MEASURABILITY OF SETS OF PAIRS OF NONPARALLEL POINTS IN THE GALILEAN PLANE

Adrijan Varbanov Borisov*

Abstract

The measurable sets of pairs of nonparallel points and the corresponding invariant densities with respect to the group of the general similitudes and its subgroups are described.

1. Introduction. In the affine version, the Galilean plane Γ_{2} is an affine plane with a special direction which may be taken coincident with the y-axis of the basic affine coordinate system $O x y[7]$, [8], [10], [11]. The affine transformations leaving invariant the special direction $O y$ can be written in the form

$$
\begin{align*}
& x^{\prime}=a_{1}+a_{2} x \\
& y^{\prime}=a_{3}+a_{4} x+a_{5} y \tag{1}
\end{align*}
$$

where $a_{1}, \ldots, a_{5} \in \mathbb{R}$ and $a_{2} a_{5} \neq 0$.
It is easy to verify that the transformations (1) map a line segment and an angle of Γ_{2} into a proportional line segment and a proportional angle with the coefficients of proportionality $\left|a_{2}\right|$ and $\left|a_{2}^{-1} a_{5}\right|$, respectively. Thus they form the group H_{5} of the general similitudes of Γ_{2}. The infinitesimal operators of H_{5} are

$$
X_{1}=\frac{\partial}{\partial x}, \quad X_{2}=x \frac{\partial}{\partial x}, \quad X_{3}=\frac{\partial}{\partial y}, \quad X_{4}=x \frac{\partial}{\partial y}, \quad X_{5}=y \frac{\partial}{\partial y}
$$

In [1], [2] we proved the following results:
I. The four-parametric subgroups of H_{5} can be reduced to one of the following subgroups:

$$
\begin{gathered}
H_{4}^{1}=\left(X_{1}, X_{2}, X_{3}, X_{4}\right), H_{4}^{2}=\left(X_{1}, X_{2}, X_{3}, X_{5}\right), H_{4}^{3}=\left(X_{2}, X_{3}, X_{4}, X_{5}\right) \\
H_{4}^{4}=\left(X_{1}, X_{3}, X_{4}, \alpha X_{2}+X_{5}\right)
\end{gathered}
$$

II. The three-parametric subgroups of H_{5} can be reduced to one of the following subgroups:

$$
\begin{gathered}
H_{3}^{1}=\left(X_{1}, X_{2}, X_{3}\right), H_{3}^{2}=\left(X_{1}, X_{2}, X_{5}\right), H_{3}^{3}=\left(X_{1}, X_{3}, X_{4}\right), H_{3}^{4}=\left(X_{2}, X_{3}, X_{4}\right), \\
H_{3}^{5}=\left(X_{2}, X_{3}, X_{5}\right), H_{3}^{6}=\left(X_{2}, X_{4}, X_{5}\right), H_{3}^{7}=\left(X_{1}, X_{3}, \alpha X_{2}+\beta X_{4}+X_{5}\right), \\
H_{3}^{8}=\left(X_{3}, X_{4}, \alpha X_{1}+X_{5}\right), H_{3}^{9}=\left(X_{3}, X_{4}, \alpha X_{2}+X_{5} \mid \alpha \neq 0\right), \\
H_{3}^{10}=\left(X_{3}, X_{2}+2 X_{5}, \alpha X_{1}+X_{4} \mid \alpha \neq 0\right) .
\end{gathered}
$$

[^0]III. The two-parametric subgroups of H_{5} can be reduced to one of the following subgroups:
\[

$$
\begin{gathered}
H_{2}^{1}=\left(X_{1}, X_{2}\right), H_{2}^{2}=\left(X_{2}, X_{3}\right), H_{2}^{3}=\left(X_{2}, X_{4}\right), H_{2}^{4}=\left(X_{2}, X_{5}\right), \\
H_{2}^{5}=\left(X_{1}, \alpha X_{2}+X_{3}\right), H_{2}^{6}=\left(X_{1}, \alpha X_{2}+X_{5}\right), H_{2}^{7}=\left(X_{3}, \alpha X_{1}+X_{4} \mid \alpha \neq 0\right), \\
H_{2}^{8}=\left(X_{3}, \alpha X_{1}+X_{5}\right), H_{2}^{9}=\left(X_{3}, \alpha X_{2}+\beta X_{4}+X_{5} \mid \alpha \neq 0\right), H_{2}^{10}=\left(X_{4}, \alpha X_{2}+X_{3}\right), \\
H_{2}^{11}=\left(X_{4}, \alpha X_{2}+X_{5}\right), H_{2}^{12}=\left(X_{2}+2 X_{5}, \alpha X_{1}+X_{4} \mid \alpha \neq 0\right) .
\end{gathered}
$$
\]

IV. The one-parametric subgroups of H_{5} can be reduced to one of the following subgroups:

$$
\begin{gathered}
H_{1}^{1}=\left(X_{1}\right), H_{1}^{2}=\left(X_{2}\right), H_{1}^{3}=\left(X_{3}\right), H_{1}^{4}=\left(X_{4}\right), H_{1}^{5}=\left(X_{5}\right), \\
H_{1}^{6}=\left(\alpha X_{1}+X_{4} \mid \alpha \neq 0\right), H_{1}^{7}=\left(X_{1}+X_{5}\right), H_{1}^{8}=\left(\alpha X_{2}+X_{3} \mid \alpha \neq 0\right), \\
H_{1}^{9}=\left(\alpha X_{2}+X_{5} \mid \alpha \neq 0\right), H_{1}^{10}=\left(\alpha X_{2}+\beta X_{4}+X_{5} \mid \alpha \beta \neq 0\right) .
\end{gathered}
$$

Here and everywhere in the text α and β are real constants.
Using some basic concepts of the integral geometry in the sence of M. I. Stoka [9], G. I. Drinfel'd and A. V. Lucenko [4], [5], [6], we find the measurable sets of nonparallel points in Γ_{2} with respect to H_{5} and its subgroups.
2. Measurability with respect to \boldsymbol{H}_{5}. In Γ_{2} a straight line is said to be special if it is parallel to the special direction. Two points $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ are called parallel if the straight line $P_{1} P_{2}$ is special. Then it follows that

$$
x_{2}-x_{1}=0 .
$$

Let $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ be a pair of nonparallel points, i.e.

$$
\begin{equation*}
x_{2}-x_{1} \neq 0 \tag{2}
\end{equation*}
$$

Under the action of (1) the pair $\left(P_{1}, P_{2}\right)\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ is transformed into the pair $\left(P_{1}^{\prime}, P_{2}^{\prime}\right)\left(x_{1}^{\prime}, y_{1}^{\prime}, x_{2}^{\prime}, y_{2}^{\prime}\right)$ as

$$
\begin{array}{ll}
x_{i}^{\prime}=a_{1}+a_{2} x_{i}, & a_{2} a_{5} \neq 0, \quad i=1,2 \tag{3}\\
y_{i}^{\prime}=a_{3}+a_{4} x_{i}+a_{5} y_{i}, &
\end{array}
$$

The transformations (3) form the so-called associated group $\overline{H_{5}}$ of H_{5} [9, p. 34]. The associated group $\overline{H_{5}}$ is isomorphic to H_{5} and the invariant density with respect to H_{5} of the pairs $\left(P_{1}, P_{2}\right)$, if it exists, coincides with the invariant density with respect to $\overline{H_{5}}$ of the points $\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ in the set of parameters [9 , p. 33]. The infinitestimal operators of $\overline{H_{5}}$ are

$$
\begin{gathered}
Y_{1}=\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{2}}, Y_{2}=x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}} \\
Y_{3}=\frac{\partial}{\partial y_{1}}+\frac{\partial}{\partial y_{2}}, Y_{4}=x_{1} \frac{\partial}{\partial y_{1}}+x_{2} \frac{\partial}{\partial y_{2}}, Y_{5}=y_{1} \frac{\partial}{\partial y_{1}}+y_{2} \frac{\partial}{\partial y_{2}}
\end{gathered}
$$

From (2) it follows that the infinitestimal operators Y_{3} and Y_{4} are arcwise unconnected. On the other hand, we obtain

$$
Y_{5}=\frac{x_{2} y_{1}-x_{1} y_{2}}{x_{2}-x_{1}} Y_{3}+\frac{y_{2}-y_{1}}{x_{2}-x_{1}} Y_{4}
$$

and since

$$
Y_{3}\left(\frac{x_{2} y_{1}-x_{1} y_{2}}{x_{2}-x_{1}}\right)+Y_{4}\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right) \neq 0
$$

we can state the following
Theorem 1. The sets of pairs of nonparallel points are not measurable with respect to the group H_{5} of the general similitudes and have no measurable subsets.
3. Measurability with the respect to subgroups of \boldsymbol{H}_{5}. The group $\overline{H_{4}^{1}}=$ $\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)$, corresponding to the subgroup $H_{4}^{1}=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ of H_{5}, is a simply transitive group and therefore it is measurable. The integral invariant function [9, p. 9] $f=f\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$, satisfying the system or R. Deltheil [3, p. 28], [9, p. 11]

$$
Y_{1}(f)=0, Y_{2}(f)+2 f=0, Y_{3}(f)=0, Y_{4}(f)=0
$$

has the form

$$
f=\frac{c}{\left(x_{2}-x_{1}\right)^{2}},
$$

where $c=$ const $\neq 0$. Thus we establish:

Theorem 2. The pairs $\left(P_{1}, P_{2}\right)$ of nonparallel points $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ have the invariant with respect to H_{4}^{1} density

$$
d\left(P_{1}, P_{2}\right)=\frac{1}{\left(x_{2}-x_{1}\right)^{2}} d P_{1} \wedge d P_{2}
$$

where $d P_{i}=d x_{i} \wedge d y_{i}, i=1,2$, denote the metric density for points in Γ_{2}.
By arguments similar to the ones used above we examine the measurability of the set of pairs of nonparallel points with respect to all the rest subgroups of H_{5}. We collect the results in the following table:

subgroup	measurable set/subset	expression of the density
H_{4}^{1}		$\left(x_{2}-x_{1}\right)^{-2} d P_{1} \wedge d P_{2}$
H_{4}^{2}	$y_{2}-y_{1} \neq 0$	$\left(x_{2}-x_{1}\right)^{-2}\left(y_{2}-y_{1}\right)^{-2} d P_{1} \wedge d P_{2}$
H_{4}^{3}	it is not measurable and has no measurable subsets	
H_{4}^{4} $\alpha=0$	it is not measurable and has no measurable subsets	
H_{4}^{4} $\alpha \neq 0$		$\left(x_{2}-x_{1}\right)^{-2 \frac{\alpha+1}{\alpha} d P_{1} \wedge d P_{2}}$
H_{3}^{1}	$y_{2}-y_{1}=\lambda$	$\left(x_{2}-x_{1}\right)^{-2} d P_{1} \wedge d x_{2}$
H_{3}^{2}	$y_{2}=\lambda y_{1}, \lambda y_{1} \neq 0$	$\left(x_{2}-x_{1}\right)^{-2}\left\|y_{1}\right\|^{-1} d P_{1} \wedge d x_{2}$
H_{3}^{3}	$x_{2}=x_{1}+\lambda, \lambda \neq 0$	$d P_{1} \wedge d y_{2}$
H_{3}^{4}	$x_{2}=\lambda x_{1}, \lambda \neq 1, x_{1} \neq 0$	$\left\|x_{1}\right\|^{-1} d P_{1} \wedge d y_{2}$
H_{3}^{5}	$x_{2}=\lambda x_{1}, \lambda \neq 1, x_{1}\left(y_{2}-y_{1}\right) \neq 0$	$\left\|x_{1}\right\|^{-1}\left(y_{2}-y_{1}\right)^{-2} d P_{1} \wedge d y_{2}$
H_{3}^{6}	$x_{2}=\lambda x_{1}, \lambda \neq 1, x_{1}\left(\lambda y_{1}-y_{2}\right) \neq 0$	$\left\|x_{1}\right\|^{-1}\left(\lambda y_{1}-y_{2}\right)^{-2} d P_{1} \wedge d y_{2}$

subgroup	measurable set/subset	expression of the density
$\begin{aligned} & H_{3}^{7} \\ & \alpha \neq 0,1 \end{aligned}$	$y_{2}=y_{1}+\lambda\left(x_{2}-x_{1}\right)^{\frac{1}{\alpha}}+\frac{\beta}{\alpha-1}\left(x_{2}-x_{1}\right)$	$\left\|x_{2}-x_{1}\right\|^{-\frac{2 \alpha+1}{\alpha}} d P_{1} \wedge d x_{2}$
$\begin{aligned} & H_{3}^{7} \\ & \alpha=0 \end{aligned}$	$\begin{aligned} & x_{2}=x_{1}+\lambda, \lambda \neq 0, \\ & y_{2}-y_{1}+\beta \lambda \neq 0 \end{aligned}$	$\left(y_{2}-y_{1}+\beta \lambda\right)^{-2} d P_{1} \wedge d y_{2}$
$\begin{aligned} & H_{3}^{7} \\ & \alpha=1 \end{aligned}$	$y_{2}=y_{1}+\left(x_{2}-x_{1}\right)\left(\lambda+\beta \ln \left\|x_{2}-x_{1}\right\|\right)$	$\left\|x_{2}-x_{1}\right\|^{-3} d P_{1} \wedge d x_{2}$
$\begin{aligned} & H_{3}^{8} \\ & \alpha \neq 0 \end{aligned}$	$x_{2}=x_{1}+\lambda, \lambda \neq 0$	$e^{-\frac{2}{\alpha} x_{1}} d P_{1} \wedge d y_{2}$
$\begin{aligned} & H_{3}^{8} \\ & \alpha=0 \end{aligned}$	it is not measurable and has no measurable subsets	
H_{3}^{9}	$x_{2}=\lambda x_{1}, \lambda \neq 1$	$e^{-\frac{\alpha+2}{\alpha} x_{1}} d P_{1} \wedge d y_{2}$
H_{3}^{10}	$y_{2}=y_{1}+\frac{1}{2 \alpha}\left[x_{2}^{2}-x_{1}^{2}-\lambda\left(x_{2}-x_{1}\right)^{2}\right]$	$\left(x_{2}-x_{1}\right)^{-4} d P_{1} \wedge d x_{2}$
H_{2}^{1}	$y_{1}=\lambda_{1}, y_{2}=\lambda_{2}$	$\left(x_{2}-x_{1}\right)^{-2} d x_{1} \wedge d x_{2}$
H_{2}^{2}	$\begin{aligned} & x_{1} \neq 0, x_{2}=\lambda_{1} x_{1}, \lambda_{1} \neq 1, \\ & y_{2}=y_{1}+\lambda_{2} \end{aligned}$	$\left\|x_{1}\right\|^{-1} d P_{1}$
H_{2}^{3}	$\begin{aligned} & x_{1} \neq 0, x_{2}=\lambda_{1} x_{1}, \quad \lambda_{1} \neq 1, \\ & y_{2}=\lambda_{1} y_{1}+\lambda_{2} \end{aligned}$	$\left\|x_{1}\right\|^{-1} d P_{1}$
H_{2}^{4}	$\begin{aligned} & x_{1} \neq 0, \quad x_{2}=\lambda_{1} x_{1}, \quad \lambda_{1} \neq 1, \\ & y_{2}=\lambda_{2} y_{1}, y_{1} \neq 0 \end{aligned}$	$\left\|x_{1} y_{1}\right\|^{-1} d P_{1}$
$\begin{aligned} & H_{2}^{5} \\ & \alpha \neq 0 \end{aligned}$	$\begin{aligned} & x_{2}=x_{1}+\lambda_{1} e^{\alpha y_{1}}, \lambda_{1}>0 \\ & y_{2}=y_{1}+\lambda_{2} \end{aligned}$	$e^{-\alpha y_{1}} d P_{1}$
$\begin{aligned} & H_{2}^{5} \\ & \alpha=0 \end{aligned}$	$\begin{aligned} & x_{2}=x_{1}+\lambda_{1}, \lambda_{1} \neq 0, \\ & y_{2}=y_{1}+\lambda_{2} \end{aligned}$	$d P_{1}$
H_{2}^{6}	$\begin{aligned} & x_{2}=x_{1}+\lambda_{1} y_{1}^{\alpha}, \quad \lambda_{1} \neq 0, \\ & y_{2}=\lambda_{2} y_{1}, y_{1} \neq 0 \end{aligned}$	$\left\|y_{1}\right\|^{-(\alpha+1)} d P_{1}$
H_{2}^{7}	$\begin{aligned} & x_{2}=x_{1}+\lambda_{1}, \lambda_{1} \neq 0, \\ & y_{2}=\frac{1}{2 \alpha}\left(2 \lambda_{1} x_{1}+2 \alpha y_{1}+\lambda_{1}^{2}+\lambda_{2}\right) \\ & \hline \end{aligned}$	$d P_{1}$
$\begin{aligned} & H_{2}^{8} \\ & \alpha \neq 0 \end{aligned}$	$\begin{aligned} & x_{2}=x_{1}+\lambda_{1}, \lambda_{1} \neq 0, \\ & y_{2}=\lambda_{2} e^{\frac{1}{\alpha} x_{1}}+y_{1} \end{aligned}$	$e^{-\frac{1}{\alpha} x_{1}} d P_{1}$
$\begin{aligned} & H_{2}^{8} \\ & \alpha=0 \end{aligned}$	$\begin{aligned} & x_{1}=\lambda_{1}, x_{2}=\lambda_{2}, \lambda_{1} \neq \lambda_{2}, \\ & y_{2}-y_{1} \neq 0 \end{aligned}$	$\left(y_{2}-y_{1}\right)^{-2} d y_{1} \wedge d y_{2}$
$\begin{aligned} & H_{2}^{9} \\ & \alpha \neq 1 \end{aligned}$	$\begin{aligned} & x_{1} \neq 0, x_{2}=\lambda_{1} x_{1}, \alpha_{1} \neq 1, \\ & y_{2}=\lambda_{2} x_{1}^{\alpha}+\frac{\beta\left(\lambda_{1}-1\right)}{\alpha-1} x_{1}+y_{1} \\ & \hline \end{aligned}$	$\left\|x_{1}\right\|^{-\frac{\alpha+1}{\alpha}} d P_{1}$
$\begin{aligned} & H_{2}^{9} \\ & \alpha=1 \end{aligned}$	$\begin{aligned} & x_{1} \neq 0, x_{2}=\lambda_{1} x_{1}, \quad \lambda_{1} \neq 1, \\ & y_{2}=\lambda_{2} x_{1}+\beta\left(\lambda_{1} \ln \left\|\lambda_{1} x_{1}\right\|-\right. \\ & \left.-\ln \left\|x_{1}\right\|\right) x_{1}+y_{1} \end{aligned}$	$\left(x_{1}\right)^{-2} d P_{1}$
$\begin{aligned} & H_{2}^{10} \\ & \alpha \neq 0 \end{aligned}$	$\begin{aligned} & x_{1} \neq 0, x_{2}=\lambda_{1} x_{1}, \lambda_{1} \neq 1, \\ & y_{2}=y_{1}+\frac{1}{\alpha}\left[\left(1+\lambda_{1}\right)\left(\lambda_{2}+\ln \left\|x_{1}\right\|-\alpha y_{1}\right)\right] \end{aligned}$	$\left(x_{1}\right)^{-2} d P_{1}$
$\begin{aligned} & H_{2}^{10} \\ & \alpha=0 \end{aligned}$	$x_{1}=\lambda_{1}, x_{2}=\lambda_{2}, \lambda_{1} \neq \lambda_{2}$	$d y_{1} \wedge d y_{2}$
$\begin{aligned} & H_{2}^{11} \\ & \alpha \neq 0 \\ & \hline \end{aligned}$	$\begin{aligned} & x_{1} \neq 0, x_{2}=\lambda_{1} x_{1}, \lambda_{1} \neq 1, \\ & y_{2}=\lambda_{1} y_{1}-\lambda_{2} x_{1}^{\frac{1}{\alpha}} \\ & \hline \end{aligned}$	$\left\|x_{1}\right\|^{-\frac{\alpha+1}{\alpha}} d P_{1}$

subgroup	measurable set/subset	expression of the density
$\begin{aligned} & H_{2}^{11} \\ & \alpha=0 \end{aligned}$	$\begin{aligned} & x_{1}=\lambda_{1}, x_{2}=\lambda_{2}, \quad \lambda_{1} \neq \lambda_{2}, \\ & \lambda_{2} y_{1}-\lambda_{1} y_{2} \neq 0 \end{aligned}$	$\left(\lambda_{2} y_{1}-\lambda_{1} y_{2}\right)^{-2} d y_{1} \wedge d y_{2}$
H_{2}^{12}	$\begin{aligned} & x_{2}=\lambda_{1}\left(\frac{1}{2} x_{1}^{2}-\alpha y_{1}\right)^{\frac{1}{2}}+x_{1}, \quad \lambda_{1} \neq 0, \\ & y_{2}=\frac{1}{2 \alpha}\left\{\left[\lambda_{1}\left(\frac{1}{2} x_{1}^{2}-\alpha y_{1}\right)^{\frac{1}{2}}+x_{1}\right]^{2}-\lambda_{2}\left(x_{1}^{2}-2 \alpha y_{1}\right)\right\}, \\ & x_{1}^{2}-2 \alpha y_{1} \neq 0 \end{aligned}$	$\left\|\left\|x_{1}^{2}-2 \alpha y_{1}\right\|^{-\frac{3}{2}} d P_{1}\right.$
H_{1}^{1}	$\begin{aligned} & x_{1} \neq 0, y_{1}=\lambda_{1}, \quad x_{2}=x_{1}+\lambda_{2}, \\ & \lambda_{2} \neq 0, y_{2}=\lambda_{3} \end{aligned}$	$d x_{1}$
H_{1}^{2}	$\begin{aligned} & x_{1} \neq 0, \quad y_{1}=\lambda_{1}, x_{2}=\lambda_{2} x_{1}, \quad \lambda_{2} \neq 0, \\ & y_{2}=\lambda_{3} \end{aligned}$	$\left\|x_{1}\right\|^{-1} d x_{1}$
H_{1}^{3}	$\begin{aligned} & x_{1}=\lambda_{1}, x_{2}=\lambda_{2}, y_{2}=y_{1}+\lambda_{3}, \\ & \lambda_{1} \neq \lambda_{2} \end{aligned}$	$d y_{1}$
H_{1}^{4}	$\begin{aligned} & x_{1}=\lambda_{1}, x_{2}=\lambda_{2}, y_{2}=\frac{1}{\lambda_{1}}\left(\lambda_{2} y_{1}+\lambda_{3}\right) \\ & \lambda_{1} \neq 0, \lambda_{1} \neq \lambda_{2} \end{aligned}$	$d y_{1}$
H_{1}^{5}	$\begin{aligned} & x_{1}=\lambda_{1}, x_{2}=\lambda_{2}, y_{2}=\lambda_{3} y_{1}, \\ & y_{1} \neq 0, \lambda_{1} \neq \lambda_{2} \end{aligned}$	$\left\|y_{1}\right\|^{-1} d y_{1}$
H_{1}^{6}	$\begin{aligned} & y_{1}=\frac{1}{2 \alpha}\left(x_{1}^{2}-\lambda_{1}\right), x_{2}=x_{1}+\lambda_{2}, \\ & y_{2}=\frac{1}{2 \alpha}\left[\left(x_{1}+\lambda_{2}\right)^{2}-\lambda_{3}\right], \quad \lambda_{2} \neq 0 \end{aligned}$	$d x_{1}$
H_{1}^{7}	$\begin{aligned} & y_{1}=\frac{1}{\lambda_{1}} e^{x_{1}}, \lambda_{1} \neq 0, \\ & x_{2}=x_{1}+\lambda_{1}, \quad \lambda_{2} \neq 0, y_{2}=\frac{\lambda_{3}}{\lambda_{1}} e^{x_{1}} \end{aligned}$	$d x_{1}$
H_{1}^{8}	$\begin{aligned} & x_{1} \neq 0, y_{1}=\frac{1}{\alpha}\left(\ln \left\|x_{1}\right\|+\lambda_{1}\right), \\ & x_{2}=\lambda_{2} x_{1}, \lambda_{2} \neq 1, \\ & y_{2}=\frac{1}{\alpha}\left(\ln \left\|x_{1}\right\|+\lambda_{1}\right)+\lambda_{3} \end{aligned}$	$\left\|x_{1}\right\|^{-1} d x_{1}$
H_{1}^{9}	$\begin{aligned} & x_{1} \neq 0, y_{1}=\lambda_{1} x_{1}^{\frac{1}{\alpha}}, x_{2}=\lambda_{2} x_{1}, \\ & \lambda_{2} \neq 1, y_{2}=\lambda_{1} \lambda_{3} x_{1}^{\frac{1}{\alpha}} \end{aligned}$	$\left\|x_{1}\right\|^{-1} d x_{1}$
$\begin{aligned} & H_{1}^{10} \\ & \alpha \neq 1 \end{aligned}$	$\begin{aligned} & x_{1} \neq 0, y_{1}=\lambda_{1} x_{1}^{\frac{1}{\alpha}}+\frac{\beta}{\alpha-1} x_{1}, \\ & x_{2}=\lambda_{2} x_{1}, \lambda_{2} \neq 1, \\ & y_{2}=\lambda_{2}^{\frac{1}{\alpha}} \lambda_{3} x_{1}^{\frac{1}{\alpha}}+\frac{\beta \lambda_{2}}{\alpha-1} x_{1} \end{aligned}$	$\left\|x_{1}\right\|^{-1} d x_{1}$
$\begin{aligned} & H_{1}^{10} \\ & \alpha=1 \end{aligned}$	$\begin{aligned} & x_{1} \neq 0, y_{1}=x_{1}\left(\lambda_{1}+\beta \ln \left\|x_{1}\right\|\right), \\ & x_{2}=\lambda_{2} x_{1}, \lambda_{2} \neq 0,1, \\ & y_{2}=\lambda_{2} x_{1}\left(\lambda_{3}+\beta\|\ln \| \lambda_{2} x_{1} \mid\right) \end{aligned}$	$\left\|x_{1}\right\|^{-1} d x_{1}$

Remark. In the table $\lambda, \lambda_{1}, \lambda_{2}, \lambda_{3}, \in R$.

REFERENCES

[1] A.V. Borisov. On the subgroups of the similarity group in the Galilean plane. C. R. Acad. Bulg. Sci., 46, 5 (1993), 7 19-21.
[2] A.V. Borisov. Subgroups of the group of the general similitudes in the Galilean plane. Math. Balkanica, 13, 1-2 (1999), 55-84.
[3] R. Deltheil. Probabilités Géométriques. Gauthier-Villars, Paris, 1926.
[4] G. I. Drinfel'd. On the measure of the Lie groups. Zap. Mat. Otdel. Fiz. Mat. Fak. Kharkov. Mat. Obsc., 21 (1949), 47-57 (in Russian).
[5] G. I. Drinfel'd, A. V. Lucenko. On the measure of sets of geometric elements. Vest. Kharkov. Univ., 31, 3 (1964), 34-41 (in Russian).
[6] A. V. Lucenko. On the measure of sets of geometric elements and their subsets. Ukrain. Geom. Sb., 1 (1965), 39-57 (in Russian).
[7] N. M. Makarova. Galilean-Newtonian geometry I-III. Uč. Zap. Orehovo-Zuev. Ped. Inst., 1 (1955), 83-95; $\mathbf{7}$ (1957), 7-27; $\boldsymbol{7}$ (1957), 29-59 (in Russian).
[8] H. Sachs. Ebene Isotrope Geometrie. Vieweg, Braunschweig/Wiesbaden, 1987.
[9] M. I. Stoka. Geometrie Integrala. Ed. Acad. RPR, Bucuresti, 1967.
[10] K. Strubecker. Geometrie in einer isotropen Ebene I-III. Math. Naturwiss. Unterricht, 15, 15 (1962/1963), 297-306; 8, 343-351; 9, 385-394.
[11] I. M. Yaglom. A Simple Non-Euclidean Geometry and its Physical Basic. Springer, Berlin, 1979.

Dept. of Descriptive Geometry
University of Architecture,
Civil Engineering and Geodesy
1, Christo Smirnenski Blvd.
1421 Sofia, Bulgaria

ИЗМЕРИМОСТ НА МНОЖЕСТВА ОТ ДВОЙКИ НЕПАРАЛЕЛНИ ТОЧКИ В ГАЛИЛЕЕВАТА РАВНИНА

Адриян Върбанов Борисов

Описани са измеримите множества от двойки непаралелни точки и съответните им инвариантни гъстоти относно групата на общите подобности.

[^0]: *AMS subject classification: 53C65

