} corresponds to a coordinate of the

desired code: for i = 0, 1, . . . , r − 1 set this coordinate of the xi-th and yi-th codewords

equal to i. If M < 2q the nonfilled entries in any position fill with the unused elements

of Zq, i.e. r, r + 1, . . . , q − 1.

Example 3.7. Construction of a (28, 8, 25)5 code.

Take three times PD(8) and cut the sequence into parts of length 3

12,34,56; 78,13,52; 74,86,15; 73,82,64; 17,85,63; 42,18,67; 45,23,16;

48,27,35; 14,26,38; 57,12,34; 56,78,13; 52,74,86; 15,73,82; 64,17,85;

63,42,18; 67,45,23; 16,48,27; 35,14,26; 38,57,12; 34,56,78; 13,52,74;

86,15,73; 82,64,17; 85,63,42; 18,67,45; 23,16,48; 27,35,14; 26,38,57.

The code is:

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 2 3 1 3 0 1 1 1 1 3 0 2 3 1 2 2 2 2 4 1 3 0 2 3 0 0 0

1 1 4 0 2 3 1 2 2 2 2 4 1 4 0 2 3 0 0 0 0 2 3 1 4 0 1 1

1 3 0 2 4 0 0 0 0 2 4 1 3 0 1 1 1 1 3 0 2 4 1 2 2 2 2 4

2 2 2 4 1 4 0 2 3 0 0 0 0 2 3 1 4 0 1 1 1 1 4 0 2 3 1 2

2 4 1 2 2 2 2 4 1 3 0 2 4 0 0 0 0 2 4 1 3 0 1 1 1 1 3 0

3 0 0 0 0 2 3 1 4 0 1 1 1 1 4 0 2 3 1 2 2 2 2 4 1 4 0 2

4 0 1 1 1 1 4 0 2 4 1 2 2 2 2 4 1 4 0 2 4 0 0 0 0 2 4 1.
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Theorem 3.8. If q ≤ M < 2q then Aq(n, d) = M iff

(M + 1)2 − 3(M + 1) + 2q

(M + 1)2 − (M + 1)
n < d ≤

M2 − 3M + 2q

M2 −M
n.

Proof. Follows from Lemma 3.1 and Lemma 3.6.

4. New specific results. In [12] a (6, 37, 3)3 code has been constructed.

In [4] a (6, 38, 3)3 code has been constructed.

By the Linear Programming bound (6, 49, 3)3-codes do not exist.

Hence 38 ≤ A3(6, 3) ≤ 48, as it is shown in Table 1.

In this paper we will prove that 38 ≤ A3(6, 3) ≤ 39.

Theorem 4.1.There are no (6, 40, 3)3-codes.

Proof. Our approach is similar to that one used in [8] for proving the nonexistence

of a (10, 73, 3)2-code.

Any (n,M, d)q-code contains an (n− 1,M ′, d)q-code with M ′ ≥ M/q.

Suppose that C is a (6, 40, 3)3-code. Then C must contain a subcode C′ which is a

(5,M ′, 3)3-code with M ′ ≥ 14. In Table 1 we see that M ′ ≤ 18. We have classified (up

to equivalence) all codes with parameters (5,M ′, 3)3 for 14 ≤ M ′ ≤ 18 and all codes with

parameters (4,M ′′, 3)3 for 5 ≤ M ′′ ≤ 9.

Definition 4.2.Two q-ary codes are called equivalent if one can be obtained from the

other by a superpossition of operations of the following types:

a) permutation of the coordinates of the code;

b) permutation of the symbols appearing in a fixed position.

To find out whether two q-ary codes are equivalent the brute-force approach of check-

ing all n!(q!)n possible permutations of the coordinates and coordinate values is not

acceptable even for small values of q and n.

In [9] the complexity of algorithms for determining the code equivalence is studied. A

polynomial-time reduction from the Graph Isomorphism problem to Code Equivalence

problem was presented. Thus, if one could find an efficient (i.e., polynomial-time) al-

gorithm for the Code Equivalence problem, then one could settle up the long-standing

problem of determining whether there is an efficient algorithm for solving the Graph

Isomorphism problem.

In [8] we find just the opposite approach: the Code Equivalence problem is trans-

formed into a Graph Isomorphism one.

We use our own specially developed computer program for determining code equiva-

lence.

The results are summarized in the following table:
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Table 2. Inequivalent (4,M, 3)3 and (5,M, 3)3-codes

M # inequivalent M # inequivalent
(4,M, 3)3-codes (5,M, 3)3-codes

5 5 14 78
6 4 15 10
7 1 16 3
8 1 17 1
9 1 18 1

We checked with a computer that none of the subcodes can be extended to a (6, 40, 3)3-

code.

Using the same approach we prove the following theorem:

Theorem 4.3.There are no (10, 16, 7)3-codes.

From Theorem 4.2, Theorem 4.3 and Theorem 2.1 we obtain the following improve-

ments in Table 1:

Corollary 4.4.

a) A3(6, 3) ≤ 39, A3(7, 3) ≤ 117, A3(7, 4) ≤ 39, A3(8, 3) ≤ 117;

b) A3(10, 7) ≤ 15, A3(11, 7) ≤ 45.
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ГРАНИЦИ ЗА КОДОВЕ НАД МАЛКИ АЗБУКИ

Галина Т. Богданова, Стоян Н. Капралов

Статията е посветена на проблема за определяне стойностите на Aq(n, d) – мак-

сималния обем на код с дължина n и минимално разстояние d над азбука с q

елемента. Определени са всички двойки (n, d), за които q ≤ Aq(n, d) < 2q. По-

лучени са някои нови граници за A3(n, d).
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